AliasAnalysis.h revision 6be2bd516a3022721480f8fee6986617baf0944f
1//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the generic AliasAnalysis interface, which is used as the
11// common interface used by all clients of alias analysis information, and
12// implemented by all alias analysis implementations.  Mod/Ref information is
13// also captured by this interface.
14//
15// Implementations of this interface must implement the various virtual methods,
16// which automatically provides functionality for the entire suite of client
17// APIs.
18//
19// This API represents memory as a (Pointer, Size) pair.  The Pointer component
20// specifies the base memory address of the region, the Size specifies how large
21// of an area is being queried.  If Size is 0, two pointers only alias if they
22// are exactly equal.  If size is greater than zero, but small, the two pointers
23// alias if the areas pointed to overlap.  If the size is very large (ie, ~0U),
24// then the two pointers alias if they may be pointing to components of the same
25// memory object.  Pointers that point to two completely different objects in
26// memory never alias, regardless of the value of the Size component.
27//
28//===----------------------------------------------------------------------===//
29
30#ifndef LLVM_ANALYSIS_ALIAS_ANALYSIS_H
31#define LLVM_ANALYSIS_ALIAS_ANALYSIS_H
32
33#include "llvm/Support/CallSite.h"
34#include "llvm/System/IncludeFile.h"
35#include <vector>
36
37namespace llvm {
38
39class LoadInst;
40class StoreInst;
41class VAArgInst;
42class TargetData;
43class Pass;
44class AnalysisUsage;
45
46class AliasAnalysis {
47protected:
48  const TargetData *TD;
49  AliasAnalysis *AA;       // Previous Alias Analysis to chain to.
50
51  /// InitializeAliasAnalysis - Subclasses must call this method to initialize
52  /// the AliasAnalysis interface before any other methods are called.  This is
53  /// typically called by the run* methods of these subclasses.  This may be
54  /// called multiple times.
55  ///
56  void InitializeAliasAnalysis(Pass *P);
57
58  /// getAnalysisUsage - All alias analysis implementations should invoke this
59  /// directly (using AliasAnalysis::getAnalysisUsage(AU)).
60  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
61
62public:
63  static char ID; // Class identification, replacement for typeinfo
64  AliasAnalysis() : TD(0), AA(0) {}
65  virtual ~AliasAnalysis();  // We want to be subclassed
66
67  /// getTargetData - Return a pointer to the current TargetData object, or
68  /// null if no TargetData object is available.
69  ///
70  const TargetData *getTargetData() const { return TD; }
71
72  /// getTypeStoreSize - Return the TargetData store size for the given type,
73  /// if known, or a conservative value otherwise.
74  ///
75  unsigned getTypeStoreSize(const Type *Ty);
76
77  //===--------------------------------------------------------------------===//
78  /// Alias Queries...
79  ///
80
81  /// Alias analysis result - Either we know for sure that it does not alias, we
82  /// know for sure it must alias, or we don't know anything: The two pointers
83  /// _might_ alias.  This enum is designed so you can do things like:
84  ///     if (AA.alias(P1, P2)) { ... }
85  /// to check to see if two pointers might alias.
86  ///
87  enum AliasResult { NoAlias = 0, MayAlias = 1, MustAlias = 2 };
88
89  /// alias - The main low level interface to the alias analysis implementation.
90  /// Returns a Result indicating whether the two pointers are aliased to each
91  /// other.  This is the interface that must be implemented by specific alias
92  /// analysis implementations.
93  ///
94  virtual AliasResult alias(const Value *V1, unsigned V1Size,
95                            const Value *V2, unsigned V2Size);
96
97  /// isNoAlias - A trivial helper function to check to see if the specified
98  /// pointers are no-alias.
99  bool isNoAlias(const Value *V1, unsigned V1Size,
100                 const Value *V2, unsigned V2Size) {
101    return alias(V1, V1Size, V2, V2Size) == NoAlias;
102  }
103
104  /// pointsToConstantMemory - If the specified pointer is known to point into
105  /// constant global memory, return true.  This allows disambiguation of store
106  /// instructions from constant pointers.
107  ///
108  virtual bool pointsToConstantMemory(const Value *P);
109
110  //===--------------------------------------------------------------------===//
111  /// Simple mod/ref information...
112  ///
113
114  /// ModRefResult - Represent the result of a mod/ref query.  Mod and Ref are
115  /// bits which may be or'd together.
116  ///
117  enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
118
119
120  /// ModRefBehavior - Summary of how a function affects memory in the program.
121  /// Loads from constant globals are not considered memory accesses for this
122  /// interface.  Also, functions may freely modify stack space local to their
123  /// invocation without having to report it through these interfaces.
124  enum ModRefBehavior {
125    // DoesNotAccessMemory - This function does not perform any non-local loads
126    // or stores to memory.
127    //
128    // This property corresponds to the GCC 'const' attribute.
