AliasAnalysis.h revision 6d8eb156e6be727570b300bac7712f745a318c7d
1//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the generic AliasAnalysis interface, which is used as the
11// common interface used by all clients of alias analysis information, and
12// implemented by all alias analysis implementations.  Mod/Ref information is
13// also captured by this interface.
14//
15// Implementations of this interface must implement the various virtual methods,
16// which automatically provides functionality for the entire suite of client
17// APIs.
18//
19// This API identifies memory regions with the Location class. The pointer
20// component specifies the base memory address of the region. The Size specifies
21// the maximum size (in address units) of the memory region, or UnknownSize if
22// the size is not known. The TBAA tag identifies the "type" of the memory
23// reference; see the TypeBasedAliasAnalysis class for details.
24//
25// Some non-obvious details include:
26//  - Pointers that point to two completely different objects in memory never
27//    alias, regardless of the value of the Size component.
28//  - NoAlias doesn't imply inequal pointers. The most obvious example of this
29//    is two pointers to constant memory. Even if they are equal, constant
30//    memory is never stored to, so there will never be any dependencies.
31//    In this and other situations, the pointers may be both NoAlias and
32//    MustAlias at the same time. The current API can only return one result,
33//    though this is rarely a problem in practice.
34//
35//===----------------------------------------------------------------------===//
36
37#ifndef LLVM_ANALYSIS_ALIAS_ANALYSIS_H
38#define LLVM_ANALYSIS_ALIAS_ANALYSIS_H
39
40#include "llvm/Support/CallSite.h"
41#include <vector>
42
43namespace llvm {
44
45class LoadInst;
46class StoreInst;
47class VAArgInst;
48class TargetData;
49class Pass;
50class AnalysisUsage;
51
52class AliasAnalysis {
53protected:
54  const TargetData *TD;
55
56private:
57  AliasAnalysis *AA;       // Previous Alias Analysis to chain to.
58
59protected:
60  /// InitializeAliasAnalysis - Subclasses must call this method to initialize
61  /// the AliasAnalysis interface before any other methods are called.  This is
62  /// typically called by the run* methods of these subclasses.  This may be
63  /// called multiple times.
64  ///
65  void InitializeAliasAnalysis(Pass *P);
66
67  /// getAnalysisUsage - All alias analysis implementations should invoke this
68  /// directly (using AliasAnalysis::getAnalysisUsage(AU)).
69  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
70
71public:
72  static char ID; // Class identification, replacement for typeinfo
73  AliasAnalysis() : TD(0), AA(0) {}
74  virtual ~AliasAnalysis();  // We want to be subclassed
75
76  /// UnknownSize - This is a special value which can be used with the
77  /// size arguments in alias queries to indicate that the caller does not
78  /// know the sizes of the potential memory references.
79  static uint64_t const UnknownSize = ~UINT64_C(0);
80
81  /// getTargetData - Return a pointer to the current TargetData object, or
82  /// null if no TargetData object is available.
83  ///
84  const TargetData *getTargetData() const { return TD; }
85
86  /// getTypeStoreSize - Return the TargetData store size for the given type,
87  /// if known, or a conservative value otherwise.
88  ///
89  uint64_t getTypeStoreSize(const Type *Ty);
90
91  //===--------------------------------------------------------------------===//
92  /// Alias Queries...
93  ///
94
95  /// Location - A description of a memory location.
96  struct Location {
97    /// Ptr - The address of the start of the location.
98    const Value *Ptr;
99    /// Size - The maximum size of the location, or UnknownSize if the size is
100    /// not known.  Note that an unknown size does not mean the pointer aliases
101    /// the entire virtual address space, because there are restrictions on
102    /// stepping out of one object and into another.
103    /// See http://llvm.org/docs/LangRef.html#pointeraliasing
104    uint64_t Size;
105    /// TBAATag - The metadata node which describes the TBAA type of
106    /// the location, or null if there is no known unique tag.
