LoopInfo.h revision 0712108d22d5fdc5ea447ef701d843b25bd52d10
1//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  A natural loop
12// has exactly one entry-point, which is called the header. Note that natural
13// loops may actually be several loops that share the same header node.
14//
15// This analysis calculates the nesting structure of loops in a function.  For
16// each natural loop identified, this analysis identifies natural loops
17// contained entirely within the loop and the basic blocks the make up the loop.
18//
19// It can calculate on the fly various bits of information, for example:
20//
21//  * whether there is a preheader for the loop
22//  * the number of back edges to the header
23//  * whether or not a particular block branches out of the loop
24//  * the successor blocks of the loop
25//  * the loop depth
26//  * the trip count
27//  * etc...
28//
29//===----------------------------------------------------------------------===//
30
31#ifndef LLVM_ANALYSIS_LOOP_INFO_H
32#define LLVM_ANALYSIS_LOOP_INFO_H
33
34#include "llvm/Pass.h"
35#include "llvm/ADT/DenseMap.h"
36#include "llvm/ADT/DepthFirstIterator.h"
37#include "llvm/ADT/GraphTraits.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/STLExtras.h"
40#include "llvm/Analysis/Dominators.h"
41#include "llvm/Support/CFG.h"
42#include "llvm/Support/raw_ostream.h"
43#include <algorithm>
44#include <map>
45
46namespace llvm {
47
48template<typename T>
49static void RemoveFromVector(std::vector<T*> &V, T *N) {
50  typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
51  assert(I != V.end() && "N is not in this list!");
52  V.erase(I);
53}
54
55class DominatorTree;
56class LoopInfo;
57class Loop;
58class PHINode;
59template<class N, class M> class LoopInfoBase;
60template<class N, class M> class LoopBase;
61
62//===----------------------------------------------------------------------===//
63/// LoopBase class - Instances of this class are used to represent loops that
64/// are detected in the flow graph
65///
66template<class BlockT, class LoopT>
67class LoopBase {
68  LoopT *ParentLoop;
69  // SubLoops - Loops contained entirely within this one.
70  std::vector<LoopT *> SubLoops;
71
72  // Blocks - The list of blocks in this loop.  First entry is the header node.
73  std::vector<BlockT*> Blocks;
74
75  // DO NOT IMPLEMENT
76  LoopBase(const LoopBase<BlockT, LoopT> &);
77  // DO NOT IMPLEMENT
78  const LoopBase<BlockT, LoopT>&operator=(const LoopBase<BlockT, LoopT> &);
79public:
80  /// Loop ctor - This creates an empty loop.
81  LoopBase() : ParentLoop(0) {}
82  ~LoopBase() {
83    for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
84      delete SubLoops[i];
85  }
86
87  /// getLoopDepth - Return the nesting level of this loop.  An outer-most
88  /// loop has depth 1, for consistency with loop depth values used for basic
89  /// blocks, where depth 0 is used for blocks not inside any loops.
90  unsigned getLoopDepth() const {
91    unsigned D = 1;
92    for (const LoopT *CurLoop = ParentLoop; CurLoop;
93         CurLoop = CurLoop->ParentLoop)
94      ++D;
95    return D;
96  }
97  BlockT *getHeader() const { return Blocks.front(); }
98  LoopT *getParentLoop() const { return ParentLoop; }
99
100  /// contains - Return true if the specified loop is contained within in
101  /// this loop.
102  ///
103  bool contains(const LoopT *L) const {
104    if (L == this) return true;
105    if (L == 0)    return false;
106    return contains(L->getParentLoop());
107  }
108
109  /// contains - Return true if the specified basic block is in this loop.
110  ///
111  bool contains(const BlockT *BB) const {
112    return std::find(block_begin(), block_end(), BB) != block_end();
113  }
114
115  /// contains - Return true if the specified instruction is in this loop.
116  ///
117  template<class InstT>
118  bool contains(const InstT *Inst) const {
119    return contains(Inst->getParent());
120  }
121
122  /// iterator/begin/end - Return the loops contained entirely within this loop.
123  ///
124  const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
125  typedef typename std::vector<LoopT *>::const_iterator iterator;
126  iterator begin() const { return SubLoops.begin(); }
127  iterator end() const { return SubLoops.end(); }
128  bool empty() const { return SubLoops.empty(); }
129
130  /// getBlocks - Get a list of the basic blocks which make up this loop.
131  ///
132  const std::vector<BlockT*> &getBlocks() const { return Blocks; }
133  typedef typename std::vector<BlockT*>::const_iterator block_iterator;
134  block_iterator block_begin() const { return Blocks.begin(); }
135  block_iterator block_end() const { return Blocks.end(); }
136
137  /// isLoopExiting - True if terminator in the block can branch to another
138  /// block that is outside of the current loop.
