IntervalIterator.h revision 5c3734e349a93e658454f2d4c567e5e0549461f4
1//===- IntervalIterator.h - Interval Iterator Declaration -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an iterator that enumerates the intervals in a control flow
11// graph of some sort.  This iterator is parametric, allowing iterator over the
12// following types of graphs:
13//
14//  1. A Function* object, composed of BasicBlock nodes.
15//  2. An IntervalPartition& object, composed of Interval nodes.
16//
17// This iterator is defined to walk the control flow graph, returning intervals
18// in depth first order.  These intervals are completely filled in except for
19// the predecessor fields (the successor information is filled in however).
20//
21// By default, the intervals created by this iterator are deleted after they
22// are no longer any use to the iterator.  This behavior can be changed by
23// passing a false value into the intervals_begin() function. This causes the
24// IOwnMem member to be set, and the intervals to not be deleted.
25//
26// It is only safe to use this if all of the intervals are deleted by the caller
27// and all of the intervals are processed.  However, the user of the iterator is
28// not allowed to modify or delete the intervals until after the iterator has
29// been used completely.  The IntervalPartition class uses this functionality.
30//
31//===----------------------------------------------------------------------===//
32
33#ifndef LLVM_INTERVAL_ITERATOR_H
34#define LLVM_INTERVAL_ITERATOR_H
35
36#include "llvm/Analysis/IntervalPartition.h"
37#include "llvm/Function.h"
38#include "llvm/Support/CFG.h"
39#include <stack>
40#include <set>
41#include <algorithm>
42
43namespace llvm {
44
45// getNodeHeader - Given a source graph node and the source graph, return the
46// BasicBlock that is the header node.  This is the opposite of
47// getSourceGraphNode.
48//
49inline BasicBlock *getNodeHeader(BasicBlock *BB) { return BB; }
50inline BasicBlock *getNodeHeader(Interval *I) { return I->getHeaderNode(); }
51
52// getSourceGraphNode - Given a BasicBlock and the source graph, return the
53// source graph node that corresponds to the BasicBlock.  This is the opposite
54// of getNodeHeader.
55//
56inline BasicBlock *getSourceGraphNode(Function *, BasicBlock *BB) {
57  return BB;
58}
59inline Interval *getSourceGraphNode(IntervalPartition *IP, BasicBlock *BB) {
60  return IP->getBlockInterval(BB);
61}
62
63// addNodeToInterval - This method exists to assist the generic ProcessNode
64// with the task of adding a node to the new interval, depending on the
65// type of the source node.  In the case of a CFG source graph (BasicBlock
66// case), the BasicBlock itself is added to the interval.
67//
68inline void addNodeToInterval(Interval *Int, BasicBlock *BB) {
69  Int->Nodes.push_back(BB);
70}
71
72// addNodeToInterval - This method exists to assist the generic ProcessNode
73// with the task of adding a node to the new interval, depending on the
74// type of the source node.  In the case of a CFG source graph (BasicBlock
75// case), the BasicBlock itself is added to the interval.  In the case of
76// an IntervalPartition source graph (Interval case), all of the member
77// BasicBlocks are added to the interval.
78//
79inline void addNodeToInterval(Interval *Int, Interval *I) {
80  // Add all of the nodes in I as new nodes in Int.
81  copy(I->Nodes.begin(), I->Nodes.end(), back_inserter(Int->Nodes));
82}
83
84
85
86
87
88template<class NodeTy, class OrigContainer_t, class GT = GraphTraits<NodeTy*>,
89         class IGT = GraphTraits<Inverse<NodeTy*> > >
90class IntervalIterator {
91  std::stack<std::pair<Interval*, typename Interval::succ_iterator> > IntStack;
92  std::set<BasicBlock*> Visited;
93  OrigContainer_t *OrigContainer;
94  bool IOwnMem;     // If True, delete intervals when done with them
95                    // See file header for conditions of use
96public:
97  typedef BasicBlock* _BB;
98
99  typedef IntervalIterator<NodeTy, OrigContainer_t> _Self;
100  typedef std::forward_iterator_tag iterator_category;
101
102  IntervalIterator() {} // End iterator, empty stack
103  IntervalIterator(Function *M, bool OwnMemory) : IOwnMem(OwnMemory) {
104    OrigContainer = M;
105    if (!ProcessInterval(&M->front())) {
106      assert(0 && "ProcessInterval should never fail for first interval!");
107    }
108  }
109
110  IntervalIterator(IntervalPartition &IP, bool OwnMemory) : IOwnMem(OwnMemory) {
111    OrigContainer = &IP;
112    if (!ProcessInterval(IP.getRootInterval())) {
113      assert(0 && "ProcessInterval should never fail for first interval!");
114    }
115  }
116
117  inline ~IntervalIterator() {
118    if (IOwnMem)
119      while (!IntStack.empty()) {
120	delete operator*();
121	IntStack.pop();
122      }
123  }
124
125  inline bool operator==(const _Self& x) const { return IntStack == x.IntStack;}
126  inline bool operator!=(const _Self& x) const { return !operator==(x); }
127
128  inline const Interval *operator*() const { return IntStack.top().first; }
129  inline       Interval *operator*()       { return IntStack.top().first; }
130  inline const Interval *operator->() const { return operator*(); }
131  inline       Interval *operator->()       { return operator*(); }
132
133  _Self& operator++() {  // Preincrement
134    assert(!IntStack.empty() && "Attempting to use interval iterator at end!");
135    do {
136      // All of the intervals on the stack have been visited.  Try visiting
137      // their successors now.
