1//==- BlockFrequencyInfoImpl.h - Block Frequency Implementation -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Shared implementation of BlockFrequency for IR and Machine Instructions.
11// See the documentation below for BlockFrequencyInfoImpl for details.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
16#define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
17
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/PostOrderIterator.h"
20#include "llvm/ADT/iterator_range.h"
21#include "llvm/IR/BasicBlock.h"
22#include "llvm/Support/BlockFrequency.h"
23#include "llvm/Support/BranchProbability.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/ScaledNumber.h"
26#include "llvm/Support/raw_ostream.h"
27#include <deque>
28#include <list>
29#include <string>
30#include <vector>
31
32#define DEBUG_TYPE "block-freq"
33
34//===----------------------------------------------------------------------===//
35//
36// BlockMass definition.
37//
38// TODO: Make this private to BlockFrequencyInfoImpl or delete.
39//
40//===----------------------------------------------------------------------===//
41namespace llvm {
42
43/// \brief Mass of a block.
44///
45/// This class implements a sort of fixed-point fraction always between 0.0 and
46/// 1.0.  getMass() == UINT64_MAX indicates a value of 1.0.
47///
48/// Masses can be added and subtracted.  Simple saturation arithmetic is used,
49/// so arithmetic operations never overflow or underflow.
50///
51/// Masses can be multiplied.  Multiplication treats full mass as 1.0 and uses
52/// an inexpensive floating-point algorithm that's off-by-one (almost, but not
53/// quite, maximum precision).
54///
55/// Masses can be scaled by \a BranchProbability at maximum precision.
56class BlockMass {
57  uint64_t Mass;
58
59public:
60  BlockMass() : Mass(0) {}
61  explicit BlockMass(uint64_t Mass) : Mass(Mass) {}
62
63  static BlockMass getEmpty() { return BlockMass(); }
64  static BlockMass getFull() { return BlockMass(UINT64_MAX); }
65
66  uint64_t getMass() const { return Mass; }
67
68  bool isFull() const { return Mass == UINT64_MAX; }
69  bool isEmpty() const { return !Mass; }
70
71  bool operator!() const { return isEmpty(); }
72
73  /// \brief Add another mass.
74  ///
75  /// Adds another mass, saturating at \a isFull() rather than overflowing.
76  BlockMass &operator+=(const BlockMass &X) {
77    uint64_t Sum = Mass + X.Mass;
78    Mass = Sum < Mass ? UINT64_MAX : Sum;
79    return *this;
80  }
81
82  /// \brief Subtract another mass.
83  ///
84  /// Subtracts another mass, saturating at \a isEmpty() rather than
85  /// undeflowing.
86  BlockMass &operator-=(const BlockMass &X) {
87    uint64_t Diff = Mass - X.Mass;
88    Mass = Diff > Mass ? 0 : Diff;
89    return *this;
90  }
91
92  BlockMass &operator*=(const BranchProbability &P) {
93    Mass = P.scale(Mass);
94    return *this;
95  }
96
97  bool operator==(const BlockMass &X) const { return Mass == X.Mass; }
98  bool operator!=(const BlockMass &X) const { return Mass != X.Mass; }
99  bool operator<=(const BlockMass &X) const { return Mass <= X.Mass; }
100  bool operator>=(const BlockMass &X) const { return Mass >= X.Mass; }
101  bool operator<(const BlockMass &X) const { return Mass < X.Mass; }
102  bool operator>(const BlockMass &X) const { return Mass > X.Mass; }
103
104  /// \brief Convert to scaled number.
105  ///
106  /// Convert to \a ScaledNumber.  \a isFull() gives 1.0, while \a isEmpty()
107  /// gives slightly above 0.0.
108  ScaledNumber<uint64_t> toScaled() const;
109
110  void dump() const;
111  raw_ostream &print(raw_ostream &OS) const;
112};
113
114inline BlockMass operator+(const BlockMass &L, const BlockMass &R) {
115  return BlockMass(L) += R;
116}
117inline BlockMass operator-(const BlockMass &L, const BlockMass &R) {
118  return BlockMass(L) -= R;
119}
120inline BlockMass operator*(const BlockMass &L, const BranchProbability &R) {
121  return BlockMass(L) *= R;
122}
123inline BlockMass operator*(const BranchProbability &L, const BlockMass &R) {
124  return BlockMass(R) *= L;
125}
126
127inline raw_ostream &operator<<(raw_ostream &OS, const BlockMass &X) {
128  return X.print(OS);
129}
130
131template <> struct isPodLike<BlockMass> {
132  static const bool value = true;
133};
134}
135
136//===----------------------------------------------------------------------===//
137//
138// BlockFrequencyInfoImpl definition.
139//
140//===----------------------------------------------------------------------===//
141namespace llvm {
142
143class BasicBlock;
144class BranchProbabilityInfo;
145class Function;
146class Loop;
147class LoopInfo;
148class MachineBasicBlock;
149class MachineBranchProbabilityInfo;
150class MachineFunction;
151class MachineLoop;
152class MachineLoopInfo;
153
154namespace bfi_detail {
155struct IrreducibleGraph;
156
157// This is part of a workaround for a GCC 4.7 crash on lambdas.
158template <class BT> struct BlockEdgesAdder;
159}
160
161/// \brief Base class for BlockFrequencyInfoImpl
162///
163/// BlockFrequencyInfoImplBase has supporting data structures and some
164/// algorithms for BlockFrequencyInfoImplBase.  Only algorithms that depend on
165/// the block type (or that call such algorithms) are skipped here.
166///
167/// Nevertheless, the majority of the overall algorithm documention lives with
168/// BlockFrequencyInfoImpl.  See there for details.
169class BlockFrequencyInfoImplBase {
170public:
171  typedef ScaledNumber<uint64_t> Scaled64;
172
173  /// \brief Representative of a block.
