AliasAnalysis.h revision 9f5de6dadcdb9922ad8c8135a29e4abccec11671
1//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the generic AliasAnalysis interface, which is used as the
11// common interface used by all clients of alias analysis information, and
12// implemented by all alias analysis implementations.  Mod/Ref information is
13// also captured by this interface.
14//
15// Implementations of this interface must implement the various virtual methods,
16// which automatically provides functionality for the entire suite of client
17// APIs.
18//
19// This API identifies memory regions with the Location class. The pointer
20// component specifies the base memory address of the region. The Size specifies
21// the maximum size (in address units) of the memory region, or UnknownSize if
22// the size is not known. The TBAA tag identifies the "type" of the memory
23// reference; see the TypeBasedAliasAnalysis class for details.
24//
25// Some non-obvious details include:
26//  - Pointers that point to two completely different objects in memory never
27//    alias, regardless of the value of the Size component.
28//  - NoAlias doesn't imply inequal pointers. The most obvious example of this
29//    is two pointers to constant memory. Even if they are equal, constant
30//    memory is never stored to, so there will never be any dependencies.
31//    In this and other situations, the pointers may be both NoAlias and
32//    MustAlias at the same time. The current API can only return one result,
33//    though this is rarely a problem in practice.
34//
35//===----------------------------------------------------------------------===//
36
37#ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
38#define LLVM_ANALYSIS_ALIASANALYSIS_H
39
40#include "llvm/ADT/DenseMap.h"
41#include "llvm/Support/CallSite.h"
42
43namespace llvm {
44
45class LoadInst;
46class StoreInst;
47class VAArgInst;
48class DataLayout;
49class TargetLibraryInfo;
50class Pass;
51class AnalysisUsage;
52class MemTransferInst;
53class MemIntrinsic;
54class DominatorTree;
55
56class AliasAnalysis {
57protected:
58  const DataLayout *TD;
59  const TargetLibraryInfo *TLI;
60
61private:
62  AliasAnalysis *AA;       // Previous Alias Analysis to chain to.
63
64protected:
65  /// InitializeAliasAnalysis - Subclasses must call this method to initialize
66  /// the AliasAnalysis interface before any other methods are called.  This is
67  /// typically called by the run* methods of these subclasses.  This may be
68  /// called multiple times.
69  ///
70  void InitializeAliasAnalysis(Pass *P);
71
72  /// getAnalysisUsage - All alias analysis implementations should invoke this
73  /// directly (using AliasAnalysis::getAnalysisUsage(AU)).
74  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
75
76public:
77  static char ID; // Class identification, replacement for typeinfo
78  AliasAnalysis() : TD(0), TLI(0), AA(0) {}
79  virtual ~AliasAnalysis();  // We want to be subclassed
80
81  /// UnknownSize - This is a special value which can be used with the
82  /// size arguments in alias queries to indicate that the caller does not
83  /// know the sizes of the potential memory references.
84  static uint64_t const UnknownSize = ~UINT64_C(0);
85
86  /// getDataLayout - Return a pointer to the current DataLayout object, or
87  /// null if no DataLayout object is available.
88  ///
89  const DataLayout *getDataLayout() const { return TD; }
90
91  /// getTargetLibraryInfo - Return a pointer to the current TargetLibraryInfo
92  /// object, or null if no TargetLibraryInfo object is available.
93  ///
94  const TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; }
95
96  /// getTypeStoreSize - Return the DataLayout store size for the given type,
97  /// if known, or a conservative value otherwise.
98  ///
99  uint64_t getTypeStoreSize(Type *Ty);
100
101  //===--------------------------------------------------------------------===//
102  /// Alias Queries...
103  ///
104
105  /// Location - A description of a memory location.
106  struct Location {
107    /// Ptr - The address of the start of the location.
108    const Value *Ptr;
109    /// Size - The maximum size of the location, in address-units, or
110    /// UnknownSize if the size is not known.  Note that an unknown size does
111    /// not mean the pointer aliases the entire virtual address space, because
112    /// there are restrictions on stepping out of one object and into another.
113    /// See http://llvm.org/docs/LangRef.html#pointeraliasing
114    uint64_t Size;
115    /// TBAATag - The metadata node which describes the TBAA type of
116    /// the location, or null if there is no known unique tag.