138      Interval::succ_iterator &SuccIt = IntStack.top().second,
139	                        EndIt = succ_end(IntStack.top().first);
140      while (SuccIt != EndIt) {                 // Loop over all interval succs
141	bool Done = ProcessInterval(getSourceGraphNode(OrigContainer, *SuccIt));
142	++SuccIt;                               // Increment iterator
143	if (Done) return *this;                 // Found a new interval! Use it!
144      }
145
146      // Free interval memory... if necessary
147      if (IOwnMem) delete IntStack.top().first;
148
149      // We ran out of successors for this interval... pop off the stack
150      IntStack.pop();
151    } while (!IntStack.empty());
152
153    return *this;
154  }
155  inline _Self operator++(int) { // Postincrement
156    _Self tmp = *this; ++*this; return tmp;
157  }
158
159private:
160  // ProcessInterval - This method is used during the construction of the
161  // interval graph.  It walks through the source graph, recursively creating
162  // an interval per invokation until the entire graph is covered.  This uses
163  // the ProcessNode method to add all of the nodes to the interval.
164  //
165  // This method is templated because it may operate on two different source
166  // graphs: a basic block graph, or a preexisting interval graph.
167  //
168  bool ProcessInterval(NodeTy *Node) {
169    BasicBlock *Header = getNodeHeader(Node);
170    if (Visited.count(Header)) return false;
171
172    Interval *Int = new Interval(Header);
173    Visited.insert(Header);   // The header has now been visited!
174
175    // Check all of our successors to see if they are in the interval...
176    for (typename GT::ChildIteratorType I = GT::child_begin(Node),
177           E = GT::child_end(Node); I != E; ++I)
178      ProcessNode(Int, getSourceGraphNode(OrigContainer, *I));
179
180    IntStack.push(std::make_pair(Int, succ_begin(Int)));
181    return true;
182  }
183
184  // ProcessNode - This method is called by ProcessInterval to add nodes to the
185  // interval being constructed, and it is also called recursively as it walks
186  // the source graph.  A node is added to the current interval only if all of
187  // its predecessors are already in the graph.  This also takes care of keeping
188  // the successor set of an interval up to date.
189  //
190  // This method is templated because it may operate on two different source
191  // graphs: a basic block graph, or a preexisting interval graph.
192  //
193  void ProcessNode(Interval *Int, NodeTy *Node) {
194    assert(Int && "Null interval == bad!");
195    assert(Node && "Null Node == bad!");
196
197    BasicBlock *NodeHeader = getNodeHeader(Node);
198
199    if (Visited.count(NodeHeader)) {     // Node already been visited?
200      if (Int->contains(NodeHeader)) {   // Already in this interval...
201	return;
202      } else {                           // In other interval, add as successor
203	if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
204	  Int->Successors.push_back(NodeHeader);
205      }
206    } else {                             // Otherwise, not in interval yet
207      for (typename IGT::ChildIteratorType I = IGT::child_begin(Node),
208             E = IGT::child_end(Node); I != E; ++I) {
209	if (!Int->contains(*I)) {        // If pred not in interval, we can't be
210	  if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
211	    Int->Successors.push_back(NodeHeader);
212	  return;                        // See you later
213	}
214      }
215
216      // If we get here, then all of the predecessors of BB are in the interval
217      // already.  In this case, we must add BB to the interval!
218      addNodeToInterval(Int, Node);
219      Visited.insert(NodeHeader);     // The node has now been visited!
220
221      if (Int->isSuccessor(NodeHeader)) {
222	// If we were in the successor list from before... remove from succ list
223	Int->Successors.erase(std::remove(Int->Successors.begin(),
224				          Int->Successors.end(), NodeHeader),
225			      Int->Successors.end());
226      }
227
228      // Now that we have discovered that Node is in the interval, perhaps some
229      // of its successors are as well?
230      for (typename GT::ChildIteratorType It = GT::child_begin(Node),
231	     End = GT::child_end(Node); It != End; ++It)
232	ProcessNode(Int, getSourceGraphNode(OrigContainer, *It));
233    }
234  }
235};
236
237typedef IntervalIterator<BasicBlock, Function> function_interval_iterator;
238typedef IntervalIterator<Interval, IntervalPartition> interval_part_interval_iterator;
239
240
241inline function_interval_iterator intervals_begin(Function *F,
242                                                  bool DeleteInts = true) {
243  return function_interval_iterator(F, DeleteInts);
244}
245inline function_interval_iterator intervals_end(Function *) {
246  return function_interval_iterator();
247}
248
249inline interval_part_interval_iterator
250   intervals_begin(IntervalPartition &IP, bool DeleteIntervals = true) {
251  return interval_part_interval_iterator(IP, DeleteIntervals);
252}
253
254inline interval_part_interval_iterator intervals_end(IntervalPartition &IP) {
255  return interval_part_interval_iterator();
256}
257
258} // End llvm namespace
259
260#endif
261