AliasAnalysis.h revision 847a84efd23a2c7d90429b82f6e0f19d1f913d9a
1//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the generic AliasAnalysis interface, which is used as the
11// common interface used by all clients of alias analysis information, and
12// implemented by all alias analysis implementations.  Mod/Ref information is
13// also captured by this interface.
14//
15// Implementations of this interface must implement the various virtual methods,
16// which automatically provides functionality for the entire suite of client
17// APIs.
18//
19// This API represents memory as a (Pointer, Size) pair.  The Pointer component
20// specifies the base memory address of the region, the Size specifies how large
21// of an area is being queried.  If Size is 0, two pointers only alias if they
22// are exactly equal.  If size is greater than zero, but small, the two pointers
23// alias if the areas pointed to overlap.  If the size is very large (ie, ~0U),
24// then the two pointers alias if they may be pointing to components of the same
25// memory object.  Pointers that point to two completely different objects in
26// memory never alias, regardless of the value of the Size component.
27//
28//===----------------------------------------------------------------------===//
29
30#ifndef LLVM_ANALYSIS_ALIAS_ANALYSIS_H
31#define LLVM_ANALYSIS_ALIAS_ANALYSIS_H
32
33#include "llvm/Support/CallSite.h"
34#include "llvm/System/IncludeFile.h"
35#include <vector>
36
37namespace llvm {
38
39class LoadInst;
40class StoreInst;
41class VAArgInst;
42class TargetData;
43class Pass;
44class AnalysisUsage;
45
46class AliasAnalysis {
47protected:
48  const TargetData *TD;
49  AliasAnalysis *AA;       // Previous Alias Analysis to chain to.
50
51  /// InitializeAliasAnalysis - Subclasses must call this method to initialize
52  /// the AliasAnalysis interface before any other methods are called.  This is
53  /// typically called by the run* methods of these subclasses.  This may be
54  /// called multiple times.
55  ///
56  void InitializeAliasAnalysis(Pass *P);
57
58  /// getAnalysisUsage - All alias analysis implementations should invoke this
59  /// directly (using AliasAnalysis::getAnalysisUsage(AU)).
60  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
61
62public:
63  static char ID; // Class identification, replacement for typeinfo
64  AliasAnalysis() : TD(0), AA(0) {}
65  virtual ~AliasAnalysis();  // We want to be subclassed
66
67  /// getTargetData - Return a pointer to the current TargetData object, or
68  /// null if no TargetData object is available.
69  ///
70  const TargetData *getTargetData() const { return TD; }
71
72  /// getTypeStoreSize - Return the TargetData store size for the given type,
73  /// if known, or a conservative value otherwise.
74  ///
75  unsigned getTypeStoreSize(const Type *Ty);
76
77  //===--------------------------------------------------------------------===//
78  /// Alias Queries...
79  ///
80
81  /// Alias analysis result - Either we know for sure that it does not alias, we
82  /// know for sure it must alias, or we don't know anything: The two pointers
83  /// _might_ alias.  This enum is designed so you can do things like:
84  ///     if (AA.alias(P1, P2)) { ... }
85  /// to check to see if two pointers might alias.
86  ///
87  enum AliasResult { NoAlias = 0, MayAlias = 1, MustAlias = 2 };
88
89  /// alias - The main low level interface to the alias analysis implementation.
90  /// Returns a Result indicating whether the two pointers are aliased to each
91  /// other.  This is the interface that must be implemented by specific alias
92  /// analysis implementations.
93  ///
94  virtual AliasResult alias(const Value *V1, unsigned V1Size,
95                            const Value *V2, unsigned V2Size);
96
97  /// alias - A convenience wrapper for the case where the sizes are unknown.
98  AliasResult alias(const Value *V1, const Value *V2) {
99    return alias(V1, ~0u, V2, ~0u);
100  }
101
102  /// isNoAlias - A trivial helper function to check to see if the specified
103  /// pointers are no-alias.
104  bool isNoAlias(const Value *V1, unsigned V1Size,
105                 const Value *V2, unsigned V2Size) {
106    return alias(V1, V1Size, V2, V2Size) == NoAlias;
107  }
108
109  /// pointsToConstantMemory - If the specified pointer is known to point into
110  /// constant global memory, return true.  This allows disambiguation of store
111  /// instructions from constant pointers.
112  ///
113  virtual bool pointsToConstantMemory(const Value *P);
114
115  //===--------------------------------------------------------------------===//
116  /// Simple mod/ref information...
117  ///
118
119  /// ModRefResult - Represent the result of a mod/ref query.  Mod and Ref are
120  /// bits which may be or'd together.
121  ///
122  enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
123
124
125  /// ModRefBehavior - Summary of how a function affects memory in the program.
