AliasAnalysis.h revision 9769ab22265b313171d201b5928688524a01bd87
1//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the generic AliasAnalysis interface, which is used as the
11// common interface used by all clients of alias analysis information, and
12// implemented by all alias analysis implementations.  Mod/Ref information is
13// also captured by this interface.
14//
15// Implementations of this interface must implement the various virtual methods,
16// which automatically provides functionality for the entire suite of client
17// APIs.
18//
19// This API represents memory as a (Pointer, Size) pair.  The Pointer component
20// specifies the base memory address of the region, the Size specifies how large
21// of an area is being queried.  If Size is 0, two pointers only alias if they
22// are exactly equal.  If size is greater than zero, but small, the two pointers
23// alias if the areas pointed to overlap.  If the size is very large (ie, ~0U),
24// then the two pointers alias if they may be pointing to components of the same
25// memory object.  Pointers that point to two completely different objects in
26// memory never alias, regardless of the value of the Size component.
27//
28//===----------------------------------------------------------------------===//
29
30#ifndef LLVM_ANALYSIS_ALIAS_ANALYSIS_H
31#define LLVM_ANALYSIS_ALIAS_ANALYSIS_H
32
33#include "llvm/Support/CallSite.h"
34#include "llvm/Pass.h"    // Need this for IncludeFile
35
36namespace llvm {
37
38class LoadInst;
39class StoreInst;
40class TargetData;
41
42class AliasAnalysis {
43protected:
44  const TargetData *TD;
45  AliasAnalysis *AA;       // Previous Alias Analysis to chain to.
46
47  /// InitializeAliasAnalysis - Subclasses must call this method to initialize
48  /// the AliasAnalysis interface before any other methods are called.  This is
49  /// typically called by the run* methods of these subclasses.  This may be
50  /// called multiple times.
51  ///
52  void InitializeAliasAnalysis(Pass *P);
53
54  // getAnalysisUsage - All alias analysis implementations should invoke this
55  // directly (using AliasAnalysis::getAnalysisUsage(AU)) to make sure that
56  // TargetData is required by the pass.
57  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
58
59public:
60  AliasAnalysis() : TD(0), AA(0) {}
61  virtual ~AliasAnalysis();  // We want to be subclassed
62
63  /// getTargetData - Every alias analysis implementation depends on the size of
64  /// data items in the current Target.  This provides a uniform way to handle
65  /// it.
66  ///
67  const TargetData &getTargetData() const { return *TD; }
68
69  //===--------------------------------------------------------------------===//
70  /// Alias Queries...
71  ///
72
73  /// Alias analysis result - Either we know for sure that it does not alias, we
74  /// know for sure it must alias, or we don't know anything: The two pointers
75  /// _might_ alias.  This enum is designed so you can do things like:
76  ///     if (AA.alias(P1, P2)) { ... }
77  /// to check to see if two pointers might alias.
78  ///
79  enum AliasResult { NoAlias = 0, MayAlias = 1, MustAlias = 2 };
80
81  /// alias - The main low level interface to the alias analysis implementation.
82  /// Returns a Result indicating whether the two pointers are aliased to each
83  /// other.  This is the interface that must be implemented by specific alias
84  /// analysis implementations.
85  ///
86  virtual AliasResult alias(const Value *V1, unsigned V1Size,
87                            const Value *V2, unsigned V2Size);
88
89  /// getMustAliases - If there are any pointers known that must alias this
90  /// pointer, return them now.  This allows alias-set based alias analyses to
91  /// perform a form a value numbering (which is exposed by load-vn).  If an
92  /// alias analysis supports this, it should ADD any must aliased pointers to
93  /// the specified vector.
94  ///
95  virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals);
96
97  /// pointsToConstantMemory - If the specified pointer is known to point into
98  /// constant global memory, return true.  This allows disambiguation of store
99  /// instructions from constant pointers.
100  ///
101  virtual bool pointsToConstantMemory(const Value *P);
102
103  //===--------------------------------------------------------------------===//
104  /// Simple mod/ref information...
105  ///
106
107  /// ModRefResult - Represent the result of a mod/ref query.  Mod and Ref are
108  /// bits which may be or'd together.
109  ///
110  enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
111
112
113  /// ModRefBehavior - Summary of how a function affects memory in the program.
114  /// Loads from constant globals are not considered memory accesses for this
115  /// interface.  Also, functions may freely modify stack space local to their
116  /// invocation without having to report it through these interfaces.
