AliasAnalysis.h revision c8ddbdabb697b20b948c1a56af6062f26691532a
1//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the generic AliasAnalysis interface, which is used as the
11// common interface used by all clients of alias analysis information, and
12// implemented by all alias analysis implementations.  Mod/Ref information is
13// also captured by this interface.
14//
15// Implementations of this interface must implement the various virtual methods,
16// which automatically provides functionality for the entire suite of client
17// APIs.
18//
19// This API represents memory as a (Pointer, Size) pair.  The Pointer component
20// specifies the base memory address of the region, the Size specifies how large
21// of an area is being queried, or UnknownSize if the size is not known.
22// Pointers that point to two completely different objects in memory never
23// alias, regardless of the value of the Size component.
24//
25//===----------------------------------------------------------------------===//
26
27#ifndef LLVM_ANALYSIS_ALIAS_ANALYSIS_H
28#define LLVM_ANALYSIS_ALIAS_ANALYSIS_H
29
30#include "llvm/Support/CallSite.h"
31#include "llvm/System/IncludeFile.h"
32#include <vector>
33
34namespace llvm {
35
36class LoadInst;
37class StoreInst;
38class VAArgInst;
39class TargetData;
40class Pass;
41class AnalysisUsage;
42
43class AliasAnalysis {
44protected:
45  const TargetData *TD;
46
47private:
48  AliasAnalysis *AA;       // Previous Alias Analysis to chain to.
49
50protected:
51  /// InitializeAliasAnalysis - Subclasses must call this method to initialize
52  /// the AliasAnalysis interface before any other methods are called.  This is
53  /// typically called by the run* methods of these subclasses.  This may be
54  /// called multiple times.
55  ///
56  void InitializeAliasAnalysis(Pass *P);
57
58  /// getAnalysisUsage - All alias analysis implementations should invoke this
59  /// directly (using AliasAnalysis::getAnalysisUsage(AU)).
60  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
61
62public:
63  static char ID; // Class identification, replacement for typeinfo
64  AliasAnalysis() : TD(0), AA(0) {}
65  virtual ~AliasAnalysis();  // We want to be subclassed
66
67  /// UnknownSize - This is a special value which can be used with the
68  /// size arguments in alias queries to indicate that the caller does not
69  /// know the sizes of the potential memory references.
70  static unsigned const UnknownSize = ~0u;
71
72  /// getTargetData - Return a pointer to the current TargetData object, or
73  /// null if no TargetData object is available.
74  ///
75  const TargetData *getTargetData() const { return TD; }
76
77  /// getTypeStoreSize - Return the TargetData store size for the given type,
78  /// if known, or a conservative value otherwise.
79  ///
80  unsigned getTypeStoreSize(const Type *Ty);
81
82  //===--------------------------------------------------------------------===//
83  /// Alias Queries...
84  ///
85
86  /// Alias analysis result - Either we know for sure that it does not alias, we
87  /// know for sure it must alias, or we don't know anything: The two pointers
88  /// _might_ alias.  This enum is designed so you can do things like:
89  ///     if (AA.alias(P1, P2)) { ... }
90  /// to check to see if two pointers might alias.
91  ///
92  /// See docs/AliasAnalysis.html for more information on the specific meanings
93  /// of these values.
94  ///
95  enum AliasResult { NoAlias = 0, MayAlias = 1, MustAlias = 2 };
96
97  /// alias - The main low level interface to the alias analysis implementation.
98  /// Returns a Result indicating whether the two pointers are aliased to each
99  /// other.  This is the interface that must be implemented by specific alias
100  /// analysis implementations.
101  ///
102  virtual AliasResult alias(const Value *V1, unsigned V1Size,
103                            const Value *V2, unsigned V2Size);
104
105  /// alias - A convenience wrapper for the case where the sizes are unknown.
106  AliasResult alias(const Value *V1, const Value *V2) {
107    return alias(V1, UnknownSize, V2, UnknownSize);
108  }
109
110  /// isNoAlias - A trivial helper function to check to see if the specified
111  /// pointers are no-alias.
112  bool isNoAlias(const Value *V1, unsigned V1Size,
113                 const Value *V2, unsigned V2Size) {
114    return alias(V1, V1Size, V2, V2Size) == NoAlias;
115  }
116
117  /// pointsToConstantMemory - If the specified pointer is known to point into
118  /// constant global memory, return true.  This allows disambiguation of store
119  /// instructions from constant pointers.