174  ///
175  /// This is a simple wrapper around an index into the reverse-post-order
176  /// traversal of the blocks.
177  ///
178  /// Unlike a block pointer, its order has meaning (location in the
179  /// topological sort) and it's class is the same regardless of block type.
180  struct BlockNode {
181    typedef uint32_t IndexType;
182    IndexType Index;
183
184    bool operator==(const BlockNode &X) const { return Index == X.Index; }
185    bool operator!=(const BlockNode &X) const { return Index != X.Index; }
186    bool operator<=(const BlockNode &X) const { return Index <= X.Index; }
187    bool operator>=(const BlockNode &X) const { return Index >= X.Index; }
188    bool operator<(const BlockNode &X) const { return Index < X.Index; }
189    bool operator>(const BlockNode &X) const { return Index > X.Index; }
190
191    BlockNode() : Index(UINT32_MAX) {}
192    BlockNode(IndexType Index) : Index(Index) {}
193
194    bool isValid() const { return Index <= getMaxIndex(); }
195    static size_t getMaxIndex() { return UINT32_MAX - 1; }
196  };
197
198  /// \brief Stats about a block itself.
199  struct FrequencyData {
200    Scaled64 Scaled;
201    uint64_t Integer;
202  };
203
204  /// \brief Data about a loop.
205  ///
206  /// Contains the data necessary to represent represent a loop as a
207  /// pseudo-node once it's packaged.
208  struct LoopData {
209    typedef SmallVector<std::pair<BlockNode, BlockMass>, 4> ExitMap;
210    typedef SmallVector<BlockNode, 4> NodeList;
211    LoopData *Parent;       ///< The parent loop.
212    bool IsPackaged;        ///< Whether this has been packaged.
213    uint32_t NumHeaders;    ///< Number of headers.
214    ExitMap Exits;          ///< Successor edges (and weights).
215    NodeList Nodes;         ///< Header and the members of the loop.
216    BlockMass BackedgeMass; ///< Mass returned to loop header.
217    BlockMass Mass;
218    Scaled64 Scale;
219
220    LoopData(LoopData *Parent, const BlockNode &Header)
221        : Parent(Parent), IsPackaged(false), NumHeaders(1), Nodes(1, Header) {}
222    template <class It1, class It2>
223    LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther,
224             It2 LastOther)
225        : Parent(Parent), IsPackaged(false), Nodes(FirstHeader, LastHeader) {
226      NumHeaders = Nodes.size();
227      Nodes.insert(Nodes.end(), FirstOther, LastOther);
228    }
229    bool isHeader(const BlockNode &Node) const {
230      if (isIrreducible())
231        return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders,
232                                  Node);
233      return Node == Nodes[0];
234    }
235    BlockNode getHeader() const { return Nodes[0]; }
236    bool isIrreducible() const { return NumHeaders > 1; }
237
238    NodeList::const_iterator members_begin() const {
239      return Nodes.begin() + NumHeaders;
240    }
241    NodeList::const_iterator members_end() const { return Nodes.end(); }
242    iterator_range<NodeList::const_iterator> members() const {
243      return make_range(members_begin(), members_end());
244    }
245  };
246
247  /// \brief Index of loop information.
248  struct WorkingData {
249    BlockNode Node; ///< This node.
250    LoopData *Loop; ///< The loop this block is inside.
251    BlockMass Mass; ///< Mass distribution from the entry block.
252
253    WorkingData(const BlockNode &Node) : Node(Node), Loop(nullptr) {}
254
255    bool isLoopHeader() const { return Loop && Loop->isHeader(Node); }
256    bool isDoubleLoopHeader() const {
257      return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() &&
258             Loop->Parent->isHeader(Node);
259    }
260
261    LoopData *getContainingLoop() const {
262      if (!isLoopHeader())
263        return Loop;
264      if (!isDoubleLoopHeader())
265        return Loop->Parent;
266      return Loop->Parent->Parent;
267    }
268
269    /// \brief Resolve a node to its representative.
270    ///
271    /// Get the node currently representing Node, which could be a containing
272    /// loop.
273    ///
274    /// This function should only be called when distributing mass.  As long as
275    /// there are no irreducilbe edges to Node, then it will have complexity
276    /// O(1) in this context.
277    ///
278    /// In general, the complexity is O(L), where L is the number of loop
279    /// headers Node has been packaged into.  Since this method is called in
280    /// the context of distributing mass, L will be the number of loop headers
281    /// an early exit edge jumps out of.
282    BlockNode getResolvedNode() const {
283      auto L = getPackagedLoop();
284      return L ? L->getHeader() : Node;
285    }
286    LoopData *getPackagedLoop() const {
287      if (!Loop || !Loop->IsPackaged)
288        return nullptr;
289      auto L = Loop;
290      while (L->Parent && L->Parent->IsPackaged)
291        L = L->Parent;
292      return L;
293    }
294
295    /// \brief Get the appropriate mass for a node.
296    ///
297    /// Get appropriate mass for Node.  If Node is a loop-header (whose loop
298    /// has been packaged), returns the mass of its pseudo-node.  If it's a
299    /// node inside a packaged loop, it returns the loop's mass.
300    BlockMass &getMass() {
301      if (!isAPackage())
302        return Mass;
303      if (!isADoublePackage())
304        return Loop->Mass;
305      return Loop->Parent->Mass;
306    }
307
308    /// \brief Has ContainingLoop been packaged up?
309    bool isPackaged() const { return getResolvedNode() != Node; }
310    /// \brief Has Loop been packaged up?
311    bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; }
312    /// \brief Has Loop been packaged up twice?
313    bool isADoublePackage() const {
314      return isDoubleLoopHeader() && Loop->Parent->IsPackaged;
315    }
316  };
317
318  /// \brief Unscaled probability weight.