126  /// Loads from constant globals are not considered memory accesses for this
127  /// interface.  Also, functions may freely modify stack space local to their
128  /// invocation without having to report it through these interfaces.
129  enum ModRefBehavior {
130    // DoesNotAccessMemory - This function does not perform any non-local loads
131    // or stores to memory.
132    //
133    // This property corresponds to the GCC 'const' attribute.
134    DoesNotAccessMemory,
135
136    // AccessesArguments - This function accesses function arguments in well
137    // known (possibly volatile) ways, but does not access any other memory.
138    //
139    // Clients may use the Info parameter of getModRefBehavior to get specific
140    // information about how pointer arguments are used.
141    AccessesArguments,
142
143    // AccessesArgumentsAndGlobals - This function has accesses function
144    // arguments and global variables well known (possibly volatile) ways, but
145    // does not access any other memory.
146    //
147    // Clients may use the Info parameter of getModRefBehavior to get specific
148    // information about how pointer arguments are used.
149    AccessesArgumentsAndGlobals,
150
151    // OnlyReadsMemory - This function does not perform any non-local stores or
152    // volatile loads, but may read from any memory location.
153    //
154    // This property corresponds to the GCC 'pure' attribute.
155    OnlyReadsMemory,
156
157    // UnknownModRefBehavior - This indicates that the function could not be
158    // classified into one of the behaviors above.
159    UnknownModRefBehavior
160  };
161
162  /// PointerAccessInfo - This struct is used to return results for pointers,
163  /// globals, and the return value of a function.
164  struct PointerAccessInfo {
165    /// V - The value this record corresponds to.  This may be an Argument for
166    /// the function, a GlobalVariable, or null, corresponding to the return
167    /// value for the function.
168    Value *V;
169
170    /// ModRefInfo - Whether the pointer is loaded or stored to/from.
171    ///
172    ModRefResult ModRefInfo;
173  };
174
175  /// getModRefBehavior - Return the behavior when calling the given call site.
176  virtual ModRefBehavior getModRefBehavior(CallSite CS,
177                                   std::vector<PointerAccessInfo> *Info = 0);
178
179  /// getModRefBehavior - Return the behavior when calling the given function.
180  /// For use when the call site is not known.
181  virtual ModRefBehavior getModRefBehavior(Function *F,
182                                   std::vector<PointerAccessInfo> *Info = 0);
183
184  /// getModRefBehavior - Return the modref behavior of the intrinsic with the
185  /// given id.
186  static ModRefBehavior getModRefBehavior(unsigned iid);
187
188  /// doesNotAccessMemory - If the specified call is known to never read or
189  /// write memory, return true.  If the call only reads from known-constant
190  /// memory, it is also legal to return true.  Calls that unwind the stack
191  /// are legal for this predicate.
192  ///
193  /// Many optimizations (such as CSE and LICM) can be performed on such calls
194  /// without worrying about aliasing properties, and many calls have this
195  /// property (e.g. calls to 'sin' and 'cos').
196  ///
197  /// This property corresponds to the GCC 'const' attribute.
198  ///
199  bool doesNotAccessMemory(CallSite CS) {
200    return getModRefBehavior(CS) == DoesNotAccessMemory;
201  }
202
203  /// doesNotAccessMemory - If the specified function is known to never read or
204  /// write memory, return true.  For use when the call site is not known.
205  ///
206  bool doesNotAccessMemory(Function *F) {
207    return getModRefBehavior(F) == DoesNotAccessMemory;
208  }
209
210  /// onlyReadsMemory - If the specified call is known to only read from
211  /// non-volatile memory (or not access memory at all), return true.  Calls
212  /// that unwind the stack are legal for this predicate.
213  ///
214  /// This property allows many common optimizations to be performed in the
215  /// absence of interfering store instructions, such as CSE of strlen calls.
216  ///
217  /// This property corresponds to the GCC 'pure' attribute.
218  ///
219  bool onlyReadsMemory(CallSite CS) {
220    ModRefBehavior MRB = getModRefBehavior(CS);
221    return MRB == DoesNotAccessMemory || MRB == OnlyReadsMemory;
222  }
223
224  /// onlyReadsMemory - If the specified function is known to only read from
225  /// non-volatile memory (or not access memory at all), return true.  For use
226  /// when the call site is not known.
227  ///
228  bool onlyReadsMemory(Function *F) {
229    ModRefBehavior MRB = getModRefBehavior(F);
230    return MRB == DoesNotAccessMemory || MRB == OnlyReadsMemory;
231  }
232
233
234  /// getModRefInfo - Return information about whether or not an instruction may
235  /// read or write memory specified by the pointer operand.  An instruction
236  /// that doesn't read or write memory may be trivially LICM'd for example.