120  ///
121  virtual bool pointsToConstantMemory(const Value *P);
122
123  //===--------------------------------------------------------------------===//
124  /// Simple mod/ref information...
125  ///
126
127  /// ModRefResult - Represent the result of a mod/ref query.  Mod and Ref are
128  /// bits which may be or'd together.
129  ///
130  enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
131
132
133  /// ModRefBehavior - Summary of how a function affects memory in the program.
134  /// Loads from constant globals are not considered memory accesses for this
135  /// interface.  Also, functions may freely modify stack space local to their
136  /// invocation without having to report it through these interfaces.
137  enum ModRefBehavior {
138    // DoesNotAccessMemory - This function does not perform any non-local loads
139    // or stores to memory.
140    //
141    // This property corresponds to the GCC 'const' attribute.
142    DoesNotAccessMemory,
143
144    // AccessesArguments - This function accesses function arguments in well
145    // known (possibly volatile) ways, but does not access any other memory.
146    AccessesArguments,
147
148    // AccessesArgumentsAndGlobals - This function has accesses function
149    // arguments and global variables well known (possibly volatile) ways, but
150    // does not access any other memory.
151    AccessesArgumentsAndGlobals,
152
153    // OnlyReadsMemory - This function does not perform any non-local stores or
154    // volatile loads, but may read from any memory location.
155    //
156    // This property corresponds to the GCC 'pure' attribute.
157    OnlyReadsMemory,
158
159    // UnknownModRefBehavior - This indicates that the function could not be
160    // classified into one of the behaviors above.
161    UnknownModRefBehavior
162  };
163
164  /// getModRefBehavior - Return the behavior when calling the given call site.
165  virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
166
167  /// getModRefBehavior - Return the behavior when calling the given function.
168  /// For use when the call site is not known.
169  virtual ModRefBehavior getModRefBehavior(const Function *F);
170
171  /// getIntrinsicModRefBehavior - Return the modref behavior of the intrinsic
172  /// with the given id.  Most clients won't need this, because the regular
173  /// getModRefBehavior incorporates this information.
174  static ModRefBehavior getIntrinsicModRefBehavior(unsigned iid);
175
176  /// doesNotAccessMemory - If the specified call is known to never read or
177  /// write memory, return true.  If the call only reads from known-constant
178  /// memory, it is also legal to return true.  Calls that unwind the stack
179  /// are legal for this predicate.
180  ///
181  /// Many optimizations (such as CSE and LICM) can be performed on such calls
182  /// without worrying about aliasing properties, and many calls have this
183  /// property (e.g. calls to 'sin' and 'cos').
184  ///
185  /// This property corresponds to the GCC 'const' attribute.
186  ///
187  bool doesNotAccessMemory(ImmutableCallSite CS) {
188    return getModRefBehavior(CS) == DoesNotAccessMemory;
189  }
190
191  /// doesNotAccessMemory - If the specified function is known to never read or
192  /// write memory, return true.  For use when the call site is not known.
193  ///
194  bool doesNotAccessMemory(const Function *F) {
195    return getModRefBehavior(F) == DoesNotAccessMemory;
196  }
197
198  /// onlyReadsMemory - If the specified call is known to only read from
199  /// non-volatile memory (or not access memory at all), return true.  Calls
200  /// that unwind the stack are legal for this predicate.
201  ///
202  /// This property allows many common optimizations to be performed in the
203  /// absence of interfering store instructions, such as CSE of strlen calls.
204  ///
205  /// This property corresponds to the GCC 'pure' attribute.
206  ///
207  bool onlyReadsMemory(ImmutableCallSite CS) {
208    ModRefBehavior MRB = getModRefBehavior(CS);
209    return MRB == DoesNotAccessMemory || MRB == OnlyReadsMemory;
210  }
211
212  /// onlyReadsMemory - If the specified function is known to only read from
213  /// non-volatile memory (or not access memory at all), return true.  For use
214  /// when the call site is not known.
215  ///
216  bool onlyReadsMemory(const Function *F) {
217    ModRefBehavior MRB = getModRefBehavior(F);
218    return MRB == DoesNotAccessMemory || MRB == OnlyReadsMemory;
219  }
220
221
222  /// getModRefInfo - Return information about whether or not an instruction may
223  /// read or write memory specified by the pointer operand.  An instruction
224  /// that doesn't read or write memory may be trivially LICM'd for example.