319  ///
320  /// Probability weight for an edge in the graph (including the
321  /// successor/target node).
322  ///
323  /// All edges in the original function are 32-bit.  However, exit edges from
324  /// loop packages are taken from 64-bit exit masses, so we need 64-bits of
325  /// space in general.
326  ///
327  /// In addition to the raw weight amount, Weight stores the type of the edge
328  /// in the current context (i.e., the context of the loop being processed).
329  /// Is this a local edge within the loop, an exit from the loop, or a
330  /// backedge to the loop header?
331  struct Weight {
332    enum DistType { Local, Exit, Backedge };
333    DistType Type;
334    BlockNode TargetNode;
335    uint64_t Amount;
336    Weight() : Type(Local), Amount(0) {}
337  };
338
339  /// \brief Distribution of unscaled probability weight.
340  ///
341  /// Distribution of unscaled probability weight to a set of successors.
342  ///
343  /// This class collates the successor edge weights for later processing.
344  ///
345  /// \a DidOverflow indicates whether \a Total did overflow while adding to
346  /// the distribution.  It should never overflow twice.
347  struct Distribution {
348    typedef SmallVector<Weight, 4> WeightList;
349    WeightList Weights;    ///< Individual successor weights.
350    uint64_t Total;        ///< Sum of all weights.
351    bool DidOverflow;      ///< Whether \a Total did overflow.
352
353    Distribution() : Total(0), DidOverflow(false) {}
354    void addLocal(const BlockNode &Node, uint64_t Amount) {
355      add(Node, Amount, Weight::Local);
356    }
357    void addExit(const BlockNode &Node, uint64_t Amount) {
358      add(Node, Amount, Weight::Exit);
359    }
360    void addBackedge(const BlockNode &Node, uint64_t Amount) {
361      add(Node, Amount, Weight::Backedge);
362    }
363
364    /// \brief Normalize the distribution.
365    ///
366    /// Combines multiple edges to the same \a Weight::TargetNode and scales
367    /// down so that \a Total fits into 32-bits.
368    ///
369    /// This is linear in the size of \a Weights.  For the vast majority of
370    /// cases, adjacent edge weights are combined by sorting WeightList and
371    /// combining adjacent weights.  However, for very large edge lists an
372    /// auxiliary hash table is used.
373    void normalize();
374
375  private:
376    void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type);
377  };
378
379  /// \brief Data about each block.  This is used downstream.
380  std::vector<FrequencyData> Freqs;
381
382  /// \brief Loop data: see initializeLoops().
383  std::vector<WorkingData> Working;
384
385  /// \brief Indexed information about loops.
386  std::list<LoopData> Loops;
387
388  /// \brief Add all edges out of a packaged loop to the distribution.
389  ///
390  /// Adds all edges from LocalLoopHead to Dist.  Calls addToDist() to add each
391  /// successor edge.
392  ///
393  /// \return \c true unless there's an irreducible backedge.
394  bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop,
395                               Distribution &Dist);
396
397  /// \brief Add an edge to the distribution.
398  ///
399  /// Adds an edge to Succ to Dist.  If \c LoopHead.isValid(), then whether the
400  /// edge is local/exit/backedge is in the context of LoopHead.  Otherwise,
401  /// every edge should be a local edge (since all the loops are packaged up).
402  ///
403  /// \return \c true unless aborted due to an irreducible backedge.
404  bool addToDist(Distribution &Dist, const LoopData *OuterLoop,
405                 const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);
406
407  LoopData &getLoopPackage(const BlockNode &Head) {
408    assert(Head.Index < Working.size());
409    assert(Working[Head.Index].isLoopHeader());
410    return *Working[Head.Index].Loop;
411  }
412
413  /// \brief Analyze irreducible SCCs.
414  ///
415  /// Separate irreducible SCCs from \c G, which is an explict graph of \c
416  /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr).
417  /// Insert them into \a Loops before \c Insert.
418  ///
419  /// \return the \c LoopData nodes representing the irreducible SCCs.
420  iterator_range<std::list<LoopData>::iterator>
421  analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop,
422                     std::list<LoopData>::iterator Insert);
423
424  /// \brief Update a loop after packaging irreducible SCCs inside of it.
425  ///
426  /// Update \c OuterLoop.  Before finding irreducible control flow, it was
427  /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a
428  /// LoopData::BackedgeMass need to be reset.  Also, nodes that were packaged
429  /// up need to be removed from \a OuterLoop::Nodes.
430  void updateLoopWithIrreducible(LoopData &OuterLoop);
431
432  /// \brief Distribute mass according to a distribution.
433  ///
434  /// Distributes the mass in Source according to Dist.  If LoopHead.isValid(),
435  /// backedges and exits are stored in its entry in Loops.
436  ///
437  /// Mass is distributed in parallel from two copies of the source mass.
438  void distributeMass(const BlockNode &Source, LoopData *OuterLoop,
439                      Distribution &Dist);
440
441  /// \brief Compute the loop scale for a loop.
442  void computeLoopScale(LoopData &Loop);
443
444  /// \brief Package up a loop.
445  void packageLoop(LoopData &Loop);
446
447  /// \brief Unwrap loops.
448  void unwrapLoops();
449
450  /// \brief Finalize frequency metrics.
451  ///
452  /// Calculates final frequencies and cleans up no-longer-needed data
453  /// structures.
454  void finalizeMetrics();
455
456  /// \brief Clear all memory.
