CallGraph.h revision 6fbcc26f1460eaee4e0eb8b426fc1ff0c7af11be
1//===- CallGraph.h - Build a Module's call graph ----------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This interface is used to build and manipulate a call graph, which is a very
11// useful tool for interprocedural optimization.
12//
13// Every function in a module is represented as a node in the call graph.  The
14// callgraph node keeps track of which functions the are called by the function
15// corresponding to the node.
16//
17// A call graph will contain nodes where the function that they correspond to is
18// null.  This 'external' node is used to represent control flow that is not
19// represented (or analyzable) in the module.  As such, the external node will
20// have edges to functions with the following properties:
21//   1. All functions in the module without internal linkage, since they could
22//      be called by functions outside of the our analysis capability.
23//   2. All functions whose address is used for something more than a direct
24//      call, for example being stored into a memory location.  Since they may
25//      be called by an unknown caller later, they must be tracked as such.
26//
27// Similarly, functions have a call edge to the external node iff:
28//   1. The function is external, reflecting the fact that they could call
29//      anything without internal linkage or that has its address taken.
30//   2. The function contains an indirect function call.
31//
32// As an extension in the future, there may be multiple nodes with a null
33// function.  These will be used when we can prove (through pointer analysis)
34// that an indirect call site can call only a specific set of functions.
35//
36// Because of these properties, the CallGraph captures a conservative superset
37// of all of the caller-callee relationships, which is useful for
38// transformations.
39//
40// The CallGraph class also attempts to figure out what the root of the
41// CallGraph is, which is currently does by looking for a function named 'main'.
42// If no function named 'main' is found, the external node is used as the entry
43// node, reflecting the fact that any function without internal linkage could
44// be called into (which is common for libraries).
45//
46//===----------------------------------------------------------------------===//
47
48#ifndef LLVM_ANALYSIS_CALLGRAPH_H
49#define LLVM_ANALYSIS_CALLGRAPH_H
50
51#include "Support/GraphTraits.h"
52#include "Support/STLExtras.h"
53#include "llvm/Pass.h"
54class Function;
55class Module;
56class CallGraphNode;
57
58//===----------------------------------------------------------------------===//
59// CallGraph class definition
60//
61class CallGraph : public Pass {
62  Module *Mod;              // The module this call graph represents
63
64  typedef std::map<const Function *, CallGraphNode *> FunctionMapTy;
65  FunctionMapTy FunctionMap;    // Map from a function to its node
66
67  // Root is root of the call graph, or the external node if a 'main' function
68  // couldn't be found.  ExternalNode is equivalent to (*this)[0].
69  //
70  CallGraphNode *Root, *ExternalNode;
71public:
72
73  //===---------------------------------------------------------------------
74  // Accessors...
75  //
76  typedef FunctionMapTy::iterator iterator;
77  typedef FunctionMapTy::const_iterator const_iterator;
78
79  // getExternalNode - Return the node that points to all functions that are
80  // accessable from outside of the current program.
81  //
82        CallGraphNode *getExternalNode()       { return ExternalNode; }
83  const CallGraphNode *getExternalNode() const { return ExternalNode; }
84
85  // getRoot - Return the root of the call graph, which is either main, or if
86  // main cannot be found, the external node.
87  //
88        CallGraphNode *getRoot()       { return Root; }
89  const CallGraphNode *getRoot() const { return Root; }
90
91  inline       iterator begin()       { return FunctionMap.begin(); }
92  inline       iterator end()         { return FunctionMap.end();   }
93  inline const_iterator begin() const { return FunctionMap.begin(); }
94  inline const_iterator end()   const { return FunctionMap.end();   }
95
96
97  // Subscripting operators, return the call graph node for the provided
98  // function
99  inline const CallGraphNode *operator[](const Function *F) const {
100    const_iterator I = FunctionMap.find(F);
101    assert(I != FunctionMap.end() && "Function not in callgraph!");
102    return I->second;
103  }
104  inline CallGraphNode *operator[](const Function *F) {
105    const_iterator I = FunctionMap.find(F);
106    assert(I != FunctionMap.end() && "Function not in callgraph!");
107    return I->second;
108  }
109
110  //===---------------------------------------------------------------------
111  // Functions to keep a call graph up to date with a function that has been
112  // modified
113  //
114  void addFunctionToModule(Function *F);
115
116
117  // removeFunctionFromModule - Unlink the function from this module, returning
118  // it.  Because this removes the function from the module, the call graph node
119  // is destroyed.  This is only valid if the function does not call any other
120  // functions (ie, there are no edges in it's CGN).  The easiest way to do this
121  // is to dropAllReferences before calling this.
122  //
123  Function *removeFunctionFromModule(CallGraphNode *CGN);
124  Function *removeFunctionFromModule(Function *F) {
125    return removeFunctionFromModule((*this)[F]);
126  }
127
128
129  //===---------------------------------------------------------------------
130  // Pass infrastructure interface glue code...
131  //
132  CallGraph() : Root(0) {}
133  ~CallGraph() { destroy(); }
134
135  // run - Compute the call graph for the specified module.
136  virtual bool run(Module &M);
137
138  // getAnalysisUsage - This obviously provides a call graph
139  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
140    AU.setPreservesAll();
141  }
142
143  // releaseMemory - Data structures can be large, so free memory aggressively.