117    const MDNode *TBAATag;
118
119    explicit Location(const Value *P = 0, uint64_t S = UnknownSize,
120                      const MDNode *N = 0)
121      : Ptr(P), Size(S), TBAATag(N) {}
122
123    Location getWithNewPtr(const Value *NewPtr) const {
124      Location Copy(*this);
125      Copy.Ptr = NewPtr;
126      return Copy;
127    }
128
129    Location getWithNewSize(uint64_t NewSize) const {
130      Location Copy(*this);
131      Copy.Size = NewSize;
132      return Copy;
133    }
134
135    Location getWithoutTBAATag() const {
136      Location Copy(*this);
137      Copy.TBAATag = 0;
138      return Copy;
139    }
140  };
141
142  /// getLocation - Fill in Loc with information about the memory reference by
143  /// the given instruction.
144  Location getLocation(const LoadInst *LI);
145  Location getLocation(const StoreInst *SI);
146  Location getLocation(const VAArgInst *VI);
147  Location getLocation(const AtomicCmpXchgInst *CXI);
148  Location getLocation(const AtomicRMWInst *RMWI);
149  static Location getLocationForSource(const MemTransferInst *MTI);
150  static Location getLocationForDest(const MemIntrinsic *MI);
151
152  /// Alias analysis result - Either we know for sure that it does not alias, we
153  /// know for sure it must alias, or we don't know anything: The two pointers
154  /// _might_ alias.  This enum is designed so you can do things like:
155  ///     if (AA.alias(P1, P2)) { ... }
156  /// to check to see if two pointers might alias.
157  ///
158  /// See docs/AliasAnalysis.html for more information on the specific meanings
159  /// of these values.
160  ///
161  enum AliasResult {
162    NoAlias = 0,        ///< No dependencies.
163    MayAlias,           ///< Anything goes.
164    PartialAlias,       ///< Pointers differ, but pointees overlap.
165    MustAlias           ///< Pointers are equal.
166  };
167
168  /// alias - The main low level interface to the alias analysis implementation.
169  /// Returns an AliasResult indicating whether the two pointers are aliased to
170  /// each other.  This is the interface that must be implemented by specific
171  /// alias analysis implementations.
172  virtual AliasResult alias(const Location &LocA, const Location &LocB);
173
174  /// alias - A convenience wrapper.
175  AliasResult alias(const Value *V1, uint64_t V1Size,
176                    const Value *V2, uint64_t V2Size) {
177    return alias(Location(V1, V1Size), Location(V2, V2Size));
178  }
179
180  /// alias - A convenience wrapper.
181  AliasResult alias(const Value *V1, const Value *V2) {
182    return alias(V1, UnknownSize, V2, UnknownSize);
183  }
184
185  /// isNoAlias - A trivial helper function to check to see if the specified
186  /// pointers are no-alias.
187  bool isNoAlias(const Location &LocA, const Location &LocB) {
188    return alias(LocA, LocB) == NoAlias;
189  }
190
191  /// isNoAlias - A convenience wrapper.
192  bool isNoAlias(const Value *V1, uint64_t V1Size,
193                 const Value *V2, uint64_t V2Size) {
194    return isNoAlias(Location(V1, V1Size), Location(V2, V2Size));
195  }
196
197  /// isNoAlias - A convenience wrapper.
198  bool isNoAlias(const Value *V1, const Value *V2) {
199    return isNoAlias(Location(V1), Location(V2));
200  }
201
202  /// isMustAlias - A convenience wrapper.
203  bool isMustAlias(const Location &LocA, const Location &LocB) {
204    return alias(LocA, LocB) == MustAlias;
205  }
206
207  /// isMustAlias - A convenience wrapper.
208  bool isMustAlias(const Value *V1, const Value *V2) {
209    return alias(V1, 1, V2, 1) == MustAlias;
210  }
211
212  /// pointsToConstantMemory - If the specified memory location is
213  /// known to be constant, return true. If OrLocal is true and the
214  /// specified memory location is known to be "local" (derived from
215  /// an alloca), return true. Otherwise return false.