457  void clear();
458
459  virtual std::string getBlockName(const BlockNode &Node) const;
460  std::string getLoopName(const LoopData &Loop) const;
461
462  virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
463  void dump() const { print(dbgs()); }
464
465  Scaled64 getFloatingBlockFreq(const BlockNode &Node) const;
466
467  BlockFrequency getBlockFreq(const BlockNode &Node) const;
468
469  raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const;
470  raw_ostream &printBlockFreq(raw_ostream &OS,
471                              const BlockFrequency &Freq) const;
472
473  uint64_t getEntryFreq() const {
474    assert(!Freqs.empty());
475    return Freqs[0].Integer;
476  }
477  /// \brief Virtual destructor.
478  ///
479  /// Need a virtual destructor to mask the compiler warning about
480  /// getBlockName().
481  virtual ~BlockFrequencyInfoImplBase() {}
482};
483
484namespace bfi_detail {
485template <class BlockT> struct TypeMap {};
486template <> struct TypeMap<BasicBlock> {
487  typedef BasicBlock BlockT;
488  typedef Function FunctionT;
489  typedef BranchProbabilityInfo BranchProbabilityInfoT;
490  typedef Loop LoopT;
491  typedef LoopInfo LoopInfoT;
492};
493template <> struct TypeMap<MachineBasicBlock> {
494  typedef MachineBasicBlock BlockT;
495  typedef MachineFunction FunctionT;
496  typedef MachineBranchProbabilityInfo BranchProbabilityInfoT;
497  typedef MachineLoop LoopT;
498  typedef MachineLoopInfo LoopInfoT;
499};
500
501/// \brief Get the name of a MachineBasicBlock.
502///
503/// Get the name of a MachineBasicBlock.  It's templated so that including from
504/// CodeGen is unnecessary (that would be a layering issue).
505///
506/// This is used mainly for debug output.  The name is similar to
507/// MachineBasicBlock::getFullName(), but skips the name of the function.
508template <class BlockT> std::string getBlockName(const BlockT *BB) {
509  assert(BB && "Unexpected nullptr");
510  auto MachineName = "BB" + Twine(BB->getNumber());
511  if (BB->getBasicBlock())
512    return (MachineName + "[" + BB->getName() + "]").str();
513  return MachineName.str();
514}
515/// \brief Get the name of a BasicBlock.
516template <> inline std::string getBlockName(const BasicBlock *BB) {
517  assert(BB && "Unexpected nullptr");
518  return BB->getName().str();
519}
520
521/// \brief Graph of irreducible control flow.
522///
523/// This graph is used for determining the SCCs in a loop (or top-level
524/// function) that has irreducible control flow.
525///
526/// During the block frequency algorithm, the local graphs are defined in a
527/// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock
528/// graphs for most edges, but getting others from \a LoopData::ExitMap.  The
529/// latter only has successor information.
530///
531/// \a IrreducibleGraph makes this graph explicit.  It's in a form that can use
532/// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator),
533/// and it explicitly lists predecessors and successors.  The initialization
534/// that relies on \c MachineBasicBlock is defined in the header.
535struct IrreducibleGraph {
536  typedef BlockFrequencyInfoImplBase BFIBase;
537
538  BFIBase &BFI;
539
540  typedef BFIBase::BlockNode BlockNode;
541  struct IrrNode {
542    BlockNode Node;
543    unsigned NumIn;
544    std::deque<const IrrNode *> Edges;
545    IrrNode(const BlockNode &Node) : Node(Node), NumIn(0) {}
546
547    typedef std::deque<const IrrNode *>::const_iterator iterator;
548    iterator pred_begin() const { return Edges.begin(); }
549    iterator succ_begin() const { return Edges.begin() + NumIn; }
550    iterator pred_end() const { return succ_begin(); }
551    iterator succ_end() const { return Edges.end(); }
552  };
553  BlockNode Start;
554  const IrrNode *StartIrr;
555  std::vector<IrrNode> Nodes;
556  SmallDenseMap<uint32_t, IrrNode *, 4> Lookup;
557
558  /// \brief Construct an explicit graph containing irreducible control flow.
559  ///
560  /// Construct an explicit graph of the control flow in \c OuterLoop (or the
561  /// top-level function, if \c OuterLoop is \c nullptr).  Uses \c
562  /// addBlockEdges to add block successors that have not been packaged into
563  /// loops.
564  ///
565  /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected
566  /// user of this.
567  template <class BlockEdgesAdder>
568  IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop,
569                   BlockEdgesAdder addBlockEdges)
570      : BFI(BFI), StartIrr(nullptr) {
571    initialize(OuterLoop, addBlockEdges);
572  }
573
574  template <class BlockEdgesAdder>
575  void initialize(const BFIBase::LoopData *OuterLoop,
576                  BlockEdgesAdder addBlockEdges);
577  void addNodesInLoop(const BFIBase::LoopData &OuterLoop);
578  void addNodesInFunction();
579  void addNode(const BlockNode &Node) {
580    Nodes.emplace_back(Node);
581    BFI.Working[Node.Index].getMass() = BlockMass::getEmpty();
582  }
583  void indexNodes();
584  template <class BlockEdgesAdder>
585  void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop,
586                BlockEdgesAdder addBlockEdges);
587  void addEdge(IrrNode &Irr, const BlockNode &Succ,
588               const BFIBase::LoopData *OuterLoop);
589};
590template <class BlockEdgesAdder>
591void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop,
592                                  BlockEdgesAdder addBlockEdges) {
593  if (OuterLoop) {
594    addNodesInLoop(*OuterLoop);
595    for (auto N : OuterLoop->Nodes)
596      addEdges(N, OuterLoop, addBlockEdges);
597  } else {
598    addNodesInFunction();
599    for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
600      addEdges(Index, OuterLoop, addBlockEdges);
601  }
602  StartIrr = Lookup[Start.Index];
603}
604template <class BlockEdgesAdder>
605void IrreducibleGraph::addEdges(const BlockNode &Node,
606                                const BFIBase::LoopData *OuterLoop,
607                                BlockEdgesAdder addBlockEdges) {
608  auto L = Lookup.find(Node.Index);
609  if (L == Lookup.end())
610    return;
611  IrrNode &Irr = *L->second;
612  const auto &Working = BFI.Working[Node.Index];
613
614  if (Working.isAPackage())
615    for (const auto &I : Working.Loop->Exits)
616      addEdge(Irr, I.first, OuterLoop);
617  else
618    addBlockEdges(*this, Irr, OuterLoop);
619}
620}
621
622/// \brief Shared implementation for block frequency analysis.