139  ///
140  bool isLoopExiting(const BlockT *BB) const {
141    typedef GraphTraits<BlockT*> BlockTraits;
142    for (typename BlockTraits::ChildIteratorType SI =
143         BlockTraits::child_begin(const_cast<BlockT*>(BB)),
144         SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
145      if (!contains(*SI))
146        return true;
147    }
148    return false;
149  }
150
151  /// getNumBackEdges - Calculate the number of back edges to the loop header
152  ///
153  unsigned getNumBackEdges() const {
154    unsigned NumBackEdges = 0;
155    BlockT *H = getHeader();
156
157    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
158    for (typename InvBlockTraits::ChildIteratorType I =
159         InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
160         E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
161      if (contains(*I))
162        ++NumBackEdges;
163
164    return NumBackEdges;
165  }
166
167  //===--------------------------------------------------------------------===//
168  // APIs for simple analysis of the loop.
169  //
170  // Note that all of these methods can fail on general loops (ie, there may not
171  // be a preheader, etc).  For best success, the loop simplification and
172  // induction variable canonicalization pass should be used to normalize loops
173  // for easy analysis.  These methods assume canonical loops.
174
175  /// getExitingBlocks - Return all blocks inside the loop that have successors
176  /// outside of the loop.  These are the blocks _inside of the current loop_
177  /// which branch out.  The returned list is always unique.
178  ///
179  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
180    // Sort the blocks vector so that we can use binary search to do quick
181    // lookups.
182    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
183    std::sort(LoopBBs.begin(), LoopBBs.end());
184
185    typedef GraphTraits<BlockT*> BlockTraits;
186    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
187      for (typename BlockTraits::ChildIteratorType I =
188          BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
189          I != E; ++I)
190        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
191          // Not in current loop? It must be an exit block.
192          ExitingBlocks.push_back(*BI);
193          break;
194        }
195  }
196
197  /// getExitingBlock - If getExitingBlocks would return exactly one block,
198  /// return that block. Otherwise return null.
199  BlockT *getExitingBlock() const {
200    SmallVector<BlockT*, 8> ExitingBlocks;
201    getExitingBlocks(ExitingBlocks);
202    if (ExitingBlocks.size() == 1)
203      return ExitingBlocks[0];
204    return 0;
205  }
206
207  /// getExitBlocks - Return all of the successor blocks of this loop.  These
208  /// are the blocks _outside of the current loop_ which are branched to.
209  ///
210  void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
211    // Sort the blocks vector so that we can use binary search to do quick
212    // lookups.
213    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
214    std::sort(LoopBBs.begin(), LoopBBs.end());
215
216    typedef GraphTraits<BlockT*> BlockTraits;
217    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
218      for (typename BlockTraits::ChildIteratorType I =
219           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
220           I != E; ++I)
221        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
222          // Not in current loop? It must be an exit block.
223          ExitBlocks.push_back(*I);
224  }
225
226  /// getExitBlock - If getExitBlocks would return exactly one block,
227  /// return that block. Otherwise return null.
228  BlockT *getExitBlock() const {
229    SmallVector<BlockT*, 8> ExitBlocks;
230    getExitBlocks(ExitBlocks);
231    if (ExitBlocks.size() == 1)
232      return ExitBlocks[0];
233    return 0;
234  }
235
236  /// Edge type.
237  typedef std::pair<BlockT*, BlockT*> Edge;
238
239  /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
240  template <typename EdgeT>
241  void getExitEdges(SmallVectorImpl<EdgeT> &ExitEdges) const {
242    // Sort the blocks vector so that we can use binary search to do quick
243    // lookups.
244    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
245    array_pod_sort(LoopBBs.begin(), LoopBBs.end());
246
247    typedef GraphTraits<BlockT*> BlockTraits;
248    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
249      for (typename BlockTraits::ChildIteratorType I =
250           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
251           I != E; ++I)
252        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
253          // Not in current loop? It must be an exit block.
254          ExitEdges.push_back(EdgeT(*BI, *I));
255  }
256
257  /// getLoopPreheader - If there is a preheader for this loop, return it.  A
258  /// loop has a preheader if there is only one edge to the header of the loop
259  /// from outside of the loop.  If this is the case, the block branching to the
260  /// header of the loop is the preheader node.
261  ///
262  /// This method returns null if there is no preheader for the loop.
263  ///
264  BlockT *getLoopPreheader() const {
265    // Keep track of nodes outside the loop branching to the header...
266    BlockT *Out = getLoopPredecessor();
267    if (!Out) return 0;
268
269    // Make sure there is only one exit out of the preheader.