216  virtual bool pointsToConstantMemory(const Location &Loc,
217                                      bool OrLocal = false);
218
219  /// pointsToConstantMemory - A convenient wrapper.
220  bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
221    return pointsToConstantMemory(Location(P), OrLocal);
222  }
223
224  //===--------------------------------------------------------------------===//
225  /// Simple mod/ref information...
226  ///
227
228  /// ModRefResult - Represent the result of a mod/ref query.  Mod and Ref are
229  /// bits which may be or'd together.
230  ///
231  enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
232
233  /// These values define additional bits used to define the
234  /// ModRefBehavior values.
235  enum { Nowhere = 0, ArgumentPointees = 4, Anywhere = 8 | ArgumentPointees };
236
237  /// ModRefBehavior - Summary of how a function affects memory in the program.
238  /// Loads from constant globals are not considered memory accesses for this
239  /// interface.  Also, functions may freely modify stack space local to their
240  /// invocation without having to report it through these interfaces.
241  enum ModRefBehavior {
242    /// DoesNotAccessMemory - This function does not perform any non-local loads
243    /// or stores to memory.
244    ///
245    /// This property corresponds to the GCC 'const' attribute.
246    /// This property corresponds to the LLVM IR 'readnone' attribute.
247    /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
248    DoesNotAccessMemory = Nowhere | NoModRef,
249
250    /// OnlyReadsArgumentPointees - The only memory references in this function
251    /// (if it has any) are non-volatile loads from objects pointed to by its
252    /// pointer-typed arguments, with arbitrary offsets.
253    ///
254    /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
255    OnlyReadsArgumentPointees = ArgumentPointees | Ref,
256
257    /// OnlyAccessesArgumentPointees - The only memory references in this
258    /// function (if it has any) are non-volatile loads and stores from objects
259    /// pointed to by its pointer-typed arguments, with arbitrary offsets.
260    ///
261    /// This property corresponds to the IntrReadWriteArgMem LLVM intrinsic flag.
262    OnlyAccessesArgumentPointees = ArgumentPointees | ModRef,
263
264    /// OnlyReadsMemory - This function does not perform any non-local stores or
265    /// volatile loads, but may read from any memory location.
266    ///
267    /// This property corresponds to the GCC 'pure' attribute.
268    /// This property corresponds to the LLVM IR 'readonly' attribute.
269    /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
270    OnlyReadsMemory = Anywhere | Ref,
271
272    /// UnknownModRefBehavior - This indicates that the function could not be
273    /// classified into one of the behaviors above.
274    UnknownModRefBehavior = Anywhere | ModRef
275  };
276
277  /// getModRefBehavior - Return the behavior when calling the given call site.
278  virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
279
280  /// getModRefBehavior - Return the behavior when calling the given function.
281  /// For use when the call site is not known.
282  virtual ModRefBehavior getModRefBehavior(const Function *F);
283
284  /// doesNotAccessMemory - If the specified call is known to never read or
285  /// write memory, return true.  If the call only reads from known-constant
286  /// memory, it is also legal to return true.  Calls that unwind the stack
287  /// are legal for this predicate.
288  ///
289  /// Many optimizations (such as CSE and LICM) can be performed on such calls
290  /// without worrying about aliasing properties, and many calls have this
291  /// property (e.g. calls to 'sin' and 'cos').
292  ///
293  /// This property corresponds to the GCC 'const' attribute.
294  ///
295  bool doesNotAccessMemory(ImmutableCallSite CS) {
296    return getModRefBehavior(CS) == DoesNotAccessMemory;
297  }
298
299  /// doesNotAccessMemory - If the specified function is known to never read or
300  /// write memory, return true.  For use when the call site is not known.
301  ///
302  bool doesNotAccessMemory(const Function *F) {
303    return getModRefBehavior(F) == DoesNotAccessMemory;
304  }
305
306  /// onlyReadsMemory - If the specified call is known to only read from
307  /// non-volatile memory (or not access memory at all), return true.  Calls
308  /// that unwind the stack are legal for this predicate.
309  ///
310  /// This property allows many common optimizations to be performed in the
311  /// absence of interfering store instructions, such as CSE of strlen calls.
312  ///
313  /// This property corresponds to the GCC 'pure' attribute.
