AliasAnalysis.h revision 6df60a9effe4d20a48cfd9d105c0ab3c5dc3e690
1//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the generic AliasAnalysis interface, which is used as the
11// common interface used by all clients of alias analysis information, and
12// implemented by all alias analysis implementations.  Mod/Ref information is
13// also captured by this interface.
14//
15// Implementations of this interface must implement the various virtual methods,
16// which automatically provides functionality for the entire suite of client
17// APIs.
18//
19// This API represents memory as a (Pointer, Size) pair.  The Pointer component
20// specifies the base memory address of the region, the Size specifies how large
21// of an area is being queried.  If Size is 0, two pointers only alias if they
22// are exactly equal.  If size is greater than zero, but small, the two pointers
23// alias if the areas pointed to overlap.  If the size is very large (ie, ~0U),
24// then the two pointers alias if they may be pointing to components of the same
25// memory object.  Pointers that point to two completely different objects in
26// memory never alias, regardless of the value of the Size component.
27//
28//===----------------------------------------------------------------------===//
29
30#ifndef LLVM_ANALYSIS_ALIAS_ANALYSIS_H
31#define LLVM_ANALYSIS_ALIAS_ANALYSIS_H
32
33#include "llvm/Support/CallSite.h"
34#include "llvm/Support/IncludeFile.h"
35
36namespace llvm {
37
38class LoadInst;
39class StoreInst;
40class VAArgInst;
41class TargetData;
42class Pass;
43class AnalysisUsage;
44
45class AliasAnalysis {
46protected:
47  const TargetData *TD;
48  AliasAnalysis *AA;       // Previous Alias Analysis to chain to.
49
50  /// InitializeAliasAnalysis - Subclasses must call this method to initialize
51  /// the AliasAnalysis interface before any other methods are called.  This is
52  /// typically called by the run* methods of these subclasses.  This may be
53  /// called multiple times.
54  ///
55  void InitializeAliasAnalysis(Pass *P);
56
57  // getAnalysisUsage - All alias analysis implementations should invoke this
58  // directly (using AliasAnalysis::getAnalysisUsage(AU)) to make sure that
59  // TargetData is required by the pass.
60  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
61
62public:
63  AliasAnalysis() : TD(0), AA(0) {}
64  virtual ~AliasAnalysis();  // We want to be subclassed
65
66  /// getTargetData - Every alias analysis implementation depends on the size of
67  /// data items in the current Target.  This provides a uniform way to handle
68  /// it.
69  ///
70  const TargetData &getTargetData() const { return *TD; }
71
72  //===--------------------------------------------------------------------===//
73  /// Alias Queries...
74  ///
75
76  /// Alias analysis result - Either we know for sure that it does not alias, we
77  /// know for sure it must alias, or we don't know anything: The two pointers
78  /// _might_ alias.  This enum is designed so you can do things like:
79  ///     if (AA.alias(P1, P2)) { ... }
80  /// to check to see if two pointers might alias.
81  ///
82  enum AliasResult { NoAlias = 0, MayAlias = 1, MustAlias = 2 };
83
84  /// alias - The main low level interface to the alias analysis implementation.
85  /// Returns a Result indicating whether the two pointers are aliased to each
86  /// other.  This is the interface that must be implemented by specific alias
87  /// analysis implementations.
88  ///
89  virtual AliasResult alias(const Value *V1, unsigned V1Size,
90                            const Value *V2, unsigned V2Size);
91
92  /// getMustAliases - If there are any pointers known that must alias this
93  /// pointer, return them now.  This allows alias-set based alias analyses to
94  /// perform a form a value numbering (which is exposed by load-vn).  If an
95  /// alias analysis supports this, it should ADD any must aliased pointers to
96  /// the specified vector.
97  ///
98  virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals);
99
100  /// pointsToConstantMemory - If the specified pointer is known to point into
101  /// constant global memory, return true.  This allows disambiguation of store
102  /// instructions from constant pointers.
103  ///
104  virtual bool pointsToConstantMemory(const Value *P);
105
106  //===--------------------------------------------------------------------===//
107  /// Simple mod/ref information...
108  ///
109
110  /// ModRefResult - Represent the result of a mod/ref query.  Mod and Ref are
111  /// bits which may be or'd together.
112  ///
113  enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
114
115
116  /// ModRefBehavior - Summary of how a function affects memory in the program.
117  /// Loads from constant globals are not considered memory accesses for this
118  /// interface.  Also, functions may freely modify stack space local to their
119  /// invocation without having to report it through these interfaces.