623///
624/// This is a shared implementation of BlockFrequencyInfo and
625/// MachineBlockFrequencyInfo, and calculates the relative frequencies of
626/// blocks.
627///
628/// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block,
629/// which is called the header.  A given loop, L, can have sub-loops, which are
630/// loops within the subgraph of L that exclude its header.  (A "trivial" SCC
631/// consists of a single block that does not have a self-edge.)
632///
633/// In addition to loops, this algorithm has limited support for irreducible
634/// SCCs, which are SCCs with multiple entry blocks.  Irreducible SCCs are
635/// discovered on they fly, and modelled as loops with multiple headers.
636///
637/// The headers of irreducible sub-SCCs consist of its entry blocks and all
638/// nodes that are targets of a backedge within it (excluding backedges within
639/// true sub-loops).  Block frequency calculations act as if a block is
640/// inserted that intercepts all the edges to the headers.  All backedges and
641/// entries point to this block.  Its successors are the headers, which split
642/// the frequency evenly.
643///
644/// This algorithm leverages BlockMass and ScaledNumber to maintain precision,
645/// separates mass distribution from loop scaling, and dithers to eliminate
646/// probability mass loss.
647///
648/// The implementation is split between BlockFrequencyInfoImpl, which knows the
649/// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and
650/// BlockFrequencyInfoImplBase, which doesn't.  The base class uses \a
651/// BlockNode, a wrapper around a uint32_t.  BlockNode is numbered from 0 in
652/// reverse-post order.  This gives two advantages:  it's easy to compare the
653/// relative ordering of two nodes, and maps keyed on BlockT can be represented
654/// by vectors.
655///
656/// This algorithm is O(V+E), unless there is irreducible control flow, in
657/// which case it's O(V*E) in the worst case.
658///
659/// These are the main stages:
660///
661///  0. Reverse post-order traversal (\a initializeRPOT()).
662///
663///     Run a single post-order traversal and save it (in reverse) in RPOT.
664///     All other stages make use of this ordering.  Save a lookup from BlockT
665///     to BlockNode (the index into RPOT) in Nodes.
666///
667///  1. Loop initialization (\a initializeLoops()).
668///
669///     Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
670///     the algorithm.  In particular, store the immediate members of each loop
671///     in reverse post-order.
672///
673///  2. Calculate mass and scale in loops (\a computeMassInLoops()).
674///
675///     For each loop (bottom-up), distribute mass through the DAG resulting
676///     from ignoring backedges and treating sub-loops as a single pseudo-node.
677///     Track the backedge mass distributed to the loop header, and use it to
678///     calculate the loop scale (number of loop iterations).  Immediate
679///     members that represent sub-loops will already have been visited and
680///     packaged into a pseudo-node.
681///
682///     Distributing mass in a loop is a reverse-post-order traversal through
683///     the loop.  Start by assigning full mass to the Loop header.  For each
684///     node in the loop:
685///
686///         - Fetch and categorize the weight distribution for its successors.
687///           If this is a packaged-subloop, the weight distribution is stored
688///           in \a LoopData::Exits.  Otherwise, fetch it from
689///           BranchProbabilityInfo.
690///
691///         - Each successor is categorized as \a Weight::Local, a local edge
692///           within the current loop, \a Weight::Backedge, a backedge to the
693///           loop header, or \a Weight::Exit, any successor outside the loop.
694///           The weight, the successor, and its category are stored in \a
695///           Distribution.  There can be multiple edges to each successor.
696///
697///         - If there's a backedge to a non-header, there's an irreducible SCC.
698///           The usual flow is temporarily aborted.  \a
699///           computeIrreducibleMass() finds the irreducible SCCs within the
700///           loop, packages them up, and restarts the flow.
701///
702///         - Normalize the distribution:  scale weights down so that their sum
703///           is 32-bits, and coalesce multiple edges to the same node.
704///
705///         - Distribute the mass accordingly, dithering to minimize mass loss,
706///           as described in \a distributeMass().
707///
708///     Finally, calculate the loop scale from the accumulated backedge mass.
709///
710///  3. Distribute mass in the function (\a computeMassInFunction()).
711///
712///     Finally, distribute mass through the DAG resulting from packaging all
713///     loops in the function.  This uses the same algorithm as distributing
714///     mass in a loop, except that there are no exit or backedge edges.
715///
716///  4. Unpackage loops (\a unwrapLoops()).
717///
718///     Initialize each block's frequency to a floating point representation of
719///     its mass.
720///
721///     Visit loops top-down, scaling the frequencies of its immediate members
722///     by the loop's pseudo-node's frequency.
723///
724///  5. Convert frequencies to a 64-bit range (\a finalizeMetrics()).
725///
726///     Using the min and max frequencies as a guide, translate floating point
727///     frequencies to an appropriate range in uint64_t.
728///
729/// It has some known flaws.
730///
731///   - Loop scale is limited to 4096 per loop (2^12) to avoid exhausting
732///     BlockFrequency's 64-bit integer precision.
733///
734///   - The model of irreducible control flow is a rough approximation.
735///
736///     Modelling irreducible control flow exactly involves setting up and
737///     solving a group of infinite geometric series.  Such precision is
738///     unlikely to be worthwhile, since most of our algorithms give up on
739///     irreducible control flow anyway.