314  ///
315  bool onlyReadsMemory(ImmutableCallSite CS) {
316    return onlyReadsMemory(getModRefBehavior(CS));
317  }
318
319  /// onlyReadsMemory - If the specified function is known to only read from
320  /// non-volatile memory (or not access memory at all), return true.  For use
321  /// when the call site is not known.
322  ///
323  bool onlyReadsMemory(const Function *F) {
324    return onlyReadsMemory(getModRefBehavior(F));
325  }
326
327  /// onlyReadsMemory - Return true if functions with the specified behavior are
328  /// known to only read from non-volatile memory (or not access memory at all).
329  ///
330  static bool onlyReadsMemory(ModRefBehavior MRB) {
331    return !(MRB & Mod);
332  }
333
334  /// onlyAccessesArgPointees - Return true if functions with the specified
335  /// behavior are known to read and write at most from objects pointed to by
336  /// their pointer-typed arguments (with arbitrary offsets).
337  ///
338  static bool onlyAccessesArgPointees(ModRefBehavior MRB) {
339    return !(MRB & Anywhere & ~ArgumentPointees);
340  }
341
342  /// doesAccessArgPointees - Return true if functions with the specified
343  /// behavior are known to potentially read or write from objects pointed
344  /// to be their pointer-typed arguments (with arbitrary offsets).
345  ///
346  static bool doesAccessArgPointees(ModRefBehavior MRB) {
347    return (MRB & ModRef) && (MRB & ArgumentPointees);
348  }
349
350  /// getModRefInfo - Return information about whether or not an instruction may
351  /// read or write the specified memory location.  An instruction
352  /// that doesn't read or write memory may be trivially LICM'd for example.
353  ModRefResult getModRefInfo(const Instruction *I,
354                             const Location &Loc) {
355    switch (I->getOpcode()) {
356    case Instruction::VAArg:  return getModRefInfo((const VAArgInst*)I, Loc);
357    case Instruction::Load:   return getModRefInfo((const LoadInst*)I,  Loc);
358    case Instruction::Store:  return getModRefInfo((const StoreInst*)I, Loc);
359    case Instruction::Fence:  return getModRefInfo((const FenceInst*)I, Loc);
360    case Instruction::AtomicCmpXchg:
361      return getModRefInfo((const AtomicCmpXchgInst*)I, Loc);
362    case Instruction::AtomicRMW:
363      return getModRefInfo((const AtomicRMWInst*)I, Loc);
364    case Instruction::Call:   return getModRefInfo((const CallInst*)I,  Loc);
365    case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc);
366    default:                  return NoModRef;
367    }
368  }
369
370  /// getModRefInfo - A convenience wrapper.
371  ModRefResult getModRefInfo(const Instruction *I,
372                             const Value *P, uint64_t Size) {
373    return getModRefInfo(I, Location(P, Size));
374  }
375
376  /// getModRefInfo (for call sites) - Return information about whether
377  /// a particular call site modifies or reads the specified memory location.
378  virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
379                                     const Location &Loc);
380
381  /// getModRefInfo (for call sites) - A convenience wrapper.
382  ModRefResult getModRefInfo(ImmutableCallSite CS,
383                             const Value *P, uint64_t Size) {
384    return getModRefInfo(CS, Location(P, Size));
385  }
386
387  /// getModRefInfo (for calls) - Return information about whether
388  /// a particular call modifies or reads the specified memory location.
389  ModRefResult getModRefInfo(const CallInst *C, const Location &Loc) {
390    return getModRefInfo(ImmutableCallSite(C), Loc);
391  }
392
393  /// getModRefInfo (for calls) - A convenience wrapper.
394  ModRefResult getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) {
395    return getModRefInfo(C, Location(P, Size));
396  }
397
398  /// getModRefInfo (for invokes) - Return information about whether
399  /// a particular invoke modifies or reads the specified memory location.
400  ModRefResult getModRefInfo(const InvokeInst *I,
401                             const Location &Loc) {
402    return getModRefInfo(ImmutableCallSite(I), Loc);
403  }
404
405  /// getModRefInfo (for invokes) - A convenience wrapper.