117  enum ModRefBehavior {
118    // DoesNotAccessMemory - This function does not perform any non-local loads
119    // or stores to memory.
120    //
121    // This property corresponds to the GCC 'const' attribute.
122    DoesNotAccessMemory,
123
124    // AccessesArguments - This function accesses function arguments in
125    // non-volatile and well known ways, but does not access any other memory.
126    //
127    // Clients may call getArgumentAccesses to get specific information about
128    // how pointer arguments are used.
129    AccessesArguments,
130
131    // AccessesArgumentsAndGlobals - This function has accesses function
132    // arguments and global variables in non-volatile and well-known ways, but
133    // does not access any other memory.
134    //
135    // Clients may call getArgumentAccesses to get specific information about
136    // how pointer arguments and globals are used.
137    AccessesArgumentsAndGlobals,
138
139    // OnlyReadsMemory - This function does not perform any non-local stores or
140    // volatile loads, but may read from any memory location.
141    //
142    // This property corresponds to the GCC 'pure' attribute.
143    OnlyReadsMemory,
144
145    // UnknownModRefBehavior - This indicates that the function could not be
146    // classified into one of the behaviors above.
147    UnknownModRefBehavior
148  };
149
150  /// PointerAccessInfo - This struct is used to return results for pointers,
151  /// globals, and the return value of a function.
152  struct PointerAccessInfo {
153    /// V - The value this record corresponds to.  This may be an Argument for
154    /// the function, a GlobalVariable, or null, corresponding to the return
155    /// value for the function.
156    Value *V;
157
158    /// ModRefInfo - Whether the pointer is loaded or stored to/from.
159    ///
160    ModRefResult ModRefInfo;
161
162    /// AccessType - Specific fine-grained access information for the argument.
163    /// If none of these classifications is general enough, the
164    /// getModRefBehavior method should not return AccessesArguments*.  If a
165    /// record is not returned for a particular argument, the argument is never
166    /// dead and never dereferenced.
167    enum AccessType {
168      /// ScalarAccess - The pointer is dereferenced.
169      ///
170      ScalarAccess,
171
172      /// ArrayAccess - The pointer is indexed through as an array of elements.
173      ///
174      ArrayAccess,
175
176      /// ElementAccess ?? P->F only?
177
178      /// CallsThrough - Indirect calls are made through the specified function
179      /// pointer.
180      CallsThrough,
181    };
182  };
183
184  /// getModRefBehavior - Return the behavior of the specified function if
185  /// called from the specified call site.  The call site may be null in which
186  /// case the most generic behavior of this function should be returned.
187  virtual ModRefBehavior getModRefBehavior(Function *F, CallSite CS,
188                                     std::vector<PointerAccessInfo> *Info = 0);
189
190  /// doesNotAccessMemory - If the specified function is known to never read or
191  /// write memory, return true.  If the function only reads from known-constant
192  /// memory, it is also legal to return true.  Functions that unwind the stack
193  /// are not legal for this predicate.
194  ///
195  /// Many optimizations (such as CSE and LICM) can be performed on calls to it,
196  /// without worrying about aliasing properties, and many functions have this
197  /// property (e.g. 'sin' and 'cos').
198  ///
199  /// This property corresponds to the GCC 'const' attribute.
200  ///
201  bool doesNotAccessMemory(Function *F) {
202    return getModRefBehavior(F, CallSite()) == DoesNotAccessMemory;
203  }
204
205  /// onlyReadsMemory - If the specified function is known to only read from
206  /// non-volatile memory (or not access memory at all), return true.  Functions
207  /// that unwind the stack are not legal for this predicate.
208  ///
209  /// This property allows many common optimizations to be performed in the
210  /// absence of interfering store instructions, such as CSE of strlen calls.
211  ///
212  /// This property corresponds to the GCC 'pure' attribute.
213  ///
214  bool onlyReadsMemory(Function *F) {
215    /// FIXME: If the analysis returns more precise info, we can reduce it to
216    /// this.
217    ModRefBehavior MRB = getModRefBehavior(F, CallSite());
218    return MRB == DoesNotAccessMemory || MRB == OnlyReadsMemory;
219  }
220
221
222  /// getModRefInfo - Return information about whether or not an instruction may
223  /// read or write memory specified by the pointer operand.  An instruction
224  /// that doesn't read or write memory may be trivially LICM'd for example.
