AliasAnalysis.h revision c413330c99a573ef3ffe80a46400b1d3eca2398d
1//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the generic AliasAnalysis interface, which is used as the
11// common interface used by all clients of alias analysis information, and
12// implemented by all alias analysis implementations.  Mod/Ref information is
13// also captured by this interface.
14//
15// Implementations of this interface must implement the various virtual methods,
16// which automatically provides functionality for the entire suite of client
17// APIs.
18//
19// This API identifies memory regions with the Location class. The pointer
20// component specifies the base memory address of the region. The Size specifies
21// the maximum size (in address units) of the memory region, or UnknownSize if
22// the size is not known. The TBAA tag identifies the "type" of the memory
23// reference; see the TypeBasedAliasAnalysis class for details.
24//
25// Some non-obvious details include:
26//  - Pointers that point to two completely different objects in memory never
27//    alias, regardless of the value of the Size component.
28//  - NoAlias doesn't imply inequal pointers. The most obvious example of this
29//    is two pointers to constant memory. Even if they are equal, constant
30//    memory is never stored to, so there will never be any dependencies.
31//    In this and other situations, the pointers may be both NoAlias and
32//    MustAlias at the same time. The current API can only return one result,
33//    though this is rarely a problem in practice.
34//
35//===----------------------------------------------------------------------===//
36
37#ifndef LLVM_ANALYSIS_ALIAS_ANALYSIS_H
38#define LLVM_ANALYSIS_ALIAS_ANALYSIS_H
39
40#include "llvm/Support/CallSite.h"
41#include <vector>
42
43namespace llvm {
44
45class LoadInst;
46class StoreInst;
47class VAArgInst;
48class TargetData;
49class Pass;
50class AnalysisUsage;
51class MemTransferInst;
52class MemIntrinsic;
53
54class AliasAnalysis {
55protected:
56  const TargetData *TD;
57
58private:
59  AliasAnalysis *AA;       // Previous Alias Analysis to chain to.
60
61protected:
62  /// InitializeAliasAnalysis - Subclasses must call this method to initialize
63  /// the AliasAnalysis interface before any other methods are called.  This is
64  /// typically called by the run* methods of these subclasses.  This may be
65  /// called multiple times.
66  ///
67  void InitializeAliasAnalysis(Pass *P);
68
69  /// getAnalysisUsage - All alias analysis implementations should invoke this
70  /// directly (using AliasAnalysis::getAnalysisUsage(AU)).
71  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
72
73public:
74  static char ID; // Class identification, replacement for typeinfo
75  AliasAnalysis() : TD(0), AA(0) {}
76  virtual ~AliasAnalysis();  // We want to be subclassed
77
78  /// UnknownSize - This is a special value which can be used with the
79  /// size arguments in alias queries to indicate that the caller does not
80  /// know the sizes of the potential memory references.
81  static uint64_t const UnknownSize = ~UINT64_C(0);
82
83  /// getTargetData - Return a pointer to the current TargetData object, or
84  /// null if no TargetData object is available.
85  ///
86  const TargetData *getTargetData() const { return TD; }
87
88  /// getTypeStoreSize - Return the TargetData store size for the given type,
89  /// if known, or a conservative value otherwise.
90  ///
91  uint64_t getTypeStoreSize(const Type *Ty);
92
93  //===--------------------------------------------------------------------===//
94  /// Alias Queries...
95  ///
96
97  /// Location - A description of a memory location.
98  struct Location {
99    /// Ptr - The address of the start of the location.
100    const Value *Ptr;
101    /// Size - The maximum size of the location, in address-units, or
102    /// UnknownSize if the size is not known.  Note that an unknown size does
103    /// not mean the pointer aliases the entire virtual address space, because
104    /// there are restrictions on stepping out of one object and into another.
105    /// See http://llvm.org/docs/LangRef.html#pointeraliasing
106    uint64_t Size;
107    /// TBAATag - The metadata node which describes the TBAA type of
108    /// the location, or null if there is no known unique tag.