406  ModRefResult getModRefInfo(const InvokeInst *I,
407                             const Value *P, uint64_t Size) {
408    return getModRefInfo(I, Location(P, Size));
409  }
410
411  /// getModRefInfo (for loads) - Return information about whether
412  /// a particular load modifies or reads the specified memory location.
413  ModRefResult getModRefInfo(const LoadInst *L, const Location &Loc);
414
415  /// getModRefInfo (for loads) - A convenience wrapper.
416  ModRefResult getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) {
417    return getModRefInfo(L, Location(P, Size));
418  }
419
420  /// getModRefInfo (for stores) - Return information about whether
421  /// a particular store modifies or reads the specified memory location.
422  ModRefResult getModRefInfo(const StoreInst *S, const Location &Loc);
423
424  /// getModRefInfo (for stores) - A convenience wrapper.
425  ModRefResult getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size){
426    return getModRefInfo(S, Location(P, Size));
427  }
428
429  /// getModRefInfo (for fences) - Return information about whether
430  /// a particular store modifies or reads the specified memory location.
431  ModRefResult getModRefInfo(const FenceInst *S, const Location &Loc) {
432    // Conservatively correct.  (We could possibly be a bit smarter if
433    // Loc is a alloca that doesn't escape.)
434    return ModRef;
435  }
436
437  /// getModRefInfo (for fences) - A convenience wrapper.
438  ModRefResult getModRefInfo(const FenceInst *S, const Value *P, uint64_t Size){
439    return getModRefInfo(S, Location(P, Size));
440  }
441
442  /// getModRefInfo (for cmpxchges) - Return information about whether
443  /// a particular cmpxchg modifies or reads the specified memory location.
444  ModRefResult getModRefInfo(const AtomicCmpXchgInst *CX, const Location &Loc);
445
446  /// getModRefInfo (for cmpxchges) - A convenience wrapper.
447  ModRefResult getModRefInfo(const AtomicCmpXchgInst *CX,
448                             const Value *P, unsigned Size) {
449    return getModRefInfo(CX, Location(P, Size));
450  }
451
452  /// getModRefInfo (for atomicrmws) - Return information about whether
453  /// a particular atomicrmw modifies or reads the specified memory location.
454  ModRefResult getModRefInfo(const AtomicRMWInst *RMW, const Location &Loc);
455
456  /// getModRefInfo (for atomicrmws) - A convenience wrapper.
457  ModRefResult getModRefInfo(const AtomicRMWInst *RMW,
458                             const Value *P, unsigned Size) {
459    return getModRefInfo(RMW, Location(P, Size));
460  }
461
462  /// getModRefInfo (for va_args) - Return information about whether
463  /// a particular va_arg modifies or reads the specified memory location.
464  ModRefResult getModRefInfo(const VAArgInst* I, const Location &Loc);
465
466  /// getModRefInfo (for va_args) - A convenience wrapper.
467  ModRefResult getModRefInfo(const VAArgInst* I, const Value* P, uint64_t Size){
468    return getModRefInfo(I, Location(P, Size));
469  }
470
471  /// getModRefInfo - Return information about whether two call sites may refer
472  /// to the same set of memory locations.  See
473  ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
474  /// for details.
475  virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
476                                     ImmutableCallSite CS2);
477
478  /// callCapturesBefore - Return information about whether a particular call
479  /// site modifies or reads the specified memory location.
480  ModRefResult callCapturesBefore(const Instruction *I,
481                                  const AliasAnalysis::Location &MemLoc,
482                                  DominatorTree *DT);
483
484  /// callCapturesBefore - A convenience wrapper.
485  ModRefResult callCapturesBefore(const Instruction *I, const Value *P,
486                                  uint64_t Size, DominatorTree *DT) {
487    return callCapturesBefore(I, Location(P, Size), DT);
488  }
489
490  //===--------------------------------------------------------------------===//
491  /// Higher level methods for querying mod/ref information.
492  ///
493
494  /// canBasicBlockModify - Return true if it is possible for execution of the
495  /// specified basic block to modify the value pointed to by Ptr.
496  bool canBasicBlockModify(const BasicBlock &BB, const Location &Loc);
497
498  /// canBasicBlockModify - A convenience wrapper.
