LazyCallGraph.h revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===- LazyCallGraph.h - Analysis of a Module's call graph ------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10///
11/// Implements a lazy call graph analysis and related passes for the new pass
12/// manager.
13///
14/// NB: This is *not* a traditional call graph! It is a graph which models both
15/// the current calls and potential calls. As a consequence there are many
16/// edges in this call graph that do not correspond to a 'call' or 'invoke'
17/// instruction.
18///
19/// The primary use cases of this graph analysis is to facilitate iterating
20/// across the functions of a module in ways that ensure all callees are
21/// visited prior to a caller (given any SCC constraints), or vice versa. As
22/// such is it particularly well suited to organizing CGSCC optimizations such
23/// as inlining, outlining, argument promotion, etc. That is its primary use
24/// case and motivates the design. It may not be appropriate for other
25/// purposes. The use graph of functions or some other conservative analysis of
26/// call instructions may be interesting for optimizations and subsequent
27/// analyses which don't work in the context of an overly specified
28/// potential-call-edge graph.
29///
30/// To understand the specific rules and nature of this call graph analysis,
31/// see the documentation of the \c LazyCallGraph below.
32///
33//===----------------------------------------------------------------------===//
34
35#ifndef LLVM_ANALYSIS_LAZY_CALL_GRAPH
36#define LLVM_ANALYSIS_LAZY_CALL_GRAPH
37
38#include "llvm/ADT/DenseMap.h"
39#include "llvm/ADT/PointerUnion.h"
40#include "llvm/ADT/STLExtras.h"
41#include "llvm/ADT/SmallPtrSet.h"
42#include "llvm/ADT/SmallVector.h"
43#include "llvm/IR/BasicBlock.h"
44#include "llvm/IR/Function.h"
45#include "llvm/IR/Module.h"
46#include "llvm/Support/Allocator.h"
47#include <iterator>
48
49namespace llvm {
50class ModuleAnalysisManager;
51class PreservedAnalyses;
52class raw_ostream;
53
54/// \brief A lazily constructed view of the call graph of a module.
55///
56/// With the edges of this graph, the motivating constraint that we are
57/// attempting to maintain is that function-local optimization, CGSCC-local
58/// optimizations, and optimizations transforming a pair of functions connected
59/// by an edge in the graph, do not invalidate a bottom-up traversal of the SCC
60/// DAG. That is, no optimizations will delete, remove, or add an edge such
61/// that functions already visited in a bottom-up order of the SCC DAG are no
62/// longer valid to have visited, or such that functions not yet visited in
63/// a bottom-up order of the SCC DAG are not required to have already been
64/// visited.
65///
66/// Within this constraint, the desire is to minimize the merge points of the
67/// SCC DAG. The greater the fanout of the SCC DAG and the fewer merge points
68/// in the SCC DAG, the more independence there is in optimizing within it.
69/// There is a strong desire to enable parallelization of optimizations over
70/// the call graph, and both limited fanout and merge points will (artificially
71/// in some cases) limit the scaling of such an effort.
72///
73/// To this end, graph represents both direct and any potential resolution to
74/// an indirect call edge. Another way to think about it is that it represents
75/// both the direct call edges and any direct call edges that might be formed
76/// through static optimizations. Specifically, it considers taking the address
77/// of a function to be an edge in the call graph because this might be
78/// forwarded to become a direct call by some subsequent function-local
79/// optimization. The result is that the graph closely follows the use-def
80/// edges for functions. Walking "up" the graph can be done by looking at all
81/// of the uses of a function.
82///
83/// The roots of the call graph are the external functions and functions
84/// escaped into global variables. Those functions can be called from outside
85/// of the module or via unknowable means in the IR -- we may not be able to
86/// form even a potential call edge from a function body which may dynamically
87/// load the function and call it.
88///
89/// This analysis still requires updates to remain valid after optimizations
90/// which could potentially change the set of potential callees. The
91/// constraints it operates under only make the traversal order remain valid.
92///
93/// The entire analysis must be re-computed if full interprocedural
94/// optimizations run at any point. For example, globalopt completely
95/// invalidates the information in this analysis.
96///
97/// FIXME: This class is named LazyCallGraph in a lame attempt to distinguish
98/// it from the existing CallGraph. At some point, it is expected that this
99/// will be the only call graph and it will be renamed accordingly.