107    const MDNode *TBAATag;
108
109    explicit Location(const Value *P = 0,
110                      uint64_t S = UnknownSize,
111                      const MDNode *N = 0)
112      : Ptr(P), Size(S), TBAATag(N) {}
113
114    Location getWithNewPtr(const Value *NewPtr) const {
115      Location Copy(*this);
116      Copy.Ptr = NewPtr;
117      return Copy;
118    }
119
120    Location getWithNewSize(uint64_t NewSize) const {
121      Location Copy(*this);
122      Copy.Size = NewSize;
123      return Copy;
124    }
125
126    Location getWithoutTBAATag() const {
127      Location Copy(*this);
128      Copy.TBAATag = 0;
129      return Copy;
130    }
131  };
132
133  /// getLocation - Fill in Loc with information about the memory reference by
134  /// the given instruction.
135  Location getLocation(const LoadInst *LI);
136  Location getLocation(const StoreInst *SI);
137  Location getLocation(const VAArgInst *VI);
138
139  /// Alias analysis result - Either we know for sure that it does not alias, we
140  /// know for sure it must alias, or we don't know anything: The two pointers
141  /// _might_ alias.  This enum is designed so you can do things like:
142  ///     if (AA.alias(P1, P2)) { ... }
143  /// to check to see if two pointers might alias.
144  ///
145  /// See docs/AliasAnalysis.html for more information on the specific meanings
146  /// of these values.
147  ///
148  enum AliasResult {
149    NoAlias = 0,        ///< No dependencies.
150    MayAlias = 1,       ///< Anything goes.
151    MustAlias = 2       ///< Pointers are equal.
152  };
153
154  /// alias - The main low level interface to the alias analysis implementation.
155  /// Returns an AliasResult indicating whether the two pointers are aliased to
156  /// each other.  This is the interface that must be implemented by specific
157  /// alias analysis implementations.
158  virtual AliasResult alias(const Location &LocA, const Location &LocB);
159
160  /// alias - A convenience wrapper.
161  AliasResult alias(const Value *V1, uint64_t V1Size,
162                    const Value *V2, uint64_t V2Size) {
163    return alias(Location(V1, V1Size), Location(V2, V2Size));
164  }
165
166  /// alias - A convenience wrapper.
167  AliasResult alias(const Value *V1, const Value *V2) {
168    return alias(V1, UnknownSize, V2, UnknownSize);
169  }
170
171  /// isNoAlias - A trivial helper function to check to see if the specified
172  /// pointers are no-alias.
173  bool isNoAlias(const Location &LocA, const Location &LocB) {
174    return alias(LocA, LocB) == NoAlias;
175  }
176
177  /// isNoAlias - A convenience wrapper.
178  bool isNoAlias(const Value *V1, uint64_t V1Size,
179                 const Value *V2, uint64_t V2Size) {
180    return isNoAlias(Location(V1, V1Size), Location(V2, V2Size));
181  }
182
183  /// pointsToConstantMemory - If the specified memory location is
184  /// known to be constant, return true. If OrLocal is true and the
185  /// specified memory location is known to be "local" (derived from
186  /// an alloca), return true. Otherwise return false.
187  virtual bool pointsToConstantMemory(const Location &Loc,
188                                      bool OrLocal = false);
189
190  /// pointsToConstantMemory - A convenient wrapper.
191  bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
192    return pointsToConstantMemory(Location(P), OrLocal);
193  }
194
195  //===--------------------------------------------------------------------===//
196  /// Simple mod/ref information...
197  ///
198
199  /// ModRefResult - Represent the result of a mod/ref query.  Mod and Ref are
200  /// bits which may be or'd together.
201  ///
202  enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
203
204  /// These values define additional bits used to define the
205  /// ModRefBehavior values.
206  enum { Nowhere = 0, ArgumentPointees = 4, Anywhere = 8 | ArgumentPointees };
207
208  /// ModRefBehavior - Summary of how a function affects memory in the program.
