AliasAnalysis.h revision 5753a4a0033da4add45f2e9930a4e1159d92a869
1//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the generic AliasAnalysis interface, which is used as the
11// common interface used by all clients of alias analysis information, and
12// implemented by all alias analysis implementations.  Mod/Ref information is
13// also captured by this interface.
14//
15// Implementations of this interface must implement the various virtual methods,
16// which automatically provides functionality for the entire suite of client
17// APIs.
18//
19// This API represents memory as a (Pointer, Size) pair.  The Pointer component
20// specifies the base memory address of the region, the Size specifies how large
21// of an area is being queried.  If Size is 0, two pointers only alias if they
22// are exactly equal.  If size is greater than zero, but small, the two pointers
23// alias if the areas pointed to overlap.  If the size is very large (ie, ~0U),
24// then the two pointers alias if they may be pointing to components of the same
25// memory object.  Pointers that point to two completely different objects in
26// memory never alias, regardless of the value of the Size component.
27//
28//===----------------------------------------------------------------------===//
29
30#ifndef LLVM_ANALYSIS_ALIAS_ANALYSIS_H
31#define LLVM_ANALYSIS_ALIAS_ANALYSIS_H
32
33#include "llvm/Support/CallSite.h"
34#include "llvm/System/IncludeFile.h"
35#include <vector>
36
37namespace llvm {
38
39class LoadInst;
40class StoreInst;
41class VAArgInst;
42class TargetData;
43class Pass;
44class AnalysisUsage;
45
46class AliasAnalysis {
47protected:
48  const TargetData *TD;
49  AliasAnalysis *AA;       // Previous Alias Analysis to chain to.
50
51  /// InitializeAliasAnalysis - Subclasses must call this method to initialize
52  /// the AliasAnalysis interface before any other methods are called.  This is
53  /// typically called by the run* methods of these subclasses.  This may be
54  /// called multiple times.
55  ///
56  void InitializeAliasAnalysis(Pass *P);
57
58  /// getAnalysisUsage - All alias analysis implementations should invoke this
59  /// directly (using AliasAnalysis::getAnalysisUsage(AU)).
60  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
61
62public:
63  static char ID; // Class identification, replacement for typeinfo
64  AliasAnalysis() : TD(0), AA(0) {}
65  virtual ~AliasAnalysis();  // We want to be subclassed
66
67  /// getTargetData - Return a pointer to the current TargetData object, or
68  /// null if no TargetData object is available.
69  ///
70  const TargetData *getTargetData() const { return TD; }
71
72  /// getTypeStoreSize - Return the TargetData store size for the given type,
73  /// if known, or a conservative value otherwise.
74  ///
75  unsigned getTypeStoreSize(const Type *Ty);
76
77  //===--------------------------------------------------------------------===//
78  /// Alias Queries...
79  ///
80
81  /// Alias analysis result - Either we know for sure that it does not alias, we
82  /// know for sure it must alias, or we don't know anything: The two pointers
83  /// _might_ alias.  This enum is designed so you can do things like:
84  ///     if (AA.alias(P1, P2)) { ... }
85  /// to check to see if two pointers might alias.
86  ///
87  enum AliasResult { NoAlias = 0, MayAlias = 1, MustAlias = 2 };
88
89  /// alias - The main low level interface to the alias analysis implementation.
90  /// Returns a Result indicating whether the two pointers are aliased to each
91  /// other.  This is the interface that must be implemented by specific alias
92  /// analysis implementations.
93  ///
94  virtual AliasResult alias(const Value *V1, unsigned V1Size,
95                            const Value *V2, unsigned V2Size);
96
97  /// getMustAliases - If there are any pointers known that must alias this
98  /// pointer, return them now.  This allows alias-set based alias analyses to
99  /// perform a form a value numbering (which is exposed by load-vn).  If an
100  /// alias analysis supports this, it should ADD any must aliased pointers to
101  /// the specified vector.
102  ///
103  virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals);
104
105  /// pointsToConstantMemory - If the specified pointer is known to point into
106  /// constant global memory, return true.  This allows disambiguation of store
107  /// instructions from constant pointers.
108  ///
109  virtual bool pointsToConstantMemory(const Value *P);
110
111  //===--------------------------------------------------------------------===//
112  /// Simple mod/ref information...
113  ///
114
115  /// ModRefResult - Represent the result of a mod/ref query.  Mod and Ref are
116  /// bits which may be or'd together.
117  ///
118  enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
119
120
121  /// ModRefBehavior - Summary of how a function affects memory in the program.
122  /// Loads from constant globals are not considered memory accesses for this
123  /// interface.  Also, functions may freely modify stack space local to their
124  /// invocation without having to report it through these interfaces.
125  enum ModRefBehavior {
126    // DoesNotAccessMemory - This function does not perform any non-local loads
127    // or stores to memory.
128    //
129    // This property corresponds to the GCC 'const' attribute.
130    DoesNotAccessMemory,
131
132    // AccessesArguments - This function accesses function arguments in well
133    // known (possibly volatile) ways, but does not access any other memory.