109    const MDNode *TBAATag;
110
111    explicit Location(const Value *P = 0, uint64_t S = UnknownSize,
112                      const MDNode *N = 0)
113      : Ptr(P), Size(S), TBAATag(N) {}
114
115    Location getWithNewPtr(const Value *NewPtr) const {
116      Location Copy(*this);
117      Copy.Ptr = NewPtr;
118      return Copy;
119    }
120
121    Location getWithNewSize(uint64_t NewSize) const {
122      Location Copy(*this);
123      Copy.Size = NewSize;
124      return Copy;
125    }
126
127    Location getWithoutTBAATag() const {
128      Location Copy(*this);
129      Copy.TBAATag = 0;
130      return Copy;
131    }
132  };
133
134  /// getLocation - Fill in Loc with information about the memory reference by
135  /// the given instruction.
136  Location getLocation(const LoadInst *LI);
137  Location getLocation(const StoreInst *SI);
138  Location getLocation(const VAArgInst *VI);
139  static Location getLocationForSource(const MemTransferInst *MTI);
140  static Location getLocationForDest(const MemIntrinsic *MI);
141
142  /// Alias analysis result - Either we know for sure that it does not alias, we
143  /// know for sure it must alias, or we don't know anything: The two pointers
144  /// _might_ alias.  This enum is designed so you can do things like:
145  ///     if (AA.alias(P1, P2)) { ... }
146  /// to check to see if two pointers might alias.
147  ///
148  /// See docs/AliasAnalysis.html for more information on the specific meanings
149  /// of these values.
150  ///
151  enum AliasResult {
152    NoAlias = 0,        ///< No dependencies.
153    MayAlias = 1,       ///< Anything goes.
154    MustAlias = 2       ///< Pointers are equal.
155  };
156
157  /// alias - The main low level interface to the alias analysis implementation.
158  /// Returns an AliasResult indicating whether the two pointers are aliased to
159  /// each other.  This is the interface that must be implemented by specific
160  /// alias analysis implementations.
161  virtual AliasResult alias(const Location &LocA, const Location &LocB);
162
163  /// alias - A convenience wrapper.
164  AliasResult alias(const Value *V1, uint64_t V1Size,
165                    const Value *V2, uint64_t V2Size) {
166    return alias(Location(V1, V1Size), Location(V2, V2Size));
167  }
168
169  /// alias - A convenience wrapper.
170  AliasResult alias(const Value *V1, const Value *V2) {
171    return alias(V1, UnknownSize, V2, UnknownSize);
172  }
173
174  /// isNoAlias - A trivial helper function to check to see if the specified
175  /// pointers are no-alias.
176  bool isNoAlias(const Location &LocA, const Location &LocB) {
177    return alias(LocA, LocB) == NoAlias;
178  }
179
180  /// isNoAlias - A convenience wrapper.
181  bool isNoAlias(const Value *V1, uint64_t V1Size,
182                 const Value *V2, uint64_t V2Size) {
183    return isNoAlias(Location(V1, V1Size), Location(V2, V2Size));
184  }
185
186  /// pointsToConstantMemory - If the specified memory location is
187  /// known to be constant, return true. If OrLocal is true and the
188  /// specified memory location is known to be "local" (derived from
189  /// an alloca), return true. Otherwise return false.
190  virtual bool pointsToConstantMemory(const Location &Loc,
191                                      bool OrLocal = false);
192
193  /// pointsToConstantMemory - A convenient wrapper.
194  bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
195    return pointsToConstantMemory(Location(P), OrLocal);
196  }
197
198  //===--------------------------------------------------------------------===//
199  /// Simple mod/ref information...
200  ///
201
202  /// ModRefResult - Represent the result of a mod/ref query.  Mod and Ref are
203  /// bits which may be or'd together.
204  ///
205  enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
206
207  /// These values define additional bits used to define the
208  /// ModRefBehavior values.