209  /// Loads from constant globals are not considered memory accesses for this
210  /// interface.  Also, functions may freely modify stack space local to their
211  /// invocation without having to report it through these interfaces.
212  enum ModRefBehavior {
213    /// DoesNotAccessMemory - This function does not perform any non-local loads
214    /// or stores to memory.
215    ///
216    /// This property corresponds to the GCC 'const' attribute.
217    /// This property corresponds to the LLVM IR 'readnone' attribute.
218    /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
219    DoesNotAccessMemory = Nowhere | NoModRef,
220
221    /// OnlyReadsArgumentPointees - The only memory references in this function
222    /// (if it has any) are non-volatile loads from objects pointed to by its
223    /// pointer-typed arguments, with arbitrary offsets.
224    ///
225    /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
226    OnlyReadsArgumentPointees = ArgumentPointees | Ref,
227
228    /// OnlyAccessesArgumentPointees - The only memory references in this
229    /// function (if it has any) are non-volatile loads and stores from objects
230    /// pointed to by its pointer-typed arguments, with arbitrary offsets.
231    ///
232    /// This property corresponds to the IntrReadWriteArgMem LLVM intrinsic flag.
233    OnlyAccessesArgumentPointees = ArgumentPointees | ModRef,
234
235    /// OnlyReadsMemory - This function does not perform any non-local stores or
236    /// volatile loads, but may read from any memory location.
237    ///
238    /// This property corresponds to the GCC 'pure' attribute.
239    /// This property corresponds to the LLVM IR 'readonly' attribute.
240    /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
241    OnlyReadsMemory = Anywhere | Ref,
242
243    /// UnknownModRefBehavior - This indicates that the function could not be
244    /// classified into one of the behaviors above.
245    UnknownModRefBehavior = Anywhere | ModRef
246  };
247
248  /// getModRefBehavior - Return the behavior when calling the given call site.
249  virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
250
251  /// getModRefBehavior - Return the behavior when calling the given function.
252  /// For use when the call site is not known.
253  virtual ModRefBehavior getModRefBehavior(const Function *F);
254
255  /// doesNotAccessMemory - If the specified call is known to never read or
256  /// write memory, return true.  If the call only reads from known-constant
257  /// memory, it is also legal to return true.  Calls that unwind the stack
258  /// are legal for this predicate.
259  ///
260  /// Many optimizations (such as CSE and LICM) can be performed on such calls
261  /// without worrying about aliasing properties, and many calls have this
262  /// property (e.g. calls to 'sin' and 'cos').
263  ///
264  /// This property corresponds to the GCC 'const' attribute.
265  ///
266  bool doesNotAccessMemory(ImmutableCallSite CS) {
267    return getModRefBehavior(CS) == DoesNotAccessMemory;
268  }
269
270  /// doesNotAccessMemory - If the specified function is known to never read or
271  /// write memory, return true.  For use when the call site is not known.
272  ///
273  bool doesNotAccessMemory(const Function *F) {
274    return getModRefBehavior(F) == DoesNotAccessMemory;
275  }
276
277  /// onlyReadsMemory - If the specified call is known to only read from
278  /// non-volatile memory (or not access memory at all), return true.  Calls
279  /// that unwind the stack are legal for this predicate.
280  ///
281  /// This property allows many common optimizations to be performed in the
282  /// absence of interfering store instructions, such as CSE of strlen calls.
283  ///
284  /// This property corresponds to the GCC 'pure' attribute.
285  ///
286  bool onlyReadsMemory(ImmutableCallSite CS) {
287    return onlyReadsMemory(getModRefBehavior(CS));
288  }
289
290  /// onlyReadsMemory - If the specified function is known to only read from
291  /// non-volatile memory (or not access memory at all), return true.  For use
292  /// when the call site is not known.