270    typedef GraphTraits<BlockT*> BlockTraits;
271    typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
272    ++SI;
273    if (SI != BlockTraits::child_end(Out))
274      return 0;  // Multiple exits from the block, must not be a preheader.
275
276    // The predecessor has exactly one successor, so it is a preheader.
277    return Out;
278  }
279
280  /// getLoopPredecessor - If the given loop's header has exactly one unique
281  /// predecessor outside the loop, return it. Otherwise return null.
282  /// This is less strict that the loop "preheader" concept, which requires
283  /// the predecessor to have exactly one successor.
284  ///
285  BlockT *getLoopPredecessor() const {
286    // Keep track of nodes outside the loop branching to the header...
287    BlockT *Out = 0;
288
289    // Loop over the predecessors of the header node...
290    BlockT *Header = getHeader();
291    typedef GraphTraits<BlockT*> BlockTraits;
292    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
293    for (typename InvBlockTraits::ChildIteratorType PI =
294         InvBlockTraits::child_begin(Header),
295         PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
296      typename InvBlockTraits::NodeType *N = *PI;
297      if (!contains(N)) {     // If the block is not in the loop...
298        if (Out && Out != N)
299          return 0;             // Multiple predecessors outside the loop
300        Out = N;
301      }
302    }
303
304    // Make sure there is only one exit out of the preheader.
305    assert(Out && "Header of loop has no predecessors from outside loop?");
306    return Out;
307  }
308
309  /// getLoopLatch - If there is a single latch block for this loop, return it.
310  /// A latch block is a block that contains a branch back to the header.
311  BlockT *getLoopLatch() const {
312    BlockT *Header = getHeader();
313    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
314    typename InvBlockTraits::ChildIteratorType PI =
315                                            InvBlockTraits::child_begin(Header);
316    typename InvBlockTraits::ChildIteratorType PE =
317                                              InvBlockTraits::child_end(Header);
318    BlockT *Latch = 0;
319    for (; PI != PE; ++PI) {
320      typename InvBlockTraits::NodeType *N = *PI;
321      if (contains(N)) {
322        if (Latch) return 0;
323        Latch = N;
324      }
325    }
326
327    return Latch;
328  }
329
330  //===--------------------------------------------------------------------===//
331  // APIs for updating loop information after changing the CFG
332  //
333
334  /// addBasicBlockToLoop - This method is used by other analyses to update loop
335  /// information.  NewBB is set to be a new member of the current loop.
336  /// Because of this, it is added as a member of all parent loops, and is added
337  /// to the specified LoopInfo object as being in the current basic block.  It
338  /// is not valid to replace the loop header with this method.
339  ///
340  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
341
342  /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
343  /// the OldChild entry in our children list with NewChild, and updates the
344  /// parent pointer of OldChild to be null and the NewChild to be this loop.
345  /// This updates the loop depth of the new child.
346  void replaceChildLoopWith(LoopT *OldChild,
347                            LoopT *NewChild) {
348    assert(OldChild->ParentLoop == this && "This loop is already broken!");
349    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
350    typename std::vector<LoopT *>::iterator I =
351                          std::find(SubLoops.begin(), SubLoops.end(), OldChild);
352    assert(I != SubLoops.end() && "OldChild not in loop!");
353    *I = NewChild;
354    OldChild->ParentLoop = 0;
355    NewChild->ParentLoop = static_cast<LoopT *>(this);
356  }
357
358  /// addChildLoop - Add the specified loop to be a child of this loop.  This
359  /// updates the loop depth of the new child.
360  ///
361  void addChildLoop(LoopT *NewChild) {
362    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
363    NewChild->ParentLoop = static_cast<LoopT *>(this);
364    SubLoops.push_back(NewChild);
365  }
366
367  /// removeChildLoop - This removes the specified child from being a subloop of
368  /// this loop.  The loop is not deleted, as it will presumably be inserted
369  /// into another loop.
370  LoopT *removeChildLoop(iterator I) {
371    assert(I != SubLoops.end() && "Cannot remove end iterator!");
372    LoopT *Child = *I;
373    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
374    SubLoops.erase(SubLoops.begin()+(I-begin()));
375    Child->ParentLoop = 0;
376    return Child;
377  }
378
379  /// addBlockEntry - This adds a basic block directly to the basic block list.
380  /// This should only be used by transformations that create new loops.  Other
381  /// transformations should use addBasicBlockToLoop.
382  void addBlockEntry(BlockT *BB) {
383    Blocks.push_back(BB);
384  }
385
386  /// moveToHeader - This method is used to move BB (which must be part of this
387  /// loop) to be the loop header of the loop (the block that dominates all
388  /// others).