740///
741///     Nevertheless, we might find that we need to get closer.  Here's a sort
742///     of TODO list for the model with diminishing returns, to be completed as
743///     necessary.
744///
745///       - The headers for the \a LoopData representing an irreducible SCC
746///         include non-entry blocks.  When these extra blocks exist, they
747///         indicate a self-contained irreducible sub-SCC.  We could treat them
748///         as sub-loops, rather than arbitrarily shoving the problematic
749///         blocks into the headers of the main irreducible SCC.
750///
751///       - Backedge frequencies are assumed to be evenly split between the
752///         headers of a given irreducible SCC.  Instead, we could track the
753///         backedge mass separately for each header, and adjust their relative
754///         frequencies.
755///
756///       - Entry frequencies are assumed to be evenly split between the
757///         headers of a given irreducible SCC, which is the only option if we
758///         need to compute mass in the SCC before its parent loop.  Instead,
759///         we could partially compute mass in the parent loop, and stop when
760///         we get to the SCC.  Here, we have the correct ratio of entry
761///         masses, which we can use to adjust their relative frequencies.
762///         Compute mass in the SCC, and then continue propagation in the
763///         parent.
764///
765///       - We can propagate mass iteratively through the SCC, for some fixed
766///         number of iterations.  Each iteration starts by assigning the entry
767///         blocks their backedge mass from the prior iteration.  The final
768///         mass for each block (and each exit, and the total backedge mass
769///         used for computing loop scale) is the sum of all iterations.
770///         (Running this until fixed point would "solve" the geometric
771///         series by simulation.)
772template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
773  typedef typename bfi_detail::TypeMap<BT>::BlockT BlockT;
774  typedef typename bfi_detail::TypeMap<BT>::FunctionT FunctionT;
775  typedef typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT
776  BranchProbabilityInfoT;
777  typedef typename bfi_detail::TypeMap<BT>::LoopT LoopT;
778  typedef typename bfi_detail::TypeMap<BT>::LoopInfoT LoopInfoT;
779
780  // This is part of a workaround for a GCC 4.7 crash on lambdas.
781  friend struct bfi_detail::BlockEdgesAdder<BT>;
782
783  typedef GraphTraits<const BlockT *> Successor;
784  typedef GraphTraits<Inverse<const BlockT *>> Predecessor;
785
786  const BranchProbabilityInfoT *BPI;
787  const LoopInfoT *LI;
788  const FunctionT *F;
789
790  // All blocks in reverse postorder.
791  std::vector<const BlockT *> RPOT;
792  DenseMap<const BlockT *, BlockNode> Nodes;
793
794  typedef typename std::vector<const BlockT *>::const_iterator rpot_iterator;
795
796  rpot_iterator rpot_begin() const { return RPOT.begin(); }
797  rpot_iterator rpot_end() const { return RPOT.end(); }
798
799  size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); }
800
801  BlockNode getNode(const rpot_iterator &I) const {
802    return BlockNode(getIndex(I));
803  }
804  BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB); }
805
806  const BlockT *getBlock(const BlockNode &Node) const {
807    assert(Node.Index < RPOT.size());
808    return RPOT[Node.Index];
809  }
810
811  /// \brief Run (and save) a post-order traversal.
812  ///
813  /// Saves a reverse post-order traversal of all the nodes in \a F.
814  void initializeRPOT();
815
816  /// \brief Initialize loop data.
817  ///
818  /// Build up \a Loops using \a LoopInfo.  \a LoopInfo gives us a mapping from
819  /// each block to the deepest loop it's in, but we need the inverse.  For each
820  /// loop, we store in reverse post-order its "immediate" members, defined as
821  /// the header, the headers of immediate sub-loops, and all other blocks in
822  /// the loop that are not in sub-loops.
823  void initializeLoops();
824
825  /// \brief Propagate to a block's successors.
826  ///
827  /// In the context of distributing mass through \c OuterLoop, divide the mass
828  /// currently assigned to \c Node between its successors.
829  ///
830  /// \return \c true unless there's an irreducible backedge.
831  bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node);
832
833  /// \brief Compute mass in a particular loop.
834  ///
835  /// Assign mass to \c Loop's header, and then for each block in \c Loop in
836  /// reverse post-order, distribute mass to its successors.  Only visits nodes
837  /// that have not been packaged into sub-loops.
838  ///
839  /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop.
840  /// \return \c true unless there's an irreducible backedge.
841  bool computeMassInLoop(LoopData &Loop);
842
843  /// \brief Try to compute mass in the top-level function.
844  ///
845  /// Assign mass to the entry block, and then for each block in reverse
846  /// post-order, distribute mass to its successors.  Skips nodes that have
847  /// been packaged into loops.
848  ///
849  /// \pre \a computeMassInLoops() has been called.
850  /// \return \c true unless there's an irreducible backedge.
851  bool tryToComputeMassInFunction();
852
853  /// \brief Compute mass in (and package up) irreducible SCCs.
854  ///
855  /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front
856  /// of \c Insert), and call \a computeMassInLoop() on each of them.
857  ///
858  /// If \c OuterLoop is \c nullptr, it refers to the top-level function.
859  ///
860  /// \pre \a computeMassInLoop() has been called for each subloop of \c
861  /// OuterLoop.
862  /// \pre \c Insert points at the the last loop successfully processed by \a
863  /// computeMassInLoop().
864  /// \pre \c OuterLoop has irreducible SCCs.
865  void computeIrreducibleMass(LoopData *OuterLoop,
866                              std::list<LoopData>::iterator Insert);
867
868  /// \brief Compute mass in all loops.
869  ///
870  /// For each loop bottom-up, call \a computeMassInLoop().
871  ///
872  /// \a computeMassInLoop() aborts (and returns \c false) on loops that
873  /// contain a irreducible sub-SCCs.  Use \a computeIrreducibleMass() and then
874  /// re-enter \a computeMassInLoop().