225  ModRefResult getModRefInfo(const Instruction *I,
226                             const Value *P, unsigned Size) {
227    switch (I->getOpcode()) {
228    case Instruction::VAArg:  return getModRefInfo((const VAArgInst*)I, P,Size);
229    case Instruction::Load:   return getModRefInfo((const LoadInst*)I, P, Size);
230    case Instruction::Store:  return getModRefInfo((const StoreInst*)I, P,Size);
231    case Instruction::Call:   return getModRefInfo((const CallInst*)I, P, Size);
232    case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,P,Size);
233    default:                  return NoModRef;
234    }
235  }
236
237  /// getModRefInfo (for call sites) - Return whether information about whether
238  /// a particular call site modifies or reads the memory specified by the
239  /// pointer.
240  virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
241                                     const Value *P, unsigned Size);
242
243  /// getModRefInfo (for calls) - Return whether information about whether
244  /// a particular call modifies or reads the memory specified by the
245  /// pointer.
246  ModRefResult getModRefInfo(const CallInst *C, const Value *P, unsigned Size) {
247    return getModRefInfo(ImmutableCallSite(C), P, Size);
248  }
249
250  /// getModRefInfo (for invokes) - Return whether information about whether
251  /// a particular invoke modifies or reads the memory specified by the
252  /// pointer.
253  ModRefResult getModRefInfo(const InvokeInst *I,
254                             const Value *P, unsigned Size) {
255    return getModRefInfo(ImmutableCallSite(I), P, Size);
256  }
257
258  /// getModRefInfo (for loads) - Return whether information about whether
259  /// a particular load modifies or reads the memory specified by the
260  /// pointer.
261  ModRefResult getModRefInfo(const LoadInst *L, const Value *P, unsigned Size);
262
263  /// getModRefInfo (for stores) - Return whether information about whether
264  /// a particular store modifies or reads the memory specified by the
265  /// pointer.
266  ModRefResult getModRefInfo(const StoreInst *S, const Value *P, unsigned Size);
267
268  /// getModRefInfo (for va_args) - Return whether information about whether
269  /// a particular va_arg modifies or reads the memory specified by the
270  /// pointer.
271  ModRefResult getModRefInfo(const VAArgInst* I, const Value* P, unsigned Size);
272
273  /// getModRefInfo - Return information about whether two call sites may refer
274  /// to the same set of memory locations.  See
275  ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
276  /// for details.
277  virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
278                                     ImmutableCallSite CS2);
279
280  //===--------------------------------------------------------------------===//
281  /// Dependence queries.
282  ///
283
284  /// DependenceResult - These are the return values for getDependence queries.
285  /// They are defined in terms of "memory", but they are also used to model
286  /// other side effects, such as I/O and volatility.
287  enum DependenceResult {
288    /// ReadThenRead - The instructions are ReadThenReadSome and the second
289    /// instruction reads from exactly the same memory read from by the first.
290    ReadThenRead,
291
292    /// ReadThenReadSome - The instructions are Independent, both are read-only,
293    /// and the second instruction reads from a subset of the memory read from
294    /// by the first.
295    ReadThenReadSome,
296
297    /// Independent - Neither instruction reads from or writes to memory written
298    /// to by the other.  All enum values lower than this one are special cases
299    /// of Indepenent.
300    Independent,
301
302    /// WriteThenRead - The instructions are WriteThenReadSome and the second
303    /// instruction reads from exactly the same memory written by the first.
304    WriteThenRead,
305
306    /// WriteThenReadSome - The first instruction is write-only, the second
307    /// instruction is read-only, and the second only reads from memory
308    /// written to by the first.
309    WriteThenReadSome,
310
311    /// ReadThenWrite - The first instruction is read-only, the second
312    /// instruction is write-only, and the second wrotes to exactly the
313    /// same memory read from by the first.
314    ReadThenWrite,
315
316    /// WriteThenWrite - The instructions are WriteThenWriteSome, and the
317    /// second instruction writes to exactly the same memory written to by
318    /// the first.
319    WriteThenWrite,
320
321    /// WriteSomeThenWrite - Both instructions are write-only, and the second
322    /// instruction writes to a superset of the memory written to by the first.
323    WriteSomeThenWrite,
324
325    /// Unknown - The relationship between the instructions cannot be
326    /// determined or does not fit into any of the cases defined here.
327    Unknown
328  };
329
330  /// DependenceQueryFlags - Flags for refining dependence queries.