389  void moveToHeader(BlockT *BB) {
390    if (Blocks[0] == BB) return;
391    for (unsigned i = 0; ; ++i) {
392      assert(i != Blocks.size() && "Loop does not contain BB!");
393      if (Blocks[i] == BB) {
394        Blocks[i] = Blocks[0];
395        Blocks[0] = BB;
396        return;
397      }
398    }
399  }
400
401  /// removeBlockFromLoop - This removes the specified basic block from the
402  /// current loop, updating the Blocks as appropriate.  This does not update
403  /// the mapping in the LoopInfo class.
404  void removeBlockFromLoop(BlockT *BB) {
405    RemoveFromVector(Blocks, BB);
406  }
407
408  /// verifyLoop - Verify loop structure
409  void verifyLoop() const {
410#ifndef NDEBUG
411    assert(!Blocks.empty() && "Loop header is missing");
412
413    // Sort the blocks vector so that we can use binary search to do quick
414    // lookups.
415    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
416    std::sort(LoopBBs.begin(), LoopBBs.end());
417
418    // Check the individual blocks.
419    for (block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
420      BlockT *BB = *I;
421      bool HasInsideLoopSuccs = false;
422      bool HasInsideLoopPreds = false;
423      SmallVector<BlockT *, 2> OutsideLoopPreds;
424
425      typedef GraphTraits<BlockT*> BlockTraits;
426      for (typename BlockTraits::ChildIteratorType SI =
427           BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
428           SI != SE; ++SI)
429        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *SI)) {
430          HasInsideLoopSuccs = true;
431          break;
432        }
433      typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
434      for (typename InvBlockTraits::ChildIteratorType PI =
435           InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
436           PI != PE; ++PI) {
437        typename InvBlockTraits::NodeType *N = *PI;
438        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), N))
439          HasInsideLoopPreds = true;
440        else
441          OutsideLoopPreds.push_back(N);
442      }
443
444      if (BB == getHeader()) {
445        assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
446      } else if (!OutsideLoopPreds.empty()) {
447        // A non-header loop shouldn't be reachable from outside the loop,
448        // though it is permitted if the predecessor is not itself actually
449        // reachable.
450        BlockT *EntryBB = BB->getParent()->begin();
451        for (df_iterator<BlockT *> NI = df_begin(EntryBB),
452             NE = df_end(EntryBB); NI != NE; ++NI)
453          for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
454            assert(*NI != OutsideLoopPreds[i] &&
455                   "Loop has multiple entry points!");
456      }
457      assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
458      assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
459      assert(BB != getHeader()->getParent()->begin() &&
460             "Loop contains function entry block!");
461    }
462
463    // Check the subloops.
464    for (iterator I = begin(), E = end(); I != E; ++I)
465      // Each block in each subloop should be contained within this loop.
466      for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
467           BI != BE; ++BI) {
468        assert(std::binary_search(LoopBBs.begin(), LoopBBs.end(), *BI) &&
469               "Loop does not contain all the blocks of a subloop!");
470      }
471
472    // Check the parent loop pointer.
473    if (ParentLoop) {
474      assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
475               ParentLoop->end() &&
476             "Loop is not a subloop of its parent!");
477    }
478#endif
479  }
480
481  /// verifyLoop - Verify loop structure of this loop and all nested loops.
482  void verifyLoopNest() const {
483    // Verify this loop.
484    verifyLoop();
485    // Verify the subloops.
486    for (iterator I = begin(), E = end(); I != E; ++I)
487      (*I)->verifyLoopNest();
488  }
489
490  void print(raw_ostream &OS, unsigned Depth = 0) const {
491    OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
492       << " containing: ";
493
494    for (unsigned i = 0; i < getBlocks().size(); ++i) {
495      if (i) OS << ",";
496      BlockT *BB = getBlocks()[i];
497      WriteAsOperand(OS, BB, false);
498      if (BB == getHeader())    OS << "<header>";
499      if (BB == getLoopLatch()) OS << "<latch>";
500      if (isLoopExiting(BB))    OS << "<exiting>";
501    }
502    OS << "\n";
503
504    for (iterator I = begin(), E = end(); I != E; ++I)
505      (*I)->print(OS, Depth+2);
506  }
507
508protected:
509  friend class LoopInfoBase<BlockT, LoopT>;
510  explicit LoopBase(BlockT *BB) : ParentLoop(0) {
511    Blocks.push_back(BB);
512  }
513};
514
515template<class BlockT, class LoopT>
516raw_ostream& operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
517  Loop.print(OS);
518  return OS;
519}
520
521class Loop : public LoopBase<BasicBlock, Loop> {
522public:
523  Loop() {}
524
525  /// isLoopInvariant - Return true if the specified value is loop invariant
526  ///
527  bool isLoopInvariant(Value *V) const;
528
529  /// hasLoopInvariantOperands - Return true if all the operands of the
530  /// specified instruction are loop invariant.