129    DoesNotAccessMemory,
130
131    // AccessesArguments - This function accesses function arguments in well
132    // known (possibly volatile) ways, but does not access any other memory.
133    //
134    // Clients may use the Info parameter of getModRefBehavior to get specific
135    // information about how pointer arguments are used.
136    AccessesArguments,
137
138    // AccessesArgumentsAndGlobals - This function has accesses function
139    // arguments and global variables well known (possibly volatile) ways, but
140    // does not access any other memory.
141    //
142    // Clients may use the Info parameter of getModRefBehavior to get specific
143    // information about how pointer arguments are used.
144    AccessesArgumentsAndGlobals,
145
146    // OnlyReadsMemory - This function does not perform any non-local stores or
147    // volatile loads, but may read from any memory location.
148    //
149    // This property corresponds to the GCC 'pure' attribute.
150    OnlyReadsMemory,
151
152    // UnknownModRefBehavior - This indicates that the function could not be
153    // classified into one of the behaviors above.
154    UnknownModRefBehavior
155  };
156
157  /// PointerAccessInfo - This struct is used to return results for pointers,
158  /// globals, and the return value of a function.
159  struct PointerAccessInfo {
160    /// V - The value this record corresponds to.  This may be an Argument for
161    /// the function, a GlobalVariable, or null, corresponding to the return
162    /// value for the function.
163    Value *V;
164
165    /// ModRefInfo - Whether the pointer is loaded or stored to/from.
166    ///
167    ModRefResult ModRefInfo;
168
169    /// AccessType - Specific fine-grained access information for the argument.
170    /// If none of these classifications is general enough, the
171    /// getModRefBehavior method should not return AccessesArguments*.  If a
172    /// record is not returned for a particular argument, the argument is never
173    /// dead and never dereferenced.
174    enum AccessType {
175      /// ScalarAccess - The pointer is dereferenced.
176      ///
177      ScalarAccess,
178
179      /// ArrayAccess - The pointer is indexed through as an array of elements.
180      ///
181      ArrayAccess,
182
183      /// ElementAccess ?? P->F only?
184
185      /// CallsThrough - Indirect calls are made through the specified function
186      /// pointer.
187      CallsThrough
188    };
189  };
190
191  /// getModRefBehavior - Return the behavior when calling the given call site.
192  virtual ModRefBehavior getModRefBehavior(CallSite CS,
193                                   std::vector<PointerAccessInfo> *Info = 0);
194
195  /// getModRefBehavior - Return the behavior when calling the given function.
196  /// For use when the call site is not known.
197  virtual ModRefBehavior getModRefBehavior(Function *F,
198                                   std::vector<PointerAccessInfo> *Info = 0);
199
200  /// getModRefBehavior - Return the modref behavior of the intrinsic with the
201  /// given id.
202  static ModRefBehavior getModRefBehavior(unsigned iid);
203
204  /// doesNotAccessMemory - If the specified call is known to never read or
205  /// write memory, return true.  If the call only reads from known-constant
206  /// memory, it is also legal to return true.  Calls that unwind the stack
207  /// are legal for this predicate.
208  ///
209  /// Many optimizations (such as CSE and LICM) can be performed on such calls
210  /// without worrying about aliasing properties, and many calls have this
211  /// property (e.g. calls to 'sin' and 'cos').
212  ///
213  /// This property corresponds to the GCC 'const' attribute.
214  ///
215  bool doesNotAccessMemory(CallSite CS) {
216    return getModRefBehavior(CS) == DoesNotAccessMemory;
217  }
218
219  /// doesNotAccessMemory - If the specified function is known to never read or
220  /// write memory, return true.  For use when the call site is not known.
221  ///
222  bool doesNotAccessMemory(Function *F) {
223    return getModRefBehavior(F) == DoesNotAccessMemory;
224  }
225
226  /// onlyReadsMemory - If the specified call is known to only read from
227  /// non-volatile memory (or not access memory at all), return true.  Calls
228  /// that unwind the stack are legal for this predicate.
229  ///
230  /// This property allows many common optimizations to be performed in the
231  /// absence of interfering store instructions, such as CSE of strlen calls.
232  ///
233  /// This property corresponds to the GCC 'pure' attribute.
234  ///
235  bool onlyReadsMemory(CallSite CS) {
236    ModRefBehavior MRB = getModRefBehavior(CS);
237    return MRB == DoesNotAccessMemory || MRB == OnlyReadsMemory;
238  }
239
240  /// onlyReadsMemory - If the specified function is known to only read from
241  /// non-volatile memory (or not access memory at all), return true.  For use
242  /// when the call site is not known.
243  ///
244  bool onlyReadsMemory(Function *F) {
245    ModRefBehavior MRB = getModRefBehavior(F);
246    return MRB == DoesNotAccessMemory || MRB == OnlyReadsMemory;
247  }
248
249
250  /// getModRefInfo - Return information about whether or not an instruction may
251  /// read or write memory specified by the pointer operand.  An instruction
252  /// that doesn't read or write memory may be trivially LICM'd for example.