237
238  /// getModRefInfo (for call sites) - Return whether information about whether
239  /// a particular call site modifies or reads the memory specified by the
240  /// pointer.
241  ///
242  virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
243
244  /// getModRefInfo - Return information about whether two call sites may refer
245  /// to the same set of memory locations.  This function returns NoModRef if
246  /// the two calls refer to disjoint memory locations, Ref if CS1 reads memory
247  /// written by CS2, Mod if CS1 writes to memory read or written by CS2, or
248  /// ModRef if CS1 might read or write memory accessed by CS2.
249  ///
250  virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
251
252public:
253  /// Convenience functions...
254  ModRefResult getModRefInfo(LoadInst *L, Value *P, unsigned Size);
255  ModRefResult getModRefInfo(StoreInst *S, Value *P, unsigned Size);
256  ModRefResult getModRefInfo(CallInst *C, Value *P, unsigned Size) {
257    return getModRefInfo(CallSite(C), P, Size);
258  }
259  ModRefResult getModRefInfo(InvokeInst *I, Value *P, unsigned Size) {
260    return getModRefInfo(CallSite(I), P, Size);
261  }
262  ModRefResult getModRefInfo(VAArgInst* I, Value* P, unsigned Size) {
263    return AliasAnalysis::ModRef;
264  }
265  ModRefResult getModRefInfo(Instruction *I, Value *P, unsigned Size) {
266    switch (I->getOpcode()) {
267    case Instruction::VAArg:  return getModRefInfo((VAArgInst*)I, P, Size);
268    case Instruction::Load:   return getModRefInfo((LoadInst*)I, P, Size);
269    case Instruction::Store:  return getModRefInfo((StoreInst*)I, P, Size);
270    case Instruction::Call:   return getModRefInfo((CallInst*)I, P, Size);
271    case Instruction::Invoke: return getModRefInfo((InvokeInst*)I, P, Size);
272    default:                  return NoModRef;
273    }
274  }
275
276  //===--------------------------------------------------------------------===//
277  /// Higher level methods for querying mod/ref information.
278  ///
279
280  /// canBasicBlockModify - Return true if it is possible for execution of the
281  /// specified basic block to modify the value pointed to by Ptr.
282  ///
283  bool canBasicBlockModify(const BasicBlock &BB, const Value *P, unsigned Size);
284
285  /// canInstructionRangeModify - Return true if it is possible for the
286  /// execution of the specified instructions to modify the value pointed to by
287  /// Ptr.  The instructions to consider are all of the instructions in the
288  /// range of [I1,I2] INCLUSIVE.  I1 and I2 must be in the same basic block.
289  ///
290  bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
291                                 const Value *Ptr, unsigned Size);
292
293  //===--------------------------------------------------------------------===//
294  /// Methods that clients should call when they transform the program to allow
295  /// alias analyses to update their internal data structures.  Note that these
296  /// methods may be called on any instruction, regardless of whether or not
297  /// they have pointer-analysis implications.
298  ///
299
300  /// deleteValue - This method should be called whenever an LLVM Value is
301  /// deleted from the program, for example when an instruction is found to be
302  /// redundant and is eliminated.
303  ///
304  virtual void deleteValue(Value *V);
305
306  /// copyValue - This method should be used whenever a preexisting value in the
307  /// program is copied or cloned, introducing a new value.  Note that analysis
308  /// implementations should tolerate clients that use this method to introduce
309  /// the same value multiple times: if the analysis already knows about a
310  /// value, it should ignore the request.
311  ///
312  virtual void copyValue(Value *From, Value *To);
313
314  /// replaceWithNewValue - This method is the obvious combination of the two
315  /// above, and it provided as a helper to simplify client code.
316  ///
317  void replaceWithNewValue(Value *Old, Value *New) {
318    copyValue(Old, New);
319    deleteValue(Old);
320  }
321};
322
323/// isNoAliasCall - Return true if this pointer is returned by a noalias
324/// function.
325bool isNoAliasCall(const Value *V);
326
327/// isIdentifiedObject - Return true if this pointer refers to a distinct and
328/// identifiable object.  This returns true for:
329///    Global Variables and Functions (but not Global Aliases)
330///    Allocas and Mallocs
331///    ByVal and NoAlias Arguments
332///    NoAlias returns
333///
334bool isIdentifiedObject(const Value *V);
335
336} // End llvm namespace
337
338// Because of the way .a files work, we must force the BasicAA implementation to
339// be pulled in if the AliasAnalysis header is included.  Otherwise we run
340// the risk of AliasAnalysis being used, but the default implementation not
341// being linked into the tool that uses it.
342FORCE_DEFINING_FILE_TO_BE_LINKED(AliasAnalysis)
343FORCE_DEFINING_FILE_TO_BE_LINKED(BasicAliasAnalysis)
344
345#endif
346