293  ///
294  bool onlyReadsMemory(const Function *F) {
295    return onlyReadsMemory(getModRefBehavior(F));
296  }
297
298  /// onlyReadsMemory - Return true if functions with the specified behavior are
299  /// known to only read from non-volatile memory (or not access memory at all).
300  ///
301  static bool onlyReadsMemory(ModRefBehavior MRB) {
302    return !(MRB & Mod);
303  }
304
305  /// onlyAccessesArgPointees - Return true if functions with the specified
306  /// behavior are known to read and write at most from objects pointed to by
307  /// their pointer-typed arguments (with arbitrary offsets).
308  ///
309  static bool onlyAccessesArgPointees(ModRefBehavior MRB) {
310    return !(MRB & Anywhere & ~ArgumentPointees);
311  }
312
313  /// doesAccessArgPointees - Return true if functions with the specified
314  /// behavior are known to potentially read or write  from objects pointed
315  /// to be their pointer-typed arguments (with arbitrary offsets).
316  ///
317  static bool doesAccessArgPointees(ModRefBehavior MRB) {
318    return (MRB & ModRef) && (MRB & ArgumentPointees);
319  }
320
321  /// getModRefInfo - Return information about whether or not an instruction may
322  /// read or write the specified memory location.  An instruction
323  /// that doesn't read or write memory may be trivially LICM'd for example.
324  ModRefResult getModRefInfo(const Instruction *I,
325                             const Location &Loc) {
326    switch (I->getOpcode()) {
327    case Instruction::VAArg:  return getModRefInfo((const VAArgInst*)I, Loc);
328    case Instruction::Load:   return getModRefInfo((const LoadInst*)I,  Loc);
329    case Instruction::Store:  return getModRefInfo((const StoreInst*)I, Loc);
330    case Instruction::Call:   return getModRefInfo((const CallInst*)I,  Loc);
331    case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc);
332    default:                  return NoModRef;
333    }
334  }
335
336  /// getModRefInfo - A convenience wrapper.
337  ModRefResult getModRefInfo(const Instruction *I,
338                             const Value *P, uint64_t Size) {
339    return getModRefInfo(I, Location(P, Size));
340  }
341
342  /// getModRefInfo (for call sites) - Return whether information about whether
343  /// a particular call site modifies or reads the specified memory location.
344  virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
345                                     const Location &Loc);
346
347  /// getModRefInfo (for call sites) - A convenience wrapper.
348  ModRefResult getModRefInfo(ImmutableCallSite CS,
349                             const Value *P, uint64_t Size) {
350    return getModRefInfo(CS, Location(P, Size));
351  }
352
353  /// getModRefInfo (for calls) - Return whether information about whether
354  /// a particular call modifies or reads the specified memory location.
355  ModRefResult getModRefInfo(const CallInst *C, const Location &Loc) {
356    return getModRefInfo(ImmutableCallSite(C), Loc);
357  }
358
359  /// getModRefInfo (for calls) - A convenience wrapper.
360  ModRefResult getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) {
361    return getModRefInfo(C, Location(P, Size));
362  }
363
364  /// getModRefInfo (for invokes) - Return whether information about whether
365  /// a particular invoke modifies or reads the specified memory location.
366  ModRefResult getModRefInfo(const InvokeInst *I,
367                             const Location &Loc) {
368    return getModRefInfo(ImmutableCallSite(I), Loc);
369  }
370
371  /// getModRefInfo (for invokes) - A convenience wrapper.
372  ModRefResult getModRefInfo(const InvokeInst *I,
373                             const Value *P, uint64_t Size) {
374    return getModRefInfo(I, Location(P, Size));
375  }
376
377  /// getModRefInfo (for loads) - Return whether information about whether
378  /// a particular load modifies or reads the specified memory location.
379  ModRefResult getModRefInfo(const LoadInst *L, const Location &Loc);
380
381  /// getModRefInfo (for loads) - A convenience wrapper.