225
226  /// getModRefInfo (for call sites) - Return whether information about whether
227  /// a particular call site modifies or reads the memory specified by the
228  /// pointer.
229  ///
230  virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
231
232  /// getModRefInfo - Return information about whether two call sites may refer
233  /// to the same set of memory locations.  This function returns NoModRef if
234  /// the two calls refer to disjoint memory locations, Ref if CS1 reads memory
235  /// written by CS2, Mod if CS1 writes to memory read or written by CS2, or
236  /// ModRef if CS1 might read or write memory accessed by CS2.
237  ///
238  virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
239
240  /// hasNoModRefInfoForCalls - Return true if the analysis has no mod/ref
241  /// information for pairs of function calls (other than "pure" and "const"
242  /// functions).  This can be used by clients to avoid many pointless queries.
243  /// Remember that if you override this and chain to another analysis, you must
244  /// make sure that it doesn't have mod/ref info either.
245  ///
246  virtual bool hasNoModRefInfoForCalls() const;
247
248  /// Convenience functions...
249  ModRefResult getModRefInfo(LoadInst *L, Value *P, unsigned Size);
250  ModRefResult getModRefInfo(StoreInst *S, Value *P, unsigned Size);
251  ModRefResult getModRefInfo(CallInst *C, Value *P, unsigned Size) {
252    return getModRefInfo(CallSite(C), P, Size);
253  }
254  ModRefResult getModRefInfo(InvokeInst *I, Value *P, unsigned Size) {
255    return getModRefInfo(CallSite(I), P, Size);
256  }
257  ModRefResult getModRefInfo(Instruction *I, Value *P, unsigned Size) {
258    switch (I->getOpcode()) {
259    case Instruction::Load:   return getModRefInfo((LoadInst*)I, P, Size);
260    case Instruction::Store:  return getModRefInfo((StoreInst*)I, P, Size);
261    case Instruction::Call:   return getModRefInfo((CallInst*)I, P, Size);
262    case Instruction::Invoke: return getModRefInfo((InvokeInst*)I, P, Size);
263    default:                  return NoModRef;
264    }
265  }
266
267  //===--------------------------------------------------------------------===//
268  /// Higher level methods for querying mod/ref information.
269  ///
270
271  /// canBasicBlockModify - Return true if it is possible for execution of the
272  /// specified basic block to modify the value pointed to by Ptr.
273  ///
274  bool canBasicBlockModify(const BasicBlock &BB, const Value *P, unsigned Size);
275
276  /// canInstructionRangeModify - Return true if it is possible for the
277  /// execution of the specified instructions to modify the value pointed to by
278  /// Ptr.  The instructions to consider are all of the instructions in the
279  /// range of [I1,I2] INCLUSIVE.  I1 and I2 must be in the same basic block.
280  ///
281  bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
282                                 const Value *Ptr, unsigned Size);
283
284  //===--------------------------------------------------------------------===//
285  /// Methods that clients should call when they transform the program to allow
286  /// alias analyses to update their internal data structures.  Note that these
287  /// methods may be called on any instruction, regardless of whether or not
288  /// they have pointer-analysis implications.
289  ///
290
291  /// deleteValue - This method should be called whenever an LLVM Value is
292  /// deleted from the program, for example when an instruction is found to be
293  /// redundant and is eliminated.
294  ///
295  virtual void deleteValue(Value *V);
296
297  /// copyValue - This method should be used whenever a preexisting value in the
298  /// program is copied or cloned, introducing a new value.  Note that analysis
299  /// implementations should tolerate clients that use this method to introduce
300  /// the same value multiple times: if the analysis already knows about a
301  /// value, it should ignore the request.
302  ///
303  virtual void copyValue(Value *From, Value *To);
304
305  /// replaceWithNewValue - This method is the obvious combination of the two
306  /// above, and it provided as a helper to simplify client code.
307  ///
308  void replaceWithNewValue(Value *Old, Value *New) {
309    copyValue(Old, New);
310    deleteValue(Old);
311  }
312};
313
314// Because of the way .a files work, we must force the BasicAA implementation to
315// be pulled in if the AliasAnalysis header is included.  Otherwise we run
316// the risk of AliasAnalysis being used, but the default implementation not
317// being linked into the tool that uses it.
318//
319extern void BasicAAStub();
320static IncludeFile HDR_INCLUDE_BASICAA_CPP((void*)&BasicAAStub);
321
322} // End llvm namespace
323
324#endif
325