100class LazyCallGraph {
101public:
102  class Node;
103  typedef SmallVector<PointerUnion<Function *, Node *>, 4> NodeVectorT;
104  typedef SmallVectorImpl<PointerUnion<Function *, Node *>> NodeVectorImplT;
105
106  /// \brief A lazy iterator used for both the entry nodes and child nodes.
107  ///
108  /// When this iterator is dereferenced, if not yet available, a function will
109  /// be scanned for "calls" or uses of functions and its child information
110  /// will be constructed. All of these results are accumulated and cached in
111  /// the graph.
112  class iterator : public std::iterator<std::bidirectional_iterator_tag, Node *,
113                                        ptrdiff_t, Node *, Node *> {
114    friend class LazyCallGraph;
115    friend class LazyCallGraph::Node;
116    typedef std::iterator<std::bidirectional_iterator_tag, Node *, ptrdiff_t,
117                          Node *, Node *> BaseT;
118
119    /// \brief Nonce type to select the constructor for the end iterator.
120    struct IsAtEndT {};
121
122    LazyCallGraph &G;
123    NodeVectorImplT::iterator NI;
124
125    // Build the begin iterator for a node.
126    explicit iterator(LazyCallGraph &G, NodeVectorImplT &Nodes)
127        : G(G), NI(Nodes.begin()) {}
128
129    // Build the end iterator for a node. This is selected purely by overload.
130    iterator(LazyCallGraph &G, NodeVectorImplT &Nodes, IsAtEndT /*Nonce*/)
131        : G(G), NI(Nodes.end()) {}
132
133  public:
134    iterator(const iterator &Arg) : G(Arg.G), NI(Arg.NI) {}
135    iterator(iterator &&Arg) : G(Arg.G), NI(std::move(Arg.NI)) {}
136    iterator &operator=(iterator Arg) {
137      std::swap(Arg, *this);
138      return *this;
139    }
140
141    bool operator==(const iterator &Arg) { return NI == Arg.NI; }
142    bool operator!=(const iterator &Arg) { return !operator==(Arg); }
143
144    reference operator*() const {
145      if (NI->is<Node *>())
146        return NI->get<Node *>();
147
148      Function *F = NI->get<Function *>();
149      Node *ChildN = G.get(*F);
150      *NI = ChildN;
151      return ChildN;
152    }
153    pointer operator->() const { return operator*(); }
154
155    iterator &operator++() {
156      ++NI;
157      return *this;
158    }
159    iterator operator++(int) {
160      iterator prev = *this;
161      ++*this;
162      return prev;
163    }
164
165    iterator &operator--() {
166      --NI;
167      return *this;
168    }
169    iterator operator--(int) {
170      iterator next = *this;
171      --*this;
172      return next;
173    }
174  };
175
176  /// \brief Construct a graph for the given module.
177  ///
178  /// This sets up the graph and computes all of the entry points of the graph.
179  /// No function definitions are scanned until their nodes in the graph are
180  /// requested during traversal.
181  LazyCallGraph(Module &M);
182
183  /// \brief Copy constructor.
184  ///
185  /// This does a deep copy of the graph. It does no verification that the
186  /// graph remains valid for the module. It is also relatively expensive.
187  LazyCallGraph(const LazyCallGraph &G);
188
189  /// \brief Move constructor.
190  ///
191  /// This is a deep move. It leaves G in an undefined but destroyable state.
192  /// Any other operation on G is likely to fail.
193  LazyCallGraph(LazyCallGraph &&G);
194
195  /// \brief Copy and move assignment.
196  LazyCallGraph &operator=(LazyCallGraph RHS) {
197    std::swap(*this, RHS);
198    return *this;
199  }
200
201  iterator begin() { return iterator(*this, EntryNodes); }
202  iterator end() { return iterator(*this, EntryNodes, iterator::IsAtEndT()); }
203
204  /// \brief Lookup a function in the graph which has already been scanned and
205  /// added.
206  Node *lookup(const Function &F) const { return NodeMap.lookup(&F); }
207
208  /// \brief Get a graph node for a given function, scanning it to populate the
209  /// graph data as necessary.
210  Node *get(Function &F) {
211    Node *&N = NodeMap[&F];
212    if (N)
213      return N;
214
215    return insertInto(F, N);
216  }
217
218private:
219  Module &M;
220
221  /// \brief Allocator that holds all the call graph nodes.