134    //
135    // Clients may use the Info parameter of getModRefBehavior to get specific
136    // information about how pointer arguments are used.
137    AccessesArguments,
138
139    // AccessesArgumentsAndGlobals - This function has accesses function
140    // arguments and global variables well known (possibly volatile) ways, but
141    // does not access any other memory.
142    //
143    // Clients may use the Info parameter of getModRefBehavior to get specific
144    // information about how pointer arguments are used.
145    AccessesArgumentsAndGlobals,
146
147    // OnlyReadsMemory - This function does not perform any non-local stores or
148    // volatile loads, but may read from any memory location.
149    //
150    // This property corresponds to the GCC 'pure' attribute.
151    OnlyReadsMemory,
152
153    // UnknownModRefBehavior - This indicates that the function could not be
154    // classified into one of the behaviors above.
155    UnknownModRefBehavior
156  };
157
158  /// PointerAccessInfo - This struct is used to return results for pointers,
159  /// globals, and the return value of a function.
160  struct PointerAccessInfo {
161    /// V - The value this record corresponds to.  This may be an Argument for
162    /// the function, a GlobalVariable, or null, corresponding to the return
163    /// value for the function.
164    Value *V;
165
166    /// ModRefInfo - Whether the pointer is loaded or stored to/from.
167    ///
168    ModRefResult ModRefInfo;
169
170    /// AccessType - Specific fine-grained access information for the argument.
171    /// If none of these classifications is general enough, the
172    /// getModRefBehavior method should not return AccessesArguments*.  If a
173    /// record is not returned for a particular argument, the argument is never
174    /// dead and never dereferenced.
175    enum AccessType {
176      /// ScalarAccess - The pointer is dereferenced.
177      ///
178      ScalarAccess,
179
180      /// ArrayAccess - The pointer is indexed through as an array of elements.
181      ///
182      ArrayAccess,
183
184      /// ElementAccess ?? P->F only?
185
186      /// CallsThrough - Indirect calls are made through the specified function
187      /// pointer.
188      CallsThrough
189    };
190  };
191
192  /// getModRefBehavior - Return the behavior when calling the given call site.
193  virtual ModRefBehavior getModRefBehavior(CallSite CS,
194                                   std::vector<PointerAccessInfo> *Info = 0);
195
196  /// getModRefBehavior - Return the behavior when calling the given function.
197  /// For use when the call site is not known.
198  virtual ModRefBehavior getModRefBehavior(Function *F,
199                                   std::vector<PointerAccessInfo> *Info = 0);
200
201  /// doesNotAccessMemory - If the specified call is known to never read or
202  /// write memory, return true.  If the call only reads from known-constant
203  /// memory, it is also legal to return true.  Calls that unwind the stack
204  /// are legal for this predicate.
205  ///
206  /// Many optimizations (such as CSE and LICM) can be performed on such calls
207  /// without worrying about aliasing properties, and many calls have this
208  /// property (e.g. calls to 'sin' and 'cos').
209  ///
210  /// This property corresponds to the GCC 'const' attribute.
211  ///
212  bool doesNotAccessMemory(CallSite CS) {
213    return getModRefBehavior(CS) == DoesNotAccessMemory;
214  }
215
216  /// doesNotAccessMemory - If the specified function is known to never read or
217  /// write memory, return true.  For use when the call site is not known.
218  ///
219  bool doesNotAccessMemory(Function *F) {
220    return getModRefBehavior(F) == DoesNotAccessMemory;
221  }
222
223  /// onlyReadsMemory - If the specified call is known to only read from
224  /// non-volatile memory (or not access memory at all), return true.  Calls
225  /// that unwind the stack are legal for this predicate.
226  ///
227  /// This property allows many common optimizations to be performed in the
228  /// absence of interfering store instructions, such as CSE of strlen calls.
229  ///
230  /// This property corresponds to the GCC 'pure' attribute.
231  ///
232  bool onlyReadsMemory(CallSite CS) {
233    ModRefBehavior MRB = getModRefBehavior(CS);
234    return MRB == DoesNotAccessMemory || MRB == OnlyReadsMemory;
235  }
236
237  /// onlyReadsMemory - If the specified function is known to only read from
238  /// non-volatile memory (or not access memory at all), return true.  For use
239  /// when the call site is not known.
240  ///
241  bool onlyReadsMemory(Function *F) {
242    ModRefBehavior MRB = getModRefBehavior(F);
243    return MRB == DoesNotAccessMemory || MRB == OnlyReadsMemory;
244  }
245
246
247  /// getModRefInfo - Return information about whether or not an instruction may
248  /// read or write memory specified by the pointer operand.  An instruction
249  /// that doesn't read or write memory may be trivially LICM'd for example.
250
251  /// getModRefInfo (for call sites) - Return whether information about whether
252  /// a particular call site modifies or reads the memory specified by the
253  /// pointer.