209  enum { Nowhere = 0, ArgumentPointees = 4, Anywhere = 8 | ArgumentPointees };
210
211  /// ModRefBehavior - Summary of how a function affects memory in the program.
212  /// Loads from constant globals are not considered memory accesses for this
213  /// interface.  Also, functions may freely modify stack space local to their
214  /// invocation without having to report it through these interfaces.
215  enum ModRefBehavior {
216    /// DoesNotAccessMemory - This function does not perform any non-local loads
217    /// or stores to memory.
218    ///
219    /// This property corresponds to the GCC 'const' attribute.
220    /// This property corresponds to the LLVM IR 'readnone' attribute.
221    /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
222    DoesNotAccessMemory = Nowhere | NoModRef,
223
224    /// OnlyReadsArgumentPointees - The only memory references in this function
225    /// (if it has any) are non-volatile loads from objects pointed to by its
226    /// pointer-typed arguments, with arbitrary offsets.
227    ///
228    /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
229    OnlyReadsArgumentPointees = ArgumentPointees | Ref,
230
231    /// OnlyAccessesArgumentPointees - The only memory references in this
232    /// function (if it has any) are non-volatile loads and stores from objects
233    /// pointed to by its pointer-typed arguments, with arbitrary offsets.
234    ///
235    /// This property corresponds to the IntrReadWriteArgMem LLVM intrinsic flag.
236    OnlyAccessesArgumentPointees = ArgumentPointees | ModRef,
237
238    /// OnlyReadsMemory - This function does not perform any non-local stores or
239    /// volatile loads, but may read from any memory location.
240    ///
241    /// This property corresponds to the GCC 'pure' attribute.
242    /// This property corresponds to the LLVM IR 'readonly' attribute.
243    /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
244    OnlyReadsMemory = Anywhere | Ref,
245
246    /// UnknownModRefBehavior - This indicates that the function could not be
247    /// classified into one of the behaviors above.
248    UnknownModRefBehavior = Anywhere | ModRef
249  };
250
251  /// getModRefBehavior - Return the behavior when calling the given call site.
252  virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
253
254  /// getModRefBehavior - Return the behavior when calling the given function.
255  /// For use when the call site is not known.
256  virtual ModRefBehavior getModRefBehavior(const Function *F);
257
258  /// doesNotAccessMemory - If the specified call is known to never read or
259  /// write memory, return true.  If the call only reads from known-constant
260  /// memory, it is also legal to return true.  Calls that unwind the stack
261  /// are legal for this predicate.
262  ///
263  /// Many optimizations (such as CSE and LICM) can be performed on such calls
264  /// without worrying about aliasing properties, and many calls have this
265  /// property (e.g. calls to 'sin' and 'cos').
266  ///
267  /// This property corresponds to the GCC 'const' attribute.
268  ///
269  bool doesNotAccessMemory(ImmutableCallSite CS) {
270    return getModRefBehavior(CS) == DoesNotAccessMemory;
271  }
272
273  /// doesNotAccessMemory - If the specified function is known to never read or
274  /// write memory, return true.  For use when the call site is not known.
275  ///
276  bool doesNotAccessMemory(const Function *F) {
277    return getModRefBehavior(F) == DoesNotAccessMemory;
278  }
279
280  /// onlyReadsMemory - If the specified call is known to only read from
281  /// non-volatile memory (or not access memory at all), return true.  Calls
282  /// that unwind the stack are legal for this predicate.
283  ///
284  /// This property allows many common optimizations to be performed in the
285  /// absence of interfering store instructions, such as CSE of strlen calls.
286  ///
287  /// This property corresponds to the GCC 'pure' attribute.
288  ///
289  bool onlyReadsMemory(ImmutableCallSite CS) {
290    return onlyReadsMemory(getModRefBehavior(CS));
291  }
292
293  /// onlyReadsMemory - If the specified function is known to only read from
294  /// non-volatile memory (or not access memory at all), return true.  For use
295  /// when the call site is not known.