144  virtual void releaseMemory() {
145    destroy();
146  }
147
148  /// Print the types found in the module.  If the optional Module parameter is
149  /// passed in, then the types are printed symbolically if possible, using the
150  /// symbol table from the module.
151  ///
152  void print(std::ostream &o, const Module *M) const;
153
154private:
155  //===---------------------------------------------------------------------
156  // Implementation of CallGraph construction
157  //
158
159  // getNodeFor - Return the node for the specified function or create one if it
160  // does not already exist.
161  //
162  CallGraphNode *getNodeFor(Function *F);
163
164  // addToCallGraph - Add a function to the call graph, and link the node to all
165  // of the functions that it calls.
166  //
167  void addToCallGraph(Function *F);
168
169  // destroy - Release memory for the call graph
170  void destroy();
171};
172
173
174//===----------------------------------------------------------------------===//
175// CallGraphNode class definition
176//
177class CallGraphNode {
178  Function *F;
179  std::vector<CallGraphNode*> CalledFunctions;
180
181  CallGraphNode(const CallGraphNode &);           // Do not implement
182public:
183  //===---------------------------------------------------------------------
184  // Accessor methods...
185  //
186
187  typedef std::vector<CallGraphNode*>::iterator iterator;
188  typedef std::vector<CallGraphNode*>::const_iterator const_iterator;
189
190  // getFunction - Return the function that this call graph node represents...
191  Function *getFunction() const { return F; }
192
193  inline iterator begin() { return CalledFunctions.begin(); }
194  inline iterator end()   { return CalledFunctions.end();   }
195  inline const_iterator begin() const { return CalledFunctions.begin(); }
196  inline const_iterator end()   const { return CalledFunctions.end();   }
197  inline unsigned size() const { return CalledFunctions.size(); }
198
199  // Subscripting operator - Return the i'th called function...
200  //
201  CallGraphNode *operator[](unsigned i) const { return CalledFunctions[i];}
202
203
204  //===---------------------------------------------------------------------
205  // Methods to keep a call graph up to date with a function that has been
206  // modified
207  //
208
209  void removeAllCalledFunctions() {
210    CalledFunctions.clear();
211  }
212
213private:                    // Stuff to construct the node, used by CallGraph
214  friend class CallGraph;
215
216  // CallGraphNode ctor - Create a node for the specified function...
217  inline CallGraphNode(Function *f) : F(f) {}
218
219  // addCalledFunction add a function to the list of functions called by this
220  // one
221  void addCalledFunction(CallGraphNode *M) {
222    CalledFunctions.push_back(M);
223  }
224};
225
226
227
228//===----------------------------------------------------------------------===//
229// GraphTraits specializations for call graphs so that they can be treated as
230// graphs by the generic graph algorithms...
231//
232
233// Provide graph traits for tranversing call graphs using standard graph
234// traversals.
235template <> struct GraphTraits<CallGraphNode*> {
236  typedef CallGraphNode NodeType;
237  typedef NodeType::iterator ChildIteratorType;
238
239  static NodeType *getEntryNode(CallGraphNode *CGN) { return CGN; }
240  static inline ChildIteratorType child_begin(NodeType *N) { return N->begin();}
241  static inline ChildIteratorType child_end  (NodeType *N) { return N->end(); }
242};
243
244template <> struct GraphTraits<const CallGraphNode*> {
245  typedef const CallGraphNode NodeType;
246  typedef NodeType::const_iterator ChildIteratorType;
247
248  static NodeType *getEntryNode(const CallGraphNode *CGN) { return CGN; }
249  static inline ChildIteratorType child_begin(NodeType *N) { return N->begin();}
250  static inline ChildIteratorType child_end  (NodeType *N) { return N->end(); }
251};
252
253template<> struct GraphTraits<CallGraph*> : public GraphTraits<CallGraphNode*> {
254  static NodeType *getEntryNode(CallGraph *CGN) {
255    return CGN->getExternalNode();  // Start at the external node!
256  }
257  typedef std::pair<const Function*, CallGraphNode*> PairTy;
258  typedef std::pointer_to_unary_function<PairTy, CallGraphNode&> DerefFun;
259
260  // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
261  typedef mapped_iterator<CallGraph::iterator, DerefFun> nodes_iterator;
262  static nodes_iterator nodes_begin(CallGraph *CG) {
263    return map_iterator(CG->begin(), DerefFun(CGdereference));
264  }
265  static nodes_iterator nodes_end  (CallGraph *CG) {
266    return map_iterator(CG->end(), DerefFun(CGdereference));
267  }
268
269  static CallGraphNode &CGdereference (std::pair<const Function*,
270                                       CallGraphNode*> P) {
271    return *P.second;
272  }
273};
274template<> struct GraphTraits<const CallGraph*> :
275  public GraphTraits<const CallGraphNode*> {
276  static NodeType *getEntryNode(const CallGraph *CGN) {
277    return CGN->getExternalNode();
278  }
279  // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
280  typedef CallGraph::const_iterator nodes_iterator;
281  static nodes_iterator nodes_begin(const CallGraph *CG) { return CG->begin(); }
282  static nodes_iterator nodes_end  (const CallGraph *CG) { return CG->end(); }
283};
284
285#endif
286