875  ///
876  /// \post \a computeMassInLoop() has returned \c true for every loop.
877  void computeMassInLoops();
878
879  /// \brief Compute mass in the top-level function.
880  ///
881  /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to
882  /// compute mass in the top-level function.
883  ///
884  /// \post \a tryToComputeMassInFunction() has returned \c true.
885  void computeMassInFunction();
886
887  std::string getBlockName(const BlockNode &Node) const override {
888    return bfi_detail::getBlockName(getBlock(Node));
889  }
890
891public:
892  const FunctionT *getFunction() const { return F; }
893
894  void doFunction(const FunctionT *F, const BranchProbabilityInfoT *BPI,
895                  const LoopInfoT *LI);
896  BlockFrequencyInfoImpl() : BPI(nullptr), LI(nullptr), F(nullptr) {}
897
898  using BlockFrequencyInfoImplBase::getEntryFreq;
899  BlockFrequency getBlockFreq(const BlockT *BB) const {
900    return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
901  }
902  Scaled64 getFloatingBlockFreq(const BlockT *BB) const {
903    return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB));
904  }
905
906  /// \brief Print the frequencies for the current function.
907  ///
908  /// Prints the frequencies for the blocks in the current function.
909  ///
910  /// Blocks are printed in the natural iteration order of the function, rather
911  /// than reverse post-order.  This provides two advantages:  writing -analyze
912  /// tests is easier (since blocks come out in source order), and even
913  /// unreachable blocks are printed.
914  ///
915  /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so
916  /// we need to override it here.
917  raw_ostream &print(raw_ostream &OS) const override;
918  using BlockFrequencyInfoImplBase::dump;
919
920  using BlockFrequencyInfoImplBase::printBlockFreq;
921  raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const {
922    return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB));
923  }
924};
925
926template <class BT>
927void BlockFrequencyInfoImpl<BT>::doFunction(const FunctionT *F,
928                                            const BranchProbabilityInfoT *BPI,
929                                            const LoopInfoT *LI) {
930  // Save the parameters.
931  this->BPI = BPI;
932  this->LI = LI;
933  this->F = F;
934
935  // Clean up left-over data structures.
936  BlockFrequencyInfoImplBase::clear();
937  RPOT.clear();
938  Nodes.clear();
939
940  // Initialize.
941  DEBUG(dbgs() << "\nblock-frequency: " << F->getName() << "\n================="
942               << std::string(F->getName().size(), '=') << "\n");
943  initializeRPOT();
944  initializeLoops();
945
946  // Visit loops in post-order to find thelocal mass distribution, and then do
947  // the full function.
948  computeMassInLoops();
949  computeMassInFunction();
950  unwrapLoops();
951  finalizeMetrics();
952}
953
954template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() {
955  const BlockT *Entry = F->begin();
956  RPOT.reserve(F->size());
957  std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT));
958  std::reverse(RPOT.begin(), RPOT.end());
959
960  assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() &&
961         "More nodes in function than Block Frequency Info supports");
962
963  DEBUG(dbgs() << "reverse-post-order-traversal\n");
964  for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
965    BlockNode Node = getNode(I);
966    DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node) << "\n");
967    Nodes[*I] = Node;
968  }
969
970  Working.reserve(RPOT.size());
971  for (size_t Index = 0; Index < RPOT.size(); ++Index)
972    Working.emplace_back(Index);
973  Freqs.resize(RPOT.size());
974}
975
976template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
977  DEBUG(dbgs() << "loop-detection\n");
978  if (LI->empty())
979    return;
980
981  // Visit loops top down and assign them an index.
982  std::deque<std::pair<const LoopT *, LoopData *>> Q;
983  for (const LoopT *L : *LI)
984    Q.emplace_back(L, nullptr);
985  while (!Q.empty()) {
986    const LoopT *Loop = Q.front().first;
987    LoopData *Parent = Q.front().second;
988    Q.pop_front();
989
990    BlockNode Header = getNode(Loop->getHeader());
991    assert(Header.isValid());
992
993    Loops.emplace_back(Parent, Header);
994    Working[Header.Index].Loop = &Loops.back();
995    DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n");
996
997    for (const LoopT *L : *Loop)
998      Q.emplace_back(L, &Loops.back());
999  }
1000
1001  // Visit nodes in reverse post-order and add them to their deepest containing
1002  // loop.
1003  for (size_t Index = 0; Index < RPOT.size(); ++Index) {
1004    // Loop headers have already been mostly mapped.
1005    if (Working[Index].isLoopHeader()) {
1006      LoopData *ContainingLoop = Working[Index].getContainingLoop();
1007      if (ContainingLoop)
1008        ContainingLoop->Nodes.push_back(Index);
1009      continue;
1010    }
1011
1012    const LoopT *Loop = LI->getLoopFor(RPOT[Index]);
1013    if (!Loop)
1014      continue;
1015
1016    // Add this node to its containing loop's member list.
1017    BlockNode Header = getNode(Loop->getHeader());
1018    assert(Header.isValid());
1019    const auto &HeaderData = Working[Header.Index];
1020    assert(HeaderData.isLoopHeader());
1021
1022    Working[Index].Loop = HeaderData.Loop;
1023    HeaderData.Loop->Nodes.push_back(Index);
1024    DEBUG(dbgs() << " - loop = " << getBlockName(Header)
1025                 << ": member = " << getBlockName(Index) << "\n");
1026  }
1027}
1028
1029template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
1030  // Visit loops with the deepest first, and the top-level loops last.