120  enum ModRefBehavior {
121    // DoesNotAccessMemory - This function does not perform any non-local loads
122    // or stores to memory.
123    //
124    // This property corresponds to the GCC 'const' attribute.
125    DoesNotAccessMemory,
126
127    // AccessesArguments - This function accesses function arguments in
128    // non-volatile and well known ways, but does not access any other memory.
129    //
130    // Clients may call getArgumentAccesses to get specific information about
131    // how pointer arguments are used.
132    AccessesArguments,
133
134    // AccessesArgumentsAndGlobals - This function has accesses function
135    // arguments and global variables in non-volatile and well-known ways, but
136    // does not access any other memory.
137    //
138    // Clients may call getArgumentAccesses to get specific information about
139    // how pointer arguments and globals are used.
140    AccessesArgumentsAndGlobals,
141
142    // OnlyReadsMemory - This function does not perform any non-local stores or
143    // volatile loads, but may read from any memory location.
144    //
145    // This property corresponds to the GCC 'pure' attribute.
146    OnlyReadsMemory,
147
148    // UnknownModRefBehavior - This indicates that the function could not be
149    // classified into one of the behaviors above.
150    UnknownModRefBehavior
151  };
152
153  /// PointerAccessInfo - This struct is used to return results for pointers,
154  /// globals, and the return value of a function.
155  struct PointerAccessInfo {
156    /// V - The value this record corresponds to.  This may be an Argument for
157    /// the function, a GlobalVariable, or null, corresponding to the return
158    /// value for the function.
159    Value *V;
160
161    /// ModRefInfo - Whether the pointer is loaded or stored to/from.
162    ///
163    ModRefResult ModRefInfo;
164
165    /// AccessType - Specific fine-grained access information for the argument.
166    /// If none of these classifications is general enough, the
167    /// getModRefBehavior method should not return AccessesArguments*.  If a
168    /// record is not returned for a particular argument, the argument is never
169    /// dead and never dereferenced.
170    enum AccessType {
171      /// ScalarAccess - The pointer is dereferenced.
172      ///
173      ScalarAccess,
174
175      /// ArrayAccess - The pointer is indexed through as an array of elements.
176      ///
177      ArrayAccess,
178
179      /// ElementAccess ?? P->F only?
180
181      /// CallsThrough - Indirect calls are made through the specified function
182      /// pointer.
183      CallsThrough
184    };
185  };
186
187  /// getModRefBehavior - Return the behavior of the specified function if
188  /// called from the specified call site.  The call site may be null in which
189  /// case the most generic behavior of this function should be returned.
190  virtual ModRefBehavior getModRefBehavior(Function *F, CallSite CS,
191                                     std::vector<PointerAccessInfo> *Info = 0);
192
193  /// doesNotAccessMemory - If the specified function is known to never read or
194  /// write memory, return true.  If the function only reads from known-constant
195  /// memory, it is also legal to return true.  Functions that unwind the stack
196  /// are not legal for this predicate.
197  ///
198  /// Many optimizations (such as CSE and LICM) can be performed on calls to it,
199  /// without worrying about aliasing properties, and many functions have this
200  /// property (e.g. 'sin' and 'cos').
201  ///
202  /// This property corresponds to the GCC 'const' attribute.
203  ///
204  bool doesNotAccessMemory(Function *F) {
205    return getModRefBehavior(F, CallSite()) == DoesNotAccessMemory;
206  }
207
208  /// onlyReadsMemory - If the specified function is known to only read from
209  /// non-volatile memory (or not access memory at all), return true.  Functions
210  /// that unwind the stack are not legal for this predicate.
211  ///
212  /// This property allows many common optimizations to be performed in the
213  /// absence of interfering store instructions, such as CSE of strlen calls.
214  ///
215  /// This property corresponds to the GCC 'pure' attribute.
216  ///
217  bool onlyReadsMemory(Function *F) {
218    /// FIXME: If the analysis returns more precise info, we can reduce it to
219    /// this.
220    ModRefBehavior MRB = getModRefBehavior(F, CallSite());
221    return MRB == DoesNotAccessMemory || MRB == OnlyReadsMemory;
222  }
223
224
225  /// getModRefInfo - Return information about whether or not an instruction may
226  /// read or write memory specified by the pointer operand.  An instruction
227  /// that doesn't read or write memory may be trivially LICM'd for example.
228
229  /// getModRefInfo (for call sites) - Return whether information about whether
230  /// a particular call site modifies or reads the memory specified by the
231  /// pointer.