331  enum DependenceQueryFlags {
332    Default      = 0,
333    IgnoreLoads  = 1,
334    IgnoreStores = 2
335  };
336
337  /// getDependence - Determine the dependence relationship between the
338  /// instructions. This does not include "register" dependencies; it just
339  /// considers memory references and other side effects.
340  /// WARNING: This is an experimental interface.
341  DependenceResult getDependence(const Instruction *First,
342                                 const Instruction *Second) {
343    return getDependence(First, 0, Default, Second, 0, Default);
344  }
345
346  /// getDependence - Determine the dependence relationship between the
347  /// instructions. This does not include "register" dependencies; it just
348  /// considers memory references and other side effects.  This overload
349  /// has additional parameters to allow phi-translated addresses to be
350  /// specified, and additional flags to refine the query.
351  /// WARNING: This is an experimental interface.
352  virtual DependenceResult getDependence(const Instruction *First,
353                                         const Value *FirstPHITranslatedAddr,
354                                         DependenceQueryFlags FirstFlags,
355                                         const Instruction *Second,
356                                         const Value *SecondPHITranslatedAddr,
357                                         DependenceQueryFlags SecondFlags);
358
359  //===--------------------------------------------------------------------===//
360  /// Higher level methods for querying mod/ref information.
361  ///
362
363  /// canBasicBlockModify - Return true if it is possible for execution of the
364  /// specified basic block to modify the value pointed to by Ptr.
365  ///
366  bool canBasicBlockModify(const BasicBlock &BB, const Value *P, unsigned Size);
367
368  /// canInstructionRangeModify - Return true if it is possible for the
369  /// execution of the specified instructions to modify the value pointed to by
370  /// Ptr.  The instructions to consider are all of the instructions in the
371  /// range of [I1,I2] INCLUSIVE.  I1 and I2 must be in the same basic block.
372  ///
373  bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
374                                 const Value *Ptr, unsigned Size);
375
376  //===--------------------------------------------------------------------===//
377  /// Methods that clients should call when they transform the program to allow
378  /// alias analyses to update their internal data structures.  Note that these
379  /// methods may be called on any instruction, regardless of whether or not
380  /// they have pointer-analysis implications.
381  ///
382
383  /// deleteValue - This method should be called whenever an LLVM Value is
384  /// deleted from the program, for example when an instruction is found to be
385  /// redundant and is eliminated.
386  ///
387  virtual void deleteValue(Value *V);
388
389  /// copyValue - This method should be used whenever a preexisting value in the
390  /// program is copied or cloned, introducing a new value.  Note that analysis
391  /// implementations should tolerate clients that use this method to introduce
392  /// the same value multiple times: if the analysis already knows about a
393  /// value, it should ignore the request.
394  ///
395  virtual void copyValue(Value *From, Value *To);
396
397  /// replaceWithNewValue - This method is the obvious combination of the two
398  /// above, and it provided as a helper to simplify client code.
399  ///
400  void replaceWithNewValue(Value *Old, Value *New) {
401    copyValue(Old, New);
402    deleteValue(Old);
403  }
404
405protected:
406  /// getDependenceViaModRefInfo - Helper function for implementing getDependence
407  /// in implementations which already have getModRefInfo implementations.
408  DependenceResult getDependenceViaModRefInfo(const Instruction *First,
409                                              const Value *FirstPHITranslatedAddr,
410                                              DependenceQueryFlags FirstFlags,
411                                              const Instruction *Second,
412                                              const Value *SecondPHITranslatedAddr,
413                                              DependenceQueryFlags SecondFlags);
414
415};
416
417/// isNoAliasCall - Return true if this pointer is returned by a noalias
418/// function.
419bool isNoAliasCall(const Value *V);
420
421/// isIdentifiedObject - Return true if this pointer refers to a distinct and
422/// identifiable object.  This returns true for:
423///    Global Variables and Functions (but not Global Aliases)
424///    Allocas and Mallocs
425///    ByVal and NoAlias Arguments
426///    NoAlias returns
427///
428bool isIdentifiedObject(const Value *V);
429
430} // End llvm namespace
431
432// Because of the way .a files work, we must force the BasicAA implementation to
433// be pulled in if the AliasAnalysis header is included.  Otherwise we run
434// the risk of AliasAnalysis being used, but the default implementation not
435// being linked into the tool that uses it.
436FORCE_DEFINING_FILE_TO_BE_LINKED(AliasAnalysis)
437FORCE_DEFINING_FILE_TO_BE_LINKED(BasicAliasAnalysis)
438
439#endif
440