222  SpecificBumpPtrAllocator<Node> BPA;
223
224  /// \brief Maps function->node for fast lookup.
225  DenseMap<const Function *, Node *> NodeMap;
226
227  /// \brief The entry nodes to the graph.
228  ///
229  /// These nodes are reachable through "external" means. Put another way, they
230  /// escape at the module scope.
231  NodeVectorT EntryNodes;
232
233  /// \brief Set of the entry nodes to the graph.
234  SmallPtrSet<Function *, 4> EntryNodeSet;
235
236  /// \brief Helper to insert a new function, with an already looked-up entry in
237  /// the NodeMap.
238  Node *insertInto(Function &F, Node *&MappedN);
239
240  /// \brief Helper to copy a node from another graph into this one.
241  Node *copyInto(const Node &OtherN);
242
243  /// \brief Helper to move a node from another graph into this one.
244  Node *moveInto(Node &&OtherN);
245};
246
247/// \brief A node in the call graph.
248///
249/// This represents a single node. It's primary roles are to cache the list of
250/// callees, de-duplicate and provide fast testing of whether a function is
251/// a callee, and facilitate iteration of child nodes in the graph.
252class LazyCallGraph::Node {
253  friend class LazyCallGraph;
254
255  LazyCallGraph &G;
256  Function &F;
257  mutable NodeVectorT Callees;
258  SmallPtrSet<Function *, 4> CalleeSet;
259
260  /// \brief Basic constructor implements the scanning of F into Callees and
261  /// CalleeSet.
262  Node(LazyCallGraph &G, Function &F);
263
264  /// \brief Constructor used when copying a node from one graph to another.
265  Node(LazyCallGraph &G, const Node &OtherN);
266
267  /// \brief Constructor used when moving a node from one graph to another.
268  Node(LazyCallGraph &G, Node &&OtherN);
269
270public:
271  typedef LazyCallGraph::iterator iterator;
272
273  Function &getFunction() const {
274    return F;
275  };
276
277  iterator begin() const { return iterator(G, Callees); }
278  iterator end() const { return iterator(G, Callees, iterator::IsAtEndT()); }
279
280  /// Equality is defined as address equality.
281  bool operator==(const Node &N) const { return this == &N; }
282  bool operator!=(const Node &N) const { return !operator==(N); }
283};
284
285// Provide GraphTraits specializations for call graphs.
286template <> struct GraphTraits<LazyCallGraph::Node *> {
287  typedef LazyCallGraph::Node NodeType;
288  typedef LazyCallGraph::iterator ChildIteratorType;
289
290  static NodeType *getEntryNode(NodeType *N) { return N; }
291  static ChildIteratorType child_begin(NodeType *N) { return N->begin(); }
292  static ChildIteratorType child_end(NodeType *N) { return N->end(); }
293};
294template <> struct GraphTraits<LazyCallGraph *> {
295  typedef LazyCallGraph::Node NodeType;
296  typedef LazyCallGraph::iterator ChildIteratorType;
297
298  static NodeType *getEntryNode(NodeType *N) { return N; }
299  static ChildIteratorType child_begin(NodeType *N) { return N->begin(); }
300  static ChildIteratorType child_end(NodeType *N) { return N->end(); }
301};
302
303/// \brief An analysis pass which computes the call graph for a module.
304class LazyCallGraphAnalysis {
305public:
306  /// \brief Inform generic clients of the result type.
307  typedef LazyCallGraph Result;
308
309  static void *ID() { return (void *)&PassID; }
310
311  /// \brief Compute the \c LazyCallGraph for a the module \c M.
312  ///
313  /// This just builds the set of entry points to the call graph. The rest is
314  /// built lazily as it is walked.
315  LazyCallGraph run(Module *M) { return LazyCallGraph(*M); }
316
317private:
318  static char PassID;
319};
320
321/// \brief A pass which prints the call graph to a \c raw_ostream.
322///
323/// This is primarily useful for testing the analysis.
324class LazyCallGraphPrinterPass {
325  raw_ostream &OS;
326
327public:
328  explicit LazyCallGraphPrinterPass(raw_ostream &OS);
329
330  PreservedAnalyses run(Module *M, ModuleAnalysisManager *AM);
331
332  static StringRef name() { return "LazyCallGraphPrinterPass"; }
333};
334
335}
336
337#endif
338