254  ///
255  virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
256
257  /// getModRefInfo - Return information about whether two call sites may refer
258  /// to the same set of memory locations.  This function returns NoModRef if
259  /// the two calls refer to disjoint memory locations, Ref if CS1 reads memory
260  /// written by CS2, Mod if CS1 writes to memory read or written by CS2, or
261  /// ModRef if CS1 might read or write memory accessed by CS2.
262  ///
263  virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
264
265  /// hasNoModRefInfoForCalls - Return true if the analysis has no mod/ref
266  /// information for pairs of function calls (other than "pure" and "const"
267  /// functions).  This can be used by clients to avoid many pointless queries.
268  /// Remember that if you override this and chain to another analysis, you must
269  /// make sure that it doesn't have mod/ref info either.
270  ///
271  virtual bool hasNoModRefInfoForCalls() const;
272
273public:
274  /// Convenience functions...
275  ModRefResult getModRefInfo(LoadInst *L, Value *P, unsigned Size);
276  ModRefResult getModRefInfo(StoreInst *S, Value *P, unsigned Size);
277  ModRefResult getModRefInfo(CallInst *C, Value *P, unsigned Size) {
278    return getModRefInfo(CallSite(C), P, Size);
279  }
280  ModRefResult getModRefInfo(InvokeInst *I, Value *P, unsigned Size) {
281    return getModRefInfo(CallSite(I), P, Size);
282  }
283  ModRefResult getModRefInfo(VAArgInst* I, Value* P, unsigned Size) {
284    return AliasAnalysis::ModRef;
285  }
286  ModRefResult getModRefInfo(Instruction *I, Value *P, unsigned Size) {
287    switch (I->getOpcode()) {
288    case Instruction::VAArg:  return getModRefInfo((VAArgInst*)I, P, Size);
289    case Instruction::Load:   return getModRefInfo((LoadInst*)I, P, Size);
290    case Instruction::Store:  return getModRefInfo((StoreInst*)I, P, Size);
291    case Instruction::Call:   return getModRefInfo((CallInst*)I, P, Size);
292    case Instruction::Invoke: return getModRefInfo((InvokeInst*)I, P, Size);
293    default:                  return NoModRef;
294    }
295  }
296
297  //===--------------------------------------------------------------------===//
298  /// Higher level methods for querying mod/ref information.
299  ///
300
301  /// canBasicBlockModify - Return true if it is possible for execution of the
302  /// specified basic block to modify the value pointed to by Ptr.
303  ///
304  bool canBasicBlockModify(const BasicBlock &BB, const Value *P, unsigned Size);
305
306  /// canInstructionRangeModify - Return true if it is possible for the
307  /// execution of the specified instructions to modify the value pointed to by
308  /// Ptr.  The instructions to consider are all of the instructions in the
309  /// range of [I1,I2] INCLUSIVE.  I1 and I2 must be in the same basic block.
310  ///
311  bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
312                                 const Value *Ptr, unsigned Size);
313
314  //===--------------------------------------------------------------------===//
315  /// Methods that clients should call when they transform the program to allow
316  /// alias analyses to update their internal data structures.  Note that these
317  /// methods may be called on any instruction, regardless of whether or not
318  /// they have pointer-analysis implications.
319  ///
320
321  /// deleteValue - This method should be called whenever an LLVM Value is
322  /// deleted from the program, for example when an instruction is found to be
323  /// redundant and is eliminated.
324  ///
325  virtual void deleteValue(Value *V);
326
327  /// copyValue - This method should be used whenever a preexisting value in the
328  /// program is copied or cloned, introducing a new value.  Note that analysis
329  /// implementations should tolerate clients that use this method to introduce
330  /// the same value multiple times: if the analysis already knows about a
331  /// value, it should ignore the request.
332  ///
333  virtual void copyValue(Value *From, Value *To);
334
335  /// replaceWithNewValue - This method is the obvious combination of the two
336  /// above, and it provided as a helper to simplify client code.
337  ///
338  void replaceWithNewValue(Value *Old, Value *New) {
339    copyValue(Old, New);
340    deleteValue(Old);
341  }
342};
343
344/// isNoAliasCall - Return true if this pointer is returned by a noalias
345/// function.
346bool isNoAliasCall(const Value *V);
347
348/// isIdentifiedObject - Return true if this pointer refers to a distinct and
349/// identifiable object.  This returns true for:
350///    Global Variables and Functions (but not Global Aliases)
351///    Allocas and Mallocs
352///    ByVal and NoAlias Arguments
353///    NoAlias returns
354///
355bool isIdentifiedObject(const Value *V);
356
357} // End llvm namespace
358
359// Because of the way .a files work, we must force the BasicAA implementation to
360// be pulled in if the AliasAnalysis header is included.  Otherwise we run
361// the risk of AliasAnalysis being used, but the default implementation not
362// being linked into the tool that uses it.
363FORCE_DEFINING_FILE_TO_BE_LINKED(AliasAnalysis)
364FORCE_DEFINING_FILE_TO_BE_LINKED(BasicAliasAnalysis)
365
366#endif
367