AliasAnalysis.h revision cb74993bdc37681ddbb80fa361575107afae1350
1//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the generic AliasAnalysis interface, which is used as the
11// common interface used by all clients of alias analysis information, and
12// implemented by all alias analysis implementations.  Mod/Ref information is
13// also captured by this interface.
14//
15// Implementations of this interface must implement the various virtual methods,
16// which automatically provides functionality for the entire suite of client
17// APIs.
18//
19// This API represents memory as a (Pointer, Size) pair.  The Pointer component
20// specifies the base memory address of the region, the Size specifies how large
21// of an area is being queried, or UnknownSize if the size is not known.
22// Pointers that point to two completely different objects in memory never
23// alias, regardless of the value of the Size component.
24//
25//===----------------------------------------------------------------------===//
26
27#ifndef LLVM_ANALYSIS_ALIAS_ANALYSIS_H
28#define LLVM_ANALYSIS_ALIAS_ANALYSIS_H
29
30#include "llvm/Support/CallSite.h"
31#include "llvm/System/IncludeFile.h"
32#include <vector>
33
34namespace llvm {
35
36class LoadInst;
37class StoreInst;
38class VAArgInst;
39class TargetData;
40class Pass;
41class AnalysisUsage;
42
43class AliasAnalysis {
44protected:
45  const TargetData *TD;
46
47private:
48  AliasAnalysis *AA;       // Previous Alias Analysis to chain to.
49
50protected:
51  /// InitializeAliasAnalysis - Subclasses must call this method to initialize
52  /// the AliasAnalysis interface before any other methods are called.  This is
53  /// typically called by the run* methods of these subclasses.  This may be
54  /// called multiple times.
55  ///
56  void InitializeAliasAnalysis(Pass *P);
57
58  /// getAnalysisUsage - All alias analysis implementations should invoke this
59  /// directly (using AliasAnalysis::getAnalysisUsage(AU)).
60  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
61
62public:
63  static char ID; // Class identification, replacement for typeinfo
64  AliasAnalysis() : TD(0), AA(0) {}
65  virtual ~AliasAnalysis();  // We want to be subclassed
66
67  /// UnknownSize - This is a special value which can be used with the
68  /// size arguments in alias queries to indicate that the caller does not
69  /// know the sizes of the potential memory references.
70  static unsigned const UnknownSize = ~0u;
71
72  /// getTargetData - Return a pointer to the current TargetData object, or
73  /// null if no TargetData object is available.
74  ///
75  const TargetData *getTargetData() const { return TD; }
76
77  /// getTypeStoreSize - Return the TargetData store size for the given type,
78  /// if known, or a conservative value otherwise.
79  ///
80  unsigned getTypeStoreSize(const Type *Ty);
81
82  //===--------------------------------------------------------------------===//
83  /// Alias Queries...
84  ///
85
86  /// Alias analysis result - Either we know for sure that it does not alias, we
87  /// know for sure it must alias, or we don't know anything: The two pointers
88  /// _might_ alias.  This enum is designed so you can do things like:
89  ///     if (AA.alias(P1, P2)) { ... }
90  /// to check to see if two pointers might alias.
91  ///
92  /// See docs/AliasAnalysis.html for more information on the specific meanings
93  /// of these values.
94  ///
95  enum AliasResult { NoAlias = 0, MayAlias = 1, MustAlias = 2 };
96
97  /// alias - The main low level interface to the alias analysis implementation.
98  /// Returns a Result indicating whether the two pointers are aliased to each
99  /// other.  This is the interface that must be implemented by specific alias
100  /// analysis implementations.
101  ///
102  virtual AliasResult alias(const Value *V1, unsigned V1Size,
103                            const Value *V2, unsigned V2Size);
104
105  /// alias - A convenience wrapper for the case where the sizes are unknown.
106  AliasResult alias(const Value *V1, const Value *V2) {
107    return alias(V1, UnknownSize, V2, UnknownSize);
108  }
109
110  /// isNoAlias - A trivial helper function to check to see if the specified
111  /// pointers are no-alias.
112  bool isNoAlias(const Value *V1, unsigned V1Size,
113                 const Value *V2, unsigned V2Size) {
114    return alias(V1, V1Size, V2, V2Size) == NoAlias;
115  }
116
117  /// pointsToConstantMemory - If the specified pointer is known to point into
118  /// constant global memory, return true.  This allows disambiguation of store
119  /// instructions from constant pointers.
120  ///
121  virtual bool pointsToConstantMemory(const Value *P);
122
123  //===--------------------------------------------------------------------===//
124  /// Simple mod/ref information...