296  ///
297  bool onlyReadsMemory(const Function *F) {
298    return onlyReadsMemory(getModRefBehavior(F));
299  }
300
301  /// onlyReadsMemory - Return true if functions with the specified behavior are
302  /// known to only read from non-volatile memory (or not access memory at all).
303  ///
304  static bool onlyReadsMemory(ModRefBehavior MRB) {
305    return !(MRB & Mod);
306  }
307
308  /// onlyAccessesArgPointees - Return true if functions with the specified
309  /// behavior are known to read and write at most from objects pointed to by
310  /// their pointer-typed arguments (with arbitrary offsets).
311  ///
312  static bool onlyAccessesArgPointees(ModRefBehavior MRB) {
313    return !(MRB & Anywhere & ~ArgumentPointees);
314  }
315
316  /// doesAccessArgPointees - Return true if functions with the specified
317  /// behavior are known to potentially read or write  from objects pointed
318  /// to be their pointer-typed arguments (with arbitrary offsets).
319  ///
320  static bool doesAccessArgPointees(ModRefBehavior MRB) {
321    return (MRB & ModRef) && (MRB & ArgumentPointees);
322  }
323
324  /// getModRefInfo - Return information about whether or not an instruction may
325  /// read or write the specified memory location.  An instruction
326  /// that doesn't read or write memory may be trivially LICM'd for example.
327  ModRefResult getModRefInfo(const Instruction *I,
328                             const Location &Loc) {
329    switch (I->getOpcode()) {
330    case Instruction::VAArg:  return getModRefInfo((const VAArgInst*)I, Loc);
331    case Instruction::Load:   return getModRefInfo((const LoadInst*)I,  Loc);
332    case Instruction::Store:  return getModRefInfo((const StoreInst*)I, Loc);
333    case Instruction::Call:   return getModRefInfo((const CallInst*)I,  Loc);
334    case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc);
335    default:                  return NoModRef;
336    }
337  }
338
339  /// getModRefInfo - A convenience wrapper.
340  ModRefResult getModRefInfo(const Instruction *I,
341                             const Value *P, uint64_t Size) {
342    return getModRefInfo(I, Location(P, Size));
343  }
344
345  /// getModRefInfo (for call sites) - Return whether information about whether
346  /// a particular call site modifies or reads the specified memory location.
347  virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
348                                     const Location &Loc);
349
350  /// getModRefInfo (for call sites) - A convenience wrapper.
351  ModRefResult getModRefInfo(ImmutableCallSite CS,
352                             const Value *P, uint64_t Size) {
353    return getModRefInfo(CS, Location(P, Size));
354  }
355
356  /// getModRefInfo (for calls) - Return whether information about whether
357  /// a particular call modifies or reads the specified memory location.
358  ModRefResult getModRefInfo(const CallInst *C, const Location &Loc) {
359    return getModRefInfo(ImmutableCallSite(C), Loc);
360  }
361
362  /// getModRefInfo (for calls) - A convenience wrapper.
363  ModRefResult getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) {
364    return getModRefInfo(C, Location(P, Size));
365  }
366
367  /// getModRefInfo (for invokes) - Return whether information about whether
368  /// a particular invoke modifies or reads the specified memory location.
369  ModRefResult getModRefInfo(const InvokeInst *I,
370                             const Location &Loc) {
371    return getModRefInfo(ImmutableCallSite(I), Loc);
372  }
373
374  /// getModRefInfo (for invokes) - A convenience wrapper.
375  ModRefResult getModRefInfo(const InvokeInst *I,
376                             const Value *P, uint64_t Size) {
377    return getModRefInfo(I, Location(P, Size));
378  }
379
380  /// getModRefInfo (for loads) - Return whether information about whether
381  /// a particular load modifies or reads the specified memory location.
382  ModRefResult getModRefInfo(const LoadInst *L, const Location &Loc);
383
384  /// getModRefInfo (for loads) - A convenience wrapper.