232  ///
233  virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
234
235  /// getModRefInfo - Return information about whether two call sites may refer
236  /// to the same set of memory locations.  This function returns NoModRef if
237  /// the two calls refer to disjoint memory locations, Ref if CS1 reads memory
238  /// written by CS2, Mod if CS1 writes to memory read or written by CS2, or
239  /// ModRef if CS1 might read or write memory accessed by CS2.
240  ///
241  virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
242
243  /// hasNoModRefInfoForCalls - Return true if the analysis has no mod/ref
244  /// information for pairs of function calls (other than "pure" and "const"
245  /// functions).  This can be used by clients to avoid many pointless queries.
246  /// Remember that if you override this and chain to another analysis, you must
247  /// make sure that it doesn't have mod/ref info either.
248  ///
249  virtual bool hasNoModRefInfoForCalls() const;
250
251  /// Convenience functions...
252  ModRefResult getModRefInfo(LoadInst *L, Value *P, unsigned Size);
253  ModRefResult getModRefInfo(StoreInst *S, Value *P, unsigned Size);
254  ModRefResult getModRefInfo(CallInst *C, Value *P, unsigned Size) {
255    return getModRefInfo(CallSite(C), P, Size);
256  }
257  ModRefResult getModRefInfo(InvokeInst *I, Value *P, unsigned Size) {
258    return getModRefInfo(CallSite(I), P, Size);
259  }
260  ModRefResult getModRefInfo(VAArgInst* I, Value* P, unsigned Size) {
261    return AliasAnalysis::Mod;
262  }
263  ModRefResult getModRefInfo(Instruction *I, Value *P, unsigned Size) {
264    switch (I->getOpcode()) {
265    case Instruction::VAArg:  return getModRefInfo((VAArgInst*)I, P, Size);
266    case Instruction::Load:   return getModRefInfo((LoadInst*)I, P, Size);
267    case Instruction::Store:  return getModRefInfo((StoreInst*)I, P, Size);
268    case Instruction::Call:   return getModRefInfo((CallInst*)I, P, Size);
269    case Instruction::Invoke: return getModRefInfo((InvokeInst*)I, P, Size);
270    default:                  return NoModRef;
271    }
272  }
273
274  //===--------------------------------------------------------------------===//
275  /// Higher level methods for querying mod/ref information.
276  ///
277
278  /// canBasicBlockModify - Return true if it is possible for execution of the
279  /// specified basic block to modify the value pointed to by Ptr.
280  ///
281  bool canBasicBlockModify(const BasicBlock &BB, const Value *P, unsigned Size);
282
283  /// canInstructionRangeModify - Return true if it is possible for the
284  /// execution of the specified instructions to modify the value pointed to by
285  /// Ptr.  The instructions to consider are all of the instructions in the
286  /// range of [I1,I2] INCLUSIVE.  I1 and I2 must be in the same basic block.
287  ///
288  bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
289                                 const Value *Ptr, unsigned Size);
290
291  //===--------------------------------------------------------------------===//
292  /// Methods that clients should call when they transform the program to allow
293  /// alias analyses to update their internal data structures.  Note that these
294  /// methods may be called on any instruction, regardless of whether or not
295  /// they have pointer-analysis implications.
296  ///
297
298  /// deleteValue - This method should be called whenever an LLVM Value is
299  /// deleted from the program, for example when an instruction is found to be
300  /// redundant and is eliminated.
301  ///
302  virtual void deleteValue(Value *V);
303
304  /// copyValue - This method should be used whenever a preexisting value in the
305  /// program is copied or cloned, introducing a new value.  Note that analysis
306  /// implementations should tolerate clients that use this method to introduce
307  /// the same value multiple times: if the analysis already knows about a
308  /// value, it should ignore the request.
309  ///
310  virtual void copyValue(Value *From, Value *To);
311
312  /// replaceWithNewValue - This method is the obvious combination of the two
313  /// above, and it provided as a helper to simplify client code.
314  ///
315  void replaceWithNewValue(Value *Old, Value *New) {
316    copyValue(Old, New);
317    deleteValue(Old);
318  }
319};
320
321// Because of the way .a files work, we must force the BasicAA implementation to
322// be pulled in if the AliasAnalysis header is included.  Otherwise we run
323// the risk of AliasAnalysis being used, but the default implementation not
324// being linked into the tool that uses it.
325//
326extern int BasicAAStub;
327static IncludeFile HDR_INCLUDE_BASICAA_CPP(&BasicAAStub);
328
329} // End llvm namespace
330
331#endif
332