499  bool canBasicBlockModify(const BasicBlock &BB, const Value *P, uint64_t Size){
500    return canBasicBlockModify(BB, Location(P, Size));
501  }
502
503  /// canInstructionRangeModify - Return true if it is possible for the
504  /// execution of the specified instructions to modify the value pointed to by
505  /// Ptr.  The instructions to consider are all of the instructions in the
506  /// range of [I1,I2] INCLUSIVE.  I1 and I2 must be in the same basic block.
507  bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
508                                 const Location &Loc);
509
510  /// canInstructionRangeModify - A convenience wrapper.
511  bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
512                                 const Value *Ptr, uint64_t Size) {
513    return canInstructionRangeModify(I1, I2, Location(Ptr, Size));
514  }
515
516  //===--------------------------------------------------------------------===//
517  /// Methods that clients should call when they transform the program to allow
518  /// alias analyses to update their internal data structures.  Note that these
519  /// methods may be called on any instruction, regardless of whether or not
520  /// they have pointer-analysis implications.
521  ///
522
523  /// deleteValue - This method should be called whenever an LLVM Value is
524  /// deleted from the program, for example when an instruction is found to be
525  /// redundant and is eliminated.
526  ///
527  virtual void deleteValue(Value *V);
528
529  /// copyValue - This method should be used whenever a preexisting value in the
530  /// program is copied or cloned, introducing a new value.  Note that analysis
531  /// implementations should tolerate clients that use this method to introduce
532  /// the same value multiple times: if the analysis already knows about a
533  /// value, it should ignore the request.
534  ///
535  virtual void copyValue(Value *From, Value *To);
536
537  /// addEscapingUse - This method should be used whenever an escaping use is
538  /// added to a pointer value.  Analysis implementations may either return
539  /// conservative responses for that value in the future, or may recompute
540  /// some or all internal state to continue providing precise responses.
541  ///
542  /// Escaping uses are considered by anything _except_ the following:
543  ///  - GEPs or bitcasts of the pointer
544  ///  - Loads through the pointer
545  ///  - Stores through (but not of) the pointer
546  virtual void addEscapingUse(Use &U);
547
548  /// replaceWithNewValue - This method is the obvious combination of the two
549  /// above, and it provided as a helper to simplify client code.
550  ///
551  void replaceWithNewValue(Value *Old, Value *New) {
552    copyValue(Old, New);
553    deleteValue(Old);
554  }
555};
556
557// Specialize DenseMapInfo for Location.
558template<>
559struct DenseMapInfo<AliasAnalysis::Location> {
560  static inline AliasAnalysis::Location getEmptyKey() {
561    return
562      AliasAnalysis::Location(DenseMapInfo<const Value *>::getEmptyKey(),
563                              0, 0);
564  }
565  static inline AliasAnalysis::Location getTombstoneKey() {
566    return
567      AliasAnalysis::Location(DenseMapInfo<const Value *>::getTombstoneKey(),
568                              0, 0);
569  }
570  static unsigned getHashValue(const AliasAnalysis::Location &Val) {
571    return DenseMapInfo<const Value *>::getHashValue(Val.Ptr) ^
572           DenseMapInfo<uint64_t>::getHashValue(Val.Size) ^
573           DenseMapInfo<const MDNode *>::getHashValue(Val.TBAATag);
574  }
575  static bool isEqual(const AliasAnalysis::Location &LHS,
576                      const AliasAnalysis::Location &RHS) {
577    return LHS.Ptr == RHS.Ptr &&
578           LHS.Size == RHS.Size &&
579           LHS.TBAATag == RHS.TBAATag;
580  }
581};
582
583/// isNoAliasCall - Return true if this pointer is returned by a noalias
584/// function.
585bool isNoAliasCall(const Value *V);
586
587/// isNoAliasArgument - Return true if this is an argument with the noalias
588/// attribute.
589bool isNoAliasArgument(const Value *V);
590
591/// isIdentifiedObject - Return true if this pointer refers to a distinct and
592/// identifiable object.  This returns true for:
593///    Global Variables and Functions (but not Global Aliases)
594///    Allocas
595///    ByVal and NoAlias Arguments
596///    NoAlias returns (e.g. calls to malloc)
597///
598bool isIdentifiedObject(const Value *V);
599
600} // End llvm namespace
601
602#endif
603