385  ModRefResult getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) {
386    return getModRefInfo(L, Location(P, Size));
387  }
388
389  /// getModRefInfo (for stores) - Return whether information about whether
390  /// a particular store modifies or reads the specified memory location.
391  ModRefResult getModRefInfo(const StoreInst *S, const Location &Loc);
392
393  /// getModRefInfo (for stores) - A convenience wrapper.
394  ModRefResult getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size) {
395    return getModRefInfo(S, Location(P, Size));
396  }
397
398  /// getModRefInfo (for va_args) - Return whether information about whether
399  /// a particular va_arg modifies or reads the specified memory location.
400  ModRefResult getModRefInfo(const VAArgInst* I, const Location &Loc);
401
402  /// getModRefInfo (for va_args) - A convenience wrapper.
403  ModRefResult getModRefInfo(const VAArgInst* I, const Value* P, uint64_t Size) {
404    return getModRefInfo(I, Location(P, Size));
405  }
406
407  /// getModRefInfo - Return information about whether two call sites may refer
408  /// to the same set of memory locations.  See
409  ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
410  /// for details.
411  virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
412                                     ImmutableCallSite CS2);
413
414  //===--------------------------------------------------------------------===//
415  /// Higher level methods for querying mod/ref information.
416  ///
417
418  /// canBasicBlockModify - Return true if it is possible for execution of the
419  /// specified basic block to modify the value pointed to by Ptr.
420  bool canBasicBlockModify(const BasicBlock &BB, const Location &Loc);
421
422  /// canBasicBlockModify - A convenience wrapper.
423  bool canBasicBlockModify(const BasicBlock &BB, const Value *P, uint64_t Size){
424    return canBasicBlockModify(BB, Location(P, Size));
425  }
426
427  /// canInstructionRangeModify - Return true if it is possible for the
428  /// execution of the specified instructions to modify the value pointed to by
429  /// Ptr.  The instructions to consider are all of the instructions in the
430  /// range of [I1,I2] INCLUSIVE.  I1 and I2 must be in the same basic block.
431  bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
432                                 const Location &Loc);
433
434  /// canInstructionRangeModify - A convenience wrapper.
435  bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
436                                 const Value *Ptr, uint64_t Size) {
437    return canInstructionRangeModify(I1, I2, Location(Ptr, Size));
438  }
439
440  //===--------------------------------------------------------------------===//
441  /// Methods that clients should call when they transform the program to allow
442  /// alias analyses to update their internal data structures.  Note that these
443  /// methods may be called on any instruction, regardless of whether or not
444  /// they have pointer-analysis implications.
445  ///
446
447  /// deleteValue - This method should be called whenever an LLVM Value is
448  /// deleted from the program, for example when an instruction is found to be
449  /// redundant and is eliminated.
450  ///
451  virtual void deleteValue(Value *V);
452
453  /// copyValue - This method should be used whenever a preexisting value in the
454  /// program is copied or cloned, introducing a new value.  Note that analysis
455  /// implementations should tolerate clients that use this method to introduce
456  /// the same value multiple times: if the analysis already knows about a
457  /// value, it should ignore the request.
458  ///
459  virtual void copyValue(Value *From, Value *To);
460
461  /// replaceWithNewValue - This method is the obvious combination of the two
462  /// above, and it provided as a helper to simplify client code.
463  ///
464  void replaceWithNewValue(Value *Old, Value *New) {
465    copyValue(Old, New);
466    deleteValue(Old);
467  }
468};
469
470/// isNoAliasCall - Return true if this pointer is returned by a noalias
471/// function.
472bool isNoAliasCall(const Value *V);
473
474/// isIdentifiedObject - Return true if this pointer refers to a distinct and
475/// identifiable object.  This returns true for:
476///    Global Variables and Functions (but not Global Aliases)
477///    Allocas and Mallocs
478///    ByVal and NoAlias Arguments
479///    NoAlias returns
480///
481bool isIdentifiedObject(const Value *V);
482
483} // End llvm namespace
484
485#endif
486