1031  for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
1032    if (computeMassInLoop(*L))
1033      continue;
1034    auto Next = std::next(L);
1035    computeIrreducibleMass(&*L, L.base());
1036    L = std::prev(Next);
1037    if (computeMassInLoop(*L))
1038      continue;
1039    llvm_unreachable("unhandled irreducible control flow");
1040  }
1041}
1042
1043template <class BT>
1044bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) {
1045  // Compute mass in loop.
1046  DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n");
1047
1048  if (Loop.isIrreducible()) {
1049    BlockMass Remaining = BlockMass::getFull();
1050    for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
1051      auto &Mass = Working[Loop.Nodes[H].Index].getMass();
1052      Mass = Remaining * BranchProbability(1, Loop.NumHeaders - H);
1053      Remaining -= Mass;
1054    }
1055    for (const BlockNode &M : Loop.Nodes)
1056      if (!propagateMassToSuccessors(&Loop, M))
1057        llvm_unreachable("unhandled irreducible control flow");
1058  } else {
1059    Working[Loop.getHeader().Index].getMass() = BlockMass::getFull();
1060    if (!propagateMassToSuccessors(&Loop, Loop.getHeader()))
1061      llvm_unreachable("irreducible control flow to loop header!?");
1062    for (const BlockNode &M : Loop.members())
1063      if (!propagateMassToSuccessors(&Loop, M))
1064        // Irreducible backedge.
1065        return false;
1066  }
1067
1068  computeLoopScale(Loop);
1069  packageLoop(Loop);
1070  return true;
1071}
1072
1073template <class BT>
1074bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() {
1075  // Compute mass in function.
1076  DEBUG(dbgs() << "compute-mass-in-function\n");
1077  assert(!Working.empty() && "no blocks in function");
1078  assert(!Working[0].isLoopHeader() && "entry block is a loop header");
1079
1080  Working[0].getMass() = BlockMass::getFull();
1081  for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) {
1082    // Check for nodes that have been packaged.
1083    BlockNode Node = getNode(I);
1084    if (Working[Node.Index].isPackaged())
1085      continue;
1086
1087    if (!propagateMassToSuccessors(nullptr, Node))
1088      return false;
1089  }
1090  return true;
1091}
1092
1093template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
1094  if (tryToComputeMassInFunction())
1095    return;
1096  computeIrreducibleMass(nullptr, Loops.begin());
1097  if (tryToComputeMassInFunction())
1098    return;
1099  llvm_unreachable("unhandled irreducible control flow");
1100}
1101
1102/// \note This should be a lambda, but that crashes GCC 4.7.
1103namespace bfi_detail {
1104template <class BT> struct BlockEdgesAdder {
1105  typedef BT BlockT;
1106  typedef BlockFrequencyInfoImplBase::LoopData LoopData;
1107  typedef GraphTraits<const BlockT *> Successor;
1108
1109  const BlockFrequencyInfoImpl<BT> &BFI;
1110  explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI)
1111      : BFI(BFI) {}
1112  void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr,
1113                  const LoopData *OuterLoop) {
1114    const BlockT *BB = BFI.RPOT[Irr.Node.Index];
1115    for (auto I = Successor::child_begin(BB), E = Successor::child_end(BB);
1116         I != E; ++I)
1117      G.addEdge(Irr, BFI.getNode(*I), OuterLoop);
1118  }
1119};
1120}
1121template <class BT>
1122void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass(
1123    LoopData *OuterLoop, std::list<LoopData>::iterator Insert) {
1124  DEBUG(dbgs() << "analyze-irreducible-in-";
1125        if (OuterLoop) dbgs() << "loop: " << getLoopName(*OuterLoop) << "\n";
1126        else dbgs() << "function\n");
1127
1128  using namespace bfi_detail;
1129  // Ideally, addBlockEdges() would be declared here as a lambda, but that
1130  // crashes GCC 4.7.
1131  BlockEdgesAdder<BT> addBlockEdges(*this);
1132  IrreducibleGraph G(*this, OuterLoop, addBlockEdges);
1133
1134  for (auto &L : analyzeIrreducible(G, OuterLoop, Insert))
1135    computeMassInLoop(L);
1136
1137  if (!OuterLoop)
1138    return;
1139  updateLoopWithIrreducible(*OuterLoop);
1140}
1141
1142template <class BT>
1143bool
1144BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop,
1145                                                      const BlockNode &Node) {
1146  DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
1147  // Calculate probability for successors.
1148  Distribution Dist;
1149  if (auto *Loop = Working[Node.Index].getPackagedLoop()) {
1150    assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop");
1151    if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist))
1152      // Irreducible backedge.
1153      return false;
1154  } else {
1155    const BlockT *BB = getBlock(Node);
1156    for (auto SI = Successor::child_begin(BB), SE = Successor::child_end(BB);
1157         SI != SE; ++SI)
1158      // Do not dereference SI, or getEdgeWeight() is linear in the number of
1159      // successors.
1160      if (!addToDist(Dist, OuterLoop, Node, getNode(*SI),
1161                     BPI->getEdgeWeight(BB, SI)))
1162        // Irreducible backedge.
1163        return false;
1164  }
1165
1166  // Distribute mass to successors, saving exit and backedge data in the
1167  // loop header.
1168  distributeMass(Node, OuterLoop, Dist);
1169  return true;
1170}
1171
1172template <class BT>
1173raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const {
1174  if (!F)
1175    return OS;
1176  OS << "block-frequency-info: " << F->getName() << "\n";
1177  for (const BlockT &BB : *F)
1178    OS << " - " << bfi_detail::getBlockName(&BB)
1179       << ": float = " << getFloatingBlockFreq(&BB)
1180       << ", int = " << getBlockFreq(&BB).getFrequency() << "\n";
1181
1182  // Add an extra newline for readability.
1183  OS << "\n";
1184  return OS;
1185}
1186}
1187
1188#undef DEBUG_TYPE
1189
1190#endif
1191