382  ModRefResult getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) {
383    return getModRefInfo(L, Location(P, Size));
384  }
385
386  /// getModRefInfo (for stores) - Return whether information about whether
387  /// a particular store modifies or reads the specified memory location.
388  ModRefResult getModRefInfo(const StoreInst *S, const Location &Loc);
389
390  /// getModRefInfo (for stores) - A convenience wrapper.
391  ModRefResult getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size) {
392    return getModRefInfo(S, Location(P, Size));
393  }
394
395  /// getModRefInfo (for va_args) - Return whether information about whether
396  /// a particular va_arg modifies or reads the specified memory location.
397  ModRefResult getModRefInfo(const VAArgInst* I, const Location &Loc);
398
399  /// getModRefInfo (for va_args) - A convenience wrapper.
400  ModRefResult getModRefInfo(const VAArgInst* I, const Value* P, uint64_t Size) {
401    return getModRefInfo(I, Location(P, Size));
402  }
403
404  /// getModRefInfo - Return information about whether two call sites may refer
405  /// to the same set of memory locations.  See
406  ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
407  /// for details.
408  virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
409                                     ImmutableCallSite CS2);
410
411  //===--------------------------------------------------------------------===//
412  /// Higher level methods for querying mod/ref information.
413  ///
414
415  /// canBasicBlockModify - Return true if it is possible for execution of the
416  /// specified basic block to modify the value pointed to by Ptr.
417  bool canBasicBlockModify(const BasicBlock &BB, const Location &Loc);
418
419  /// canBasicBlockModify - A convenience wrapper.
420  bool canBasicBlockModify(const BasicBlock &BB, const Value *P, uint64_t Size){
421    return canBasicBlockModify(BB, Location(P, Size));
422  }
423
424  /// canInstructionRangeModify - Return true if it is possible for the
425  /// execution of the specified instructions to modify the value pointed to by
426  /// Ptr.  The instructions to consider are all of the instructions in the
427  /// range of [I1,I2] INCLUSIVE.  I1 and I2 must be in the same basic block.
428  bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
429                                 const Location &Loc);
430
431  /// canInstructionRangeModify - A convenience wrapper.
432  bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
433                                 const Value *Ptr, uint64_t Size) {
434    return canInstructionRangeModify(I1, I2, Location(Ptr, Size));
435  }
436
437  //===--------------------------------------------------------------------===//
438  /// Methods that clients should call when they transform the program to allow
439  /// alias analyses to update their internal data structures.  Note that these
440  /// methods may be called on any instruction, regardless of whether or not
441  /// they have pointer-analysis implications.
442  ///
443
444  /// deleteValue - This method should be called whenever an LLVM Value is
445  /// deleted from the program, for example when an instruction is found to be
446  /// redundant and is eliminated.
447  ///
448  virtual void deleteValue(Value *V);
449
450  /// copyValue - This method should be used whenever a preexisting value in the
451  /// program is copied or cloned, introducing a new value.  Note that analysis
452  /// implementations should tolerate clients that use this method to introduce
453  /// the same value multiple times: if the analysis already knows about a
454  /// value, it should ignore the request.
455  ///
456  virtual void copyValue(Value *From, Value *To);
457
458  /// replaceWithNewValue - This method is the obvious combination of the two
459  /// above, and it provided as a helper to simplify client code.
460  ///
461  void replaceWithNewValue(Value *Old, Value *New) {
462    copyValue(Old, New);
463    deleteValue(Old);
464  }
465};
466
467/// isNoAliasCall - Return true if this pointer is returned by a noalias
468/// function.
469bool isNoAliasCall(const Value *V);
470
471/// isIdentifiedObject - Return true if this pointer refers to a distinct and
472/// identifiable object.  This returns true for:
473///    Global Variables and Functions (but not Global Aliases)
474///    Allocas and Mallocs
475///    ByVal and NoAlias Arguments
476///    NoAlias returns
477///
478bool isIdentifiedObject(const Value *V);
479
480} // End llvm namespace
481
482#endif
483