253
254  /// getModRefInfo (for call sites) - Return whether information about whether
255  /// a particular call site modifies or reads the memory specified by the
256  /// pointer.
257  ///
258  virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
259
260  /// getModRefInfo - Return information about whether two call sites may refer
261  /// to the same set of memory locations.  This function returns NoModRef if
262  /// the two calls refer to disjoint memory locations, Ref if CS1 reads memory
263  /// written by CS2, Mod if CS1 writes to memory read or written by CS2, or
264  /// ModRef if CS1 might read or write memory accessed by CS2.
265  ///
266  virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
267
268public:
269  /// Convenience functions...
270  ModRefResult getModRefInfo(LoadInst *L, Value *P, unsigned Size);
271  ModRefResult getModRefInfo(StoreInst *S, Value *P, unsigned Size);
272  ModRefResult getModRefInfo(CallInst *C, Value *P, unsigned Size) {
273    return getModRefInfo(CallSite(C), P, Size);
274  }
275  ModRefResult getModRefInfo(InvokeInst *I, Value *P, unsigned Size) {
276    return getModRefInfo(CallSite(I), P, Size);
277  }
278  ModRefResult getModRefInfo(VAArgInst* I, Value* P, unsigned Size) {
279    return AliasAnalysis::ModRef;
280  }
281  ModRefResult getModRefInfo(Instruction *I, Value *P, unsigned Size) {
282    switch (I->getOpcode()) {
283    case Instruction::VAArg:  return getModRefInfo((VAArgInst*)I, P, Size);
284    case Instruction::Load:   return getModRefInfo((LoadInst*)I, P, Size);
285    case Instruction::Store:  return getModRefInfo((StoreInst*)I, P, Size);
286    case Instruction::Call:   return getModRefInfo((CallInst*)I, P, Size);
287    case Instruction::Invoke: return getModRefInfo((InvokeInst*)I, P, Size);
288    default:                  return NoModRef;
289    }
290  }
291
292  //===--------------------------------------------------------------------===//
293  /// Higher level methods for querying mod/ref information.
294  ///
295
296  /// canBasicBlockModify - Return true if it is possible for execution of the
297  /// specified basic block to modify the value pointed to by Ptr.
298  ///
299  bool canBasicBlockModify(const BasicBlock &BB, const Value *P, unsigned Size);
300
301  /// canInstructionRangeModify - Return true if it is possible for the
302  /// execution of the specified instructions to modify the value pointed to by
303  /// Ptr.  The instructions to consider are all of the instructions in the
304  /// range of [I1,I2] INCLUSIVE.  I1 and I2 must be in the same basic block.
305  ///
306  bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
307                                 const Value *Ptr, unsigned Size);
308
309  //===--------------------------------------------------------------------===//
310  /// Methods that clients should call when they transform the program to allow
311  /// alias analyses to update their internal data structures.  Note that these
312  /// methods may be called on any instruction, regardless of whether or not
313  /// they have pointer-analysis implications.
314  ///
315
316  /// deleteValue - This method should be called whenever an LLVM Value is
317  /// deleted from the program, for example when an instruction is found to be
318  /// redundant and is eliminated.
319  ///
320  virtual void deleteValue(Value *V);
321
322  /// copyValue - This method should be used whenever a preexisting value in the
323  /// program is copied or cloned, introducing a new value.  Note that analysis
324  /// implementations should tolerate clients that use this method to introduce
325  /// the same value multiple times: if the analysis already knows about a
326  /// value, it should ignore the request.
327  ///
328  virtual void copyValue(Value *From, Value *To);
329
330  /// replaceWithNewValue - This method is the obvious combination of the two
331  /// above, and it provided as a helper to simplify client code.
332  ///
333  void replaceWithNewValue(Value *Old, Value *New) {
334    copyValue(Old, New);
335    deleteValue(Old);
336  }
337};
338
339/// isNoAliasCall - Return true if this pointer is returned by a noalias
340/// function.
341bool isNoAliasCall(const Value *V);
342
343/// isIdentifiedObject - Return true if this pointer refers to a distinct and
344/// identifiable object.  This returns true for:
345///    Global Variables and Functions (but not Global Aliases)
346///    Allocas and Mallocs
347///    ByVal and NoAlias Arguments, if Interprocedural is false
348///    NoAlias returns, if Interprocedural is false
349///
350bool isIdentifiedObject(const Value *V, bool Interprocedural = false);
351
352} // End llvm namespace
353
354// Because of the way .a files work, we must force the BasicAA implementation to
355// be pulled in if the AliasAnalysis header is included.  Otherwise we run
356// the risk of AliasAnalysis being used, but the default implementation not
357// being linked into the tool that uses it.
358FORCE_DEFINING_FILE_TO_BE_LINKED(AliasAnalysis)
359FORCE_DEFINING_FILE_TO_BE_LINKED(BasicAliasAnalysis)
360
361#endif
362