125  ///
126
127  /// ModRefResult - Represent the result of a mod/ref query.  Mod and Ref are
128  /// bits which may be or'd together.
129  ///
130  enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
131
132
133  /// ModRefBehavior - Summary of how a function affects memory in the program.
134  /// Loads from constant globals are not considered memory accesses for this
135  /// interface.  Also, functions may freely modify stack space local to their
136  /// invocation without having to report it through these interfaces.
137  enum ModRefBehavior {
138    // DoesNotAccessMemory - This function does not perform any non-local loads
139    // or stores to memory.
140    //
141    // This property corresponds to the GCC 'const' attribute.
142    DoesNotAccessMemory,
143
144    // AccessesArguments - This function accesses function arguments in well
145    // known (possibly volatile) ways, but does not access any other memory.
146    AccessesArguments,
147
148    // AccessesArgumentsAndGlobals - This function has accesses function
149    // arguments and global variables well known (possibly volatile) ways, but
150    // does not access any other memory.
151    AccessesArgumentsAndGlobals,
152
153    // OnlyReadsMemory - This function does not perform any non-local stores or
154    // volatile loads, but may read from any memory location.
155    //
156    // This property corresponds to the GCC 'pure' attribute.
157    OnlyReadsMemory,
158
159    // UnknownModRefBehavior - This indicates that the function could not be
160    // classified into one of the behaviors above.
161    UnknownModRefBehavior
162  };
163
164  /// getModRefBehavior - Return the behavior when calling the given call site.
165  virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
166
167  /// getModRefBehavior - Return the behavior when calling the given function.
168  /// For use when the call site is not known.
169  virtual ModRefBehavior getModRefBehavior(const Function *F);
170
171  /// getIntrinsicModRefBehavior - Return the modref behavior of the intrinsic
172  /// with the given id.
173  static ModRefBehavior getIntrinsicModRefBehavior(unsigned iid);
174
175  /// doesNotAccessMemory - If the specified call is known to never read or
176  /// write memory, return true.  If the call only reads from known-constant
177  /// memory, it is also legal to return true.  Calls that unwind the stack
178  /// are legal for this predicate.
179  ///
180  /// Many optimizations (such as CSE and LICM) can be performed on such calls
181  /// without worrying about aliasing properties, and many calls have this
182  /// property (e.g. calls to 'sin' and 'cos').
183  ///
184  /// This property corresponds to the GCC 'const' attribute.
185  ///
186  bool doesNotAccessMemory(ImmutableCallSite CS) {
187    return getModRefBehavior(CS) == DoesNotAccessMemory;
188  }
189
190  /// doesNotAccessMemory - If the specified function is known to never read or
191  /// write memory, return true.  For use when the call site is not known.
192  ///
193  bool doesNotAccessMemory(const Function *F) {
194    return getModRefBehavior(F) == DoesNotAccessMemory;
195  }
196
197  /// onlyReadsMemory - If the specified call is known to only read from
198  /// non-volatile memory (or not access memory at all), return true.  Calls
199  /// that unwind the stack are legal for this predicate.
200  ///
201  /// This property allows many common optimizations to be performed in the
202  /// absence of interfering store instructions, such as CSE of strlen calls.
203  ///
204  /// This property corresponds to the GCC 'pure' attribute.
205  ///
206  bool onlyReadsMemory(ImmutableCallSite CS) {
207    ModRefBehavior MRB = getModRefBehavior(CS);
208    return MRB == DoesNotAccessMemory || MRB == OnlyReadsMemory;
209  }
210
211  /// onlyReadsMemory - If the specified function is known to only read from
212  /// non-volatile memory (or not access memory at all), return true.  For use
213  /// when the call site is not known.
214  ///
215  bool onlyReadsMemory(const Function *F) {
216    ModRefBehavior MRB = getModRefBehavior(F);
217    return MRB == DoesNotAccessMemory || MRB == OnlyReadsMemory;
218  }
219
220
221  /// getModRefInfo - Return information about whether or not an instruction may
222  /// read or write memory specified by the pointer operand.  An instruction
223  /// that doesn't read or write memory may be trivially LICM'd for example.
224
225  /// getModRefInfo (for call sites) - Return whether information about whether
226  /// a particular call site modifies or reads the memory specified by the
227  /// pointer.
228  ///
229  virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
230                                     const Value *P, unsigned Size);
231
232  /// getModRefInfo - Return information about whether two call sites may refer
233  /// to the same set of memory locations.  This function returns NoModRef if
234  /// the two calls refer to disjoint memory locations, Ref if CS1 reads memory
235  /// written by CS2, Mod if CS1 writes to memory read or written by CS2, or
236  /// ModRef if CS1 might read or write memory accessed by CS2.
237  ///
238  virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
239                                     ImmutableCallSite CS2);
240
241public:
242  /// Convenience functions...
243  ModRefResult getModRefInfo(const LoadInst *L, const Value *P, unsigned Size);
244  ModRefResult getModRefInfo(const StoreInst *S, const Value *P, unsigned Size);
245  ModRefResult getModRefInfo(const CallInst *C, const Value *P, unsigned Size) {
246    return getModRefInfo(ImmutableCallSite(C), P, Size);
247  }
248  ModRefResult getModRefInfo(const InvokeInst *I,
249                             const Value *P, unsigned Size) {
250    return getModRefInfo(ImmutableCallSite(I), P, Size);
251  }
252  ModRefResult getModRefInfo(const VAArgInst* I,
253                             const Value* P, unsigned Size) {
254    return AliasAnalysis::ModRef;
255  }
256  ModRefResult getModRefInfo(const Instruction *I,
257                             const Value *P, unsigned Size) {
258    switch (I->getOpcode()) {
259    case Instruction::VAArg:  return getModRefInfo((const VAArgInst*)I, P,Size);
260    case Instruction::Load:   return getModRefInfo((const LoadInst*)I, P, Size);
261    case Instruction::Store:  return getModRefInfo((const StoreInst*)I, P,Size);
262    case Instruction::Call:   return getModRefInfo((const CallInst*)I, P, Size);
263    case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,P,Size);
264    default:                  return NoModRef;
265    }
266  }
267
268  //===--------------------------------------------------------------------===//
269  /// Higher level methods for querying mod/ref information.
270  ///
271
272  /// canBasicBlockModify - Return true if it is possible for execution of the
273  /// specified basic block to modify the value pointed to by Ptr.
274  ///
275  bool canBasicBlockModify(const BasicBlock &BB, const Value *P, unsigned Size);
276
277  /// canInstructionRangeModify - Return true if it is possible for the
278  /// execution of the specified instructions to modify the value pointed to by
279  /// Ptr.  The instructions to consider are all of the instructions in the
280  /// range of [I1,I2] INCLUSIVE.  I1 and I2 must be in the same basic block.
281  ///
282  bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
283                                 const Value *Ptr, unsigned Size);
284
285  //===--------------------------------------------------------------------===//
286  /// Methods that clients should call when they transform the program to allow
287  /// alias analyses to update their internal data structures.  Note that these
288  /// methods may be called on any instruction, regardless of whether or not
289  /// they have pointer-analysis implications.
290  ///
291
292  /// deleteValue - This method should be called whenever an LLVM Value is
293  /// deleted from the program, for example when an instruction is found to be
294  /// redundant and is eliminated.
295  ///
296  virtual void deleteValue(Value *V);
297
298  /// copyValue - This method should be used whenever a preexisting value in the
299  /// program is copied or cloned, introducing a new value.  Note that analysis
300  /// implementations should tolerate clients that use this method to introduce
301  /// the same value multiple times: if the analysis already knows about a
302  /// value, it should ignore the request.
303  ///
304  virtual void copyValue(Value *From, Value *To);
305
306  /// replaceWithNewValue - This method is the obvious combination of the two
307  /// above, and it provided as a helper to simplify client code.
308  ///
309  void replaceWithNewValue(Value *Old, Value *New) {
310    copyValue(Old, New);
311    deleteValue(Old);
312  }
313};
314
315/// isNoAliasCall - Return true if this pointer is returned by a noalias
316/// function.
317bool isNoAliasCall(const Value *V);
318
319/// isIdentifiedObject - Return true if this pointer refers to a distinct and
320/// identifiable object.  This returns true for:
321///    Global Variables and Functions (but not Global Aliases)
322///    Allocas and Mallocs
323///    ByVal and NoAlias Arguments
324///    NoAlias returns
325///
326bool isIdentifiedObject(const Value *V);
327
328} // End llvm namespace
329
330// Because of the way .a files work, we must force the BasicAA implementation to
331// be pulled in if the AliasAnalysis header is included.  Otherwise we run
332// the risk of AliasAnalysis being used, but the default implementation not
333// being linked into the tool that uses it.
334FORCE_DEFINING_FILE_TO_BE_LINKED(AliasAnalysis)
335FORCE_DEFINING_FILE_TO_BE_LINKED(BasicAliasAnalysis)
336
337#endif
338