531  bool hasLoopInvariantOperands(Instruction *I) const;
532
533  /// makeLoopInvariant - If the given value is an instruction inside of the
534  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
535  /// Return true if the value after any hoisting is loop invariant. This
536  /// function can be used as a slightly more aggressive replacement for
537  /// isLoopInvariant.
538  ///
539  /// If InsertPt is specified, it is the point to hoist instructions to.
540  /// If null, the terminator of the loop preheader is used.
541  ///
542  bool makeLoopInvariant(Value *V, bool &Changed,
543                         Instruction *InsertPt = 0) const;
544
545  /// makeLoopInvariant - If the given instruction is inside of the
546  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
547  /// Return true if the instruction after any hoisting is loop invariant. This
548  /// function can be used as a slightly more aggressive replacement for
549  /// isLoopInvariant.
550  ///
551  /// If InsertPt is specified, it is the point to hoist instructions to.
552  /// If null, the terminator of the loop preheader is used.
553  ///
554  bool makeLoopInvariant(Instruction *I, bool &Changed,
555                         Instruction *InsertPt = 0) const;
556
557  /// getCanonicalInductionVariable - Check to see if the loop has a canonical
558  /// induction variable: an integer recurrence that starts at 0 and increments
559  /// by one each time through the loop.  If so, return the phi node that
560  /// corresponds to it.
561  ///
562  /// The IndVarSimplify pass transforms loops to have a canonical induction
563  /// variable.
564  ///
565  PHINode *getCanonicalInductionVariable() const;
566
567  /// getTripCount - Return a loop-invariant LLVM value indicating the number of
568  /// times the loop will be executed.  Note that this means that the backedge
569  /// of the loop executes N-1 times.  If the trip-count cannot be determined,
570  /// this returns null.
571  ///
572  /// The IndVarSimplify pass transforms loops to have a form that this
573  /// function easily understands.
574  ///
575  Value *getTripCount() const;
576
577  /// getSmallConstantTripCount - Returns the trip count of this loop as a
578  /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
579  /// of not constant. Will also return 0 if the trip count is very large
580  /// (>= 2^32)
581  ///
582  /// The IndVarSimplify pass transforms loops to have a form that this
583  /// function easily understands.
584  ///
585  unsigned getSmallConstantTripCount() const;
586
587  /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
588  /// trip count of this loop as a normal unsigned value, if possible. This
589  /// means that the actual trip count is always a multiple of the returned
590  /// value (don't forget the trip count could very well be zero as well!).
591  ///
592  /// Returns 1 if the trip count is unknown or not guaranteed to be the
593  /// multiple of a constant (which is also the case if the trip count is simply
594  /// constant, use getSmallConstantTripCount for that case), Will also return 1
595  /// if the trip count is very large (>= 2^32).
596  unsigned getSmallConstantTripMultiple() const;
597
598  /// isLCSSAForm - Return true if the Loop is in LCSSA form
599  bool isLCSSAForm(DominatorTree &DT) const;
600
601  /// isLoopSimplifyForm - Return true if the Loop is in the form that
602  /// the LoopSimplify form transforms loops to, which is sometimes called
603  /// normal form.
604  bool isLoopSimplifyForm() const;
605
606  /// hasDedicatedExits - Return true if no exit block for the loop
607  /// has a predecessor that is outside the loop.
608  bool hasDedicatedExits() const;
609
610  /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
611  /// These are the blocks _outside of the current loop_ which are branched to.
612  /// This assumes that loop exits are in canonical form.
613  ///
614  void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
615
616  /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
617  /// block, return that block. Otherwise return null.
618  BasicBlock *getUniqueExitBlock() const;
619
620  void dump() const;
621
622private:
623  friend class LoopInfoBase<BasicBlock, Loop>;
624  explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
625};
626
627//===----------------------------------------------------------------------===//
628/// LoopInfo - This class builds and contains all of the top level loop
629/// structures in the specified function.
630///
631
632template<class BlockT, class LoopT>
633class LoopInfoBase {
634  // BBMap - Mapping of basic blocks to the inner most loop they occur in
635  DenseMap<BlockT *, LoopT *> BBMap;
636  std::vector<LoopT *> TopLevelLoops;
637  friend class LoopBase<BlockT, LoopT>;
638
639  void operator=(const LoopInfoBase &); // do not implement
640  LoopInfoBase(const LoopInfo &);       // do not implement
641public:
642  LoopInfoBase() { }
643  ~LoopInfoBase() { releaseMemory(); }
644
645  void releaseMemory() {
646    for (typename std::vector<LoopT *>::iterator I =
647         TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
648      delete *I;   // Delete all of the loops...
649
650    BBMap.clear();                           // Reset internal state of analysis
651    TopLevelLoops.clear();
652  }
653
654  /// iterator/begin/end - The interface to the top-level loops in the current
655  /// function.
656  ///
657  typedef typename std::vector<LoopT *>::const_iterator iterator;
658  iterator begin() const { return TopLevelLoops.begin(); }
659  iterator end() const { return TopLevelLoops.end(); }
660  bool empty() const { return TopLevelLoops.empty(); }
661
662  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
663  /// block is in no loop (for example the entry node), null is returned.
664  ///
665  LoopT *getLoopFor(const BlockT *BB) const {
666    typename DenseMap<BlockT *, LoopT *>::const_iterator I=
667      BBMap.find(const_cast<BlockT*>(BB));
668    return I != BBMap.end() ? I->second : 0;
669  }
670
671  /// operator[] - same as getLoopFor...
672  ///
673  const LoopT *operator[](const BlockT *BB) const {
674    return getLoopFor(BB);
675  }
676
677  /// getLoopDepth - Return the loop nesting level of the specified block.  A
678  /// depth of 0 means the block is not inside any loop.
679  ///
680  unsigned getLoopDepth(const BlockT *BB) const {
681    const LoopT *L = getLoopFor(BB);
682    return L ? L->getLoopDepth() : 0;
683  }
684
685  // isLoopHeader - True if the block is a loop header node
686  bool isLoopHeader(BlockT *BB) const {
687    const LoopT *L = getLoopFor(BB);
688    return L && L->getHeader() == BB;
689  }
690
691  /// removeLoop - This removes the specified top-level loop from this loop info
692  /// object.  The loop is not deleted, as it will presumably be inserted into
693  /// another loop.
694  LoopT *removeLoop(iterator I) {
695    assert(I != end() && "Cannot remove end iterator!");
696    LoopT *L = *I;
697    assert(L->getParentLoop() == 0 && "Not a top-level loop!");
698    TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
699    return L;
700  }
701
702  /// changeLoopFor - Change the top-level loop that contains BB to the
703  /// specified loop.  This should be used by transformations that restructure
704  /// the loop hierarchy tree.
705  void changeLoopFor(BlockT *BB, LoopT *L) {
706    LoopT *&OldLoop = BBMap[BB];
707    assert(OldLoop && "Block not in a loop yet!");
708    OldLoop = L;
709  }
710
711  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
712  /// list with the indicated loop.
713  void changeTopLevelLoop(LoopT *OldLoop,
714                          LoopT *NewLoop) {
715    typename std::vector<LoopT *>::iterator I =
716                 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
717    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
718    *I = NewLoop;
719    assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
720           "Loops already embedded into a subloop!");
721  }
722
723  /// addTopLevelLoop - This adds the specified loop to the collection of
724  /// top-level loops.
725  void addTopLevelLoop(LoopT *New) {
726    assert(New->getParentLoop() == 0 && "Loop already in subloop!");
727    TopLevelLoops.push_back(New);
728  }
729
730  /// removeBlock - This method completely removes BB from all data structures,
731  /// including all of the Loop objects it is nested in and our mapping from
732  /// BasicBlocks to loops.
733  void removeBlock(BlockT *BB) {
734    typename DenseMap<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
735    if (I != BBMap.end()) {
736      for (LoopT *L = I->second; L; L = L->getParentLoop())
737        L->removeBlockFromLoop(BB);
738
739      BBMap.erase(I);
740    }
741  }
742
743  // Internals
744
745  static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
746                                      const LoopT *ParentLoop) {
747    if (SubLoop == 0) return true;
748    if (SubLoop == ParentLoop) return false;
749    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
750  }
751
752  void Calculate(DominatorTreeBase<BlockT> &DT) {
753    BlockT *RootNode = DT.getRootNode()->getBlock();
754
755    for (df_iterator<BlockT*> NI = df_begin(RootNode),
756           NE = df_end(RootNode); NI != NE; ++NI)
757      if (LoopT *L = ConsiderForLoop(*NI, DT))
758        TopLevelLoops.push_back(L);
759  }
760
761  LoopT *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
762    if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node?
763
764    std::vector<BlockT *> TodoStack;
765
766    // Scan the predecessors of BB, checking to see if BB dominates any of
767    // them.  This identifies backedges which target this node...
768    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
769    for (typename InvBlockTraits::ChildIteratorType I =
770         InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
771         I != E; ++I) {
772      typename InvBlockTraits::NodeType *N = *I;
773      if (DT.dominates(BB, N))   // If BB dominates its predecessor...
774          TodoStack.push_back(N);
775    }
776
777    if (TodoStack.empty()) return 0;  // No backedges to this block...
778
779    // Create a new loop to represent this basic block...
780    LoopT *L = new LoopT(BB);
781    BBMap[BB] = L;
782
783    BlockT *EntryBlock = BB->getParent()->begin();
784
785    while (!TodoStack.empty()) {  // Process all the nodes in the loop
786      BlockT *X = TodoStack.back();
787      TodoStack.pop_back();
788
789      if (!L->contains(X) &&         // As of yet unprocessed??
790          DT.dominates(EntryBlock, X)) {   // X is reachable from entry block?
791        // Check to see if this block already belongs to a loop.  If this occurs
792        // then we have a case where a loop that is supposed to be a child of
793        // the current loop was processed before the current loop.  When this
794        // occurs, this child loop gets added to a part of the current loop,
795        // making it a sibling to the current loop.  We have to reparent this
796        // loop.
797        if (LoopT *SubLoop =
798            const_cast<LoopT *>(getLoopFor(X)))
799          if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
800            // Remove the subloop from its current parent...
801            assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
802            LoopT *SLP = SubLoop->ParentLoop;  // SubLoopParent
803            typename std::vector<LoopT *>::iterator I =
804              std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
805            assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
806            SLP->SubLoops.erase(I);   // Remove from parent...
807
808            // Add the subloop to THIS loop...
809            SubLoop->ParentLoop = L;
810            L->SubLoops.push_back(SubLoop);
811          }
812
813        // Normal case, add the block to our loop...
814        L->Blocks.push_back(X);
815
816        typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
817
818        // Add all of the predecessors of X to the end of the work stack...
819        TodoStack.insert(TodoStack.end(), InvBlockTraits::child_begin(X),
820                         InvBlockTraits::child_end(X));
821      }
822    }
823
824    // If there are any loops nested within this loop, create them now!
825    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
826         E = L->Blocks.end(); I != E; ++I)
827      if (LoopT *NewLoop = ConsiderForLoop(*I, DT)) {
828        L->SubLoops.push_back(NewLoop);
829        NewLoop->ParentLoop = L;
830      }
831
832    // Add the basic blocks that comprise this loop to the BBMap so that this
833    // loop can be found for them.
834    //
835    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
836           E = L->Blocks.end(); I != E; ++I)
837      BBMap.insert(std::make_pair(*I, L));
838
839    // Now that we have a list of all of the child loops of this loop, check to
840    // see if any of them should actually be nested inside of each other.  We
841    // can accidentally pull loops our of their parents, so we must make sure to
842    // organize the loop nests correctly now.
843    {
844      std::map<BlockT *, LoopT *> ContainingLoops;
845      for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
846        LoopT *Child = L->SubLoops[i];
847        assert(Child->getParentLoop() == L && "Not proper child loop?");
848
849        if (LoopT *ContainingLoop = ContainingLoops[Child->getHeader()]) {
850          // If there is already a loop which contains this loop, move this loop
851          // into the containing loop.
852          MoveSiblingLoopInto(Child, ContainingLoop);
853          --i;  // The loop got removed from the SubLoops list.
854        } else {
855          // This is currently considered to be a top-level loop.  Check to see
856          // if any of the contained blocks are loop headers for subloops we
857          // have already processed.
858          for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
859            LoopT *&BlockLoop = ContainingLoops[Child->Blocks[b]];
860            if (BlockLoop == 0) {   // Child block not processed yet...
861              BlockLoop = Child;
862            } else if (BlockLoop != Child) {
863              LoopT *SubLoop = BlockLoop;
864              // Reparent all of the blocks which used to belong to BlockLoops
865              for (unsigned j = 0, f = SubLoop->Blocks.size(); j != f; ++j)
866                ContainingLoops[SubLoop->Blocks[j]] = Child;
867
868              // There is already a loop which contains this block, that means
869              // that we should reparent the loop which the block is currently
870              // considered to belong to to be a child of this loop.
871              MoveSiblingLoopInto(SubLoop, Child);
872              --i;  // We just shrunk the SubLoops list.
873            }
874          }
875        }
876      }
877    }
878
879    return L;
880  }
881
882  /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
883  /// of the NewParent Loop, instead of being a sibling of it.
884  void MoveSiblingLoopInto(LoopT *NewChild,
885                           LoopT *NewParent) {
886    LoopT *OldParent = NewChild->getParentLoop();
887    assert(OldParent && OldParent == NewParent->getParentLoop() &&
888           NewChild != NewParent && "Not sibling loops!");
889
890    // Remove NewChild from being a child of OldParent
891    typename std::vector<LoopT *>::iterator I =
892      std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
893                NewChild);
894    assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
895    OldParent->SubLoops.erase(I);   // Remove from parent's subloops list
896    NewChild->ParentLoop = 0;
897
898    InsertLoopInto(NewChild, NewParent);
899  }
900
901  /// InsertLoopInto - This inserts loop L into the specified parent loop.  If
902  /// the parent loop contains a loop which should contain L, the loop gets
903  /// inserted into L instead.
904  void InsertLoopInto(LoopT *L, LoopT *Parent) {
905    BlockT *LHeader = L->getHeader();
906    assert(Parent->contains(LHeader) &&
907           "This loop should not be inserted here!");
908
909    // Check to see if it belongs in a child loop...
910    for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
911         i != e; ++i)
912      if (Parent->SubLoops[i]->contains(LHeader)) {
913        InsertLoopInto(L, Parent->SubLoops[i]);
914        return;
915      }
916
917    // If not, insert it here!
918    Parent->SubLoops.push_back(L);
919    L->ParentLoop = Parent;
920  }
921
922  // Debugging
923
924  void print(raw_ostream &OS) const {
925    for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
926      TopLevelLoops[i]->print(OS);
927  #if 0
928    for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
929           E = BBMap.end(); I != E; ++I)
930      OS << "BB '" << I->first->getName() << "' level = "
931         << I->second->getLoopDepth() << "\n";
932  #endif
933  }
934};
935
936class LoopInfo : public FunctionPass {
937  LoopInfoBase<BasicBlock, Loop> LI;
938  friend class LoopBase<BasicBlock, Loop>;
939
940  void operator=(const LoopInfo &); // do not implement
941  LoopInfo(const LoopInfo &);       // do not implement
942public:
943  static char ID; // Pass identification, replacement for typeid
944
945  LoopInfo() : FunctionPass(ID) {
946    initializeLoopInfoPass(*PassRegistry::getPassRegistry());
947  }
948
949  LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
950
951  /// iterator/begin/end - The interface to the top-level loops in the current
952  /// function.
953  ///
954  typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
955  inline iterator begin() const { return LI.begin(); }
956  inline iterator end() const { return LI.end(); }
957  bool empty() const { return LI.empty(); }
958
959  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
960  /// block is in no loop (for example the entry node), null is returned.
961  ///
962  inline Loop *getLoopFor(const BasicBlock *BB) const {
963    return LI.getLoopFor(BB);
964  }
965
966  /// operator[] - same as getLoopFor...
967  ///
968  inline const Loop *operator[](const BasicBlock *BB) const {
969    return LI.getLoopFor(BB);
970  }
971
972  /// getLoopDepth - Return the loop nesting level of the specified block.  A
973  /// depth of 0 means the block is not inside any loop.
974  ///
975  inline unsigned getLoopDepth(const BasicBlock *BB) const {
976    return LI.getLoopDepth(BB);
977  }
978
979  // isLoopHeader - True if the block is a loop header node
980  inline bool isLoopHeader(BasicBlock *BB) const {
981    return LI.isLoopHeader(BB);
982  }
983
984  /// runOnFunction - Calculate the natural loop information.
985  ///
986  virtual bool runOnFunction(Function &F);
987
988  virtual void verifyAnalysis() const;
989
990  virtual void releaseMemory() { LI.releaseMemory(); }
991
992  virtual void print(raw_ostream &O, const Module* M = 0) const;
993
994  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
995
996  /// removeLoop - This removes the specified top-level loop from this loop info
997  /// object.  The loop is not deleted, as it will presumably be inserted into
998  /// another loop.
999  inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
1000
1001  /// changeLoopFor - Change the top-level loop that contains BB to the
1002  /// specified loop.  This should be used by transformations that restructure
1003  /// the loop hierarchy tree.
1004  inline void changeLoopFor(BasicBlock *BB, Loop *L) {
1005    LI.changeLoopFor(BB, L);
1006  }
1007
1008  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
1009  /// list with the indicated loop.
1010  inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
1011    LI.changeTopLevelLoop(OldLoop, NewLoop);
1012  }
1013
1014  /// addTopLevelLoop - This adds the specified loop to the collection of
1015  /// top-level loops.
1016  inline void addTopLevelLoop(Loop *New) {
1017    LI.addTopLevelLoop(New);
1018  }
1019
1020  /// removeBlock - This method completely removes BB from all data structures,
1021  /// including all of the Loop objects it is nested in and our mapping from
1022  /// BasicBlocks to loops.
1023  void removeBlock(BasicBlock *BB) {
1024    LI.removeBlock(BB);
1025  }
1026
1027  /// replacementPreservesLCSSAForm - Returns true if replacing From with To
1028  /// everywhere is guaranteed to preserve LCSSA form.
1029  bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
1030    // Preserving LCSSA form is only problematic if the replacing value is an
1031    // instruction.
1032    Instruction *I = dyn_cast<Instruction>(To);
1033    if (!I) return true;
1034    // If both instructions are defined in the same basic block then replacement
1035    // cannot break LCSSA form.
1036    if (I->getