AliasAnalysis.h revision e40bb915bae2aecdd1578ea356d5e4c8ac31061c
1//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the generic AliasAnalysis interface, which is used as the
11// common interface used by all clients of alias analysis information, and
12// implemented by all alias analysis implementations.  Mod/Ref information is
13// also captured by this interface.
14//
15// Implementations of this interface must implement the various virtual methods,
16// which automatically provides functionality for the entire suite of client
17// APIs.
18//
19// This API represents memory as a (Pointer, Size) pair.  The Pointer component
20// specifies the base memory address of the region, the Size specifies how large
21// of an area is being queried.  If Size is 0, two pointers only alias if they
22// are exactly equal.  If size is greater than zero, but small, the two pointers
23// alias if the areas pointed to overlap.  If the size is very large (ie, ~0U),
24// then the two pointers alias if they may be pointing to components of the same
25// memory object.  Pointers that point to two completely different objects in
26// memory never alias, regardless of the value of the Size component.
27//
28//===----------------------------------------------------------------------===//
29
30#ifndef LLVM_ANALYSIS_ALIAS_ANALYSIS_H
31#define LLVM_ANALYSIS_ALIAS_ANALYSIS_H
32
33#include "llvm/Support/CallSite.h"
34#include "llvm/Pass.h"    // Need this for IncludeFile
35
36namespace llvm {
37
38class LoadInst;
39class StoreInst;
40class TargetData;
41
42class AliasAnalysis {
43  const TargetData *TD;
44protected:
45  /// InitializeAliasAnalysis - Subclasses must call this method to initialize
46  /// the AliasAnalysis interface before any other methods are called.  This is
47  /// typically called by the run* methods of these subclasses.  This may be
48  /// called multiple times.
49  ///
50  void InitializeAliasAnalysis(Pass *P);
51
52  // getAnalysisUsage - All alias analysis implementations should invoke this
53  // directly (using AliasAnalysis::getAnalysisUsage(AU)) to make sure that
54  // TargetData is required by the pass.
55  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
56
57public:
58  AliasAnalysis() : TD(0) {}
59  virtual ~AliasAnalysis();  // We want to be subclassed
60
61  /// getTargetData - Every alias analysis implementation depends on the size of
62  /// data items in the current Target.  This provides a uniform way to handle
63  /// it.
64  ///
65  const TargetData &getTargetData() const { return *TD; }
66
67  //===--------------------------------------------------------------------===//
68  /// Alias Queries...
69  ///
70
71  /// Alias analysis result - Either we know for sure that it does not alias, we
72  /// know for sure it must alias, or we don't know anything: The two pointers
73  /// _might_ alias.  This enum is designed so you can do things like:
74  ///     if (AA.alias(P1, P2)) { ... }
75  /// to check to see if two pointers might alias.
76  ///
77  enum AliasResult { NoAlias = 0, MayAlias = 1, MustAlias = 2 };
78
79  /// alias - The main low level interface to the alias analysis implementation.
80  /// Returns a Result indicating whether the two pointers are aliased to each
81  /// other.  This is the interface that must be implemented by specific alias
82  /// analysis implementations.
83  ///
84  virtual AliasResult alias(const Value *V1, unsigned V1Size,
85                            const Value *V2, unsigned V2Size) {
86    return MayAlias;
87  }
88
89  /// getMustAliases - If there are any pointers known that must alias this
90  /// pointer, return them now.  This allows alias-set based alias analyses to
91  /// perform a form a value numbering (which is exposed by load-vn).  If an
92  /// alias analysis supports this, it should ADD any must aliased pointers to
93  /// the specified vector.
94  ///
95  virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) {}
96
97  /// pointsToConstantMemory - If the specified pointer is known to point into
98  /// constant global memory, return true.  This allows disambiguation of store
99  /// instructions from constant pointers.
100  ///
101  virtual bool pointsToConstantMemory(const Value *P) { return false; }
102
103  /// doesNotAccessMemory - If the specified function is known to never read or
104  /// write memory, return true.  If the function only reads from known-constant
105  /// memory, it is also legal to return true.  Functions that unwind the stack
106  /// are not legal for this predicate.
107  ///
108  /// Many optimizations (such as CSE and LICM) can be performed on calls to it,
109  /// without worrying about aliasing properties, and many functions have this
110  /// property (e.g. 'sin' and 'cos').
111  ///
112  /// This property corresponds to the GCC 'const' attribute.
113  ///
114  virtual bool doesNotAccessMemory(Function *F) { return false; }
115
116  /// onlyReadsMemory - If the specified function is known to only read from
117  /// non-volatile memory (or not access memory at all), return true.  Functions
118  /// that unwind the stack are not legal for this predicate.
119  ///
120  /// This property allows many common optimizations to be performed in the
121  /// absence of interfering store instructions, such as CSE of strlen calls.
122  ///
123  /// This property corresponds to the GCC 'pure' attribute.
124  ///
125  virtual bool onlyReadsMemory(Function *F) { return doesNotAccessMemory(F); }
126
127
128  //===--------------------------------------------------------------------===//
129  /// Simple mod/ref information...
130  ///
131
132  /// ModRefResult - Represent the result of a mod/ref query.  Mod and Ref are
133  /// bits which may be or'd together.
134  ///
135  enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
136
137  /// getModRefInfo - Return information about whether or not an instruction may
138  /// read or write memory specified by the pointer operand.  An instruction
139  /// that doesn't read or write memory may be trivially LICM'd for example.
140
141  /// getModRefInfo (for call sites) - Return whether information about whether
142  /// a particular call site modifies or reads the memory specified by the
143  /// pointer.
144  ///
145  virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
146
147  /// getModRefInfo - Return information about whether two call sites may refer
148  /// to the same set of memory locations.  This function returns NoModRef if
149  /// the two calls refer to disjoint memory locations, Ref if they both read
150  /// some of the same memory, Mod if they both write to some of the same
151  /// memory, and ModRef if they read and write to the same memory.
152  ///
153  virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
154
155  /// hasNoModRefInfoForCalls - Return true if the analysis has no mod/ref
156  /// information for function calls other than "pure" and "const" functions.
157  /// This can be used by clients to avoid many pointless queries.  Remember
158  /// that if you override this and chain to another analysis, you must make
159  /// sure that it doesn't have mod/ref info either.
160  ///
161  virtual bool hasNoModRefInfoForCalls() const { return false; }
162
163
164  /// Convenience functions...
165  ModRefResult getModRefInfo(LoadInst *L, Value *P, unsigned Size);
166  ModRefResult getModRefInfo(StoreInst *S, Value *P, unsigned Size);
167  ModRefResult getModRefInfo(CallInst *C, Value *P, unsigned Size) {
168    return getModRefInfo(CallSite(C), P, Size);
169  }
170  ModRefResult getModRefInfo(InvokeInst *I, Value *P, unsigned Size) {
171    return getModRefInfo(CallSite(I), P, Size);
172  }
173  ModRefResult getModRefInfo(Instruction *I, Value *P, unsigned Size) {
174    switch (I->getOpcode()) {
175    case Instruction::Load:   return getModRefInfo((LoadInst*)I, P, Size);
176    case Instruction::Store:  return getModRefInfo((StoreInst*)I, P, Size);
177    case Instruction::Call:   return getModRefInfo((CallInst*)I, P, Size);
178    case Instruction::Invoke: return getModRefInfo((InvokeInst*)I, P, Size);
179    default:                  return NoModRef;
180    }
181  }
182
183  /// canBasicBlockModify - Return true if it is possible for execution of the
184  /// specified basic block to modify the value pointed to by Ptr.
185  ///
186  bool canBasicBlockModify(const BasicBlock &BB, const Value *P, unsigned Size);
187
188  /// canInstructionRangeModify - Return true if it is possible for the
189  /// execution of the specified instructions to modify the value pointed to by
190  /// Ptr.  The instructions to consider are all of the instructions in the
191  /// range of [I1,I2] INCLUSIVE.  I1 and I2 must be in the same basic block.
192  ///
193  bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
194                                 const Value *Ptr, unsigned Size);
195};
196
197// Because of the way .a files work, we must force the BasicAA implementation to
198// be pulled in if the AliasAnalysis header is included.  Otherwise we run
199// the risk of AliasAnalysis being used, but the default implementation not
200// being linked into the tool that uses it.
201//
202extern void BasicAAStub();
203static IncludeFile HDR_INCLUDE_BASICAA_CPP((void*)&BasicAAStub);
204
205} // End llvm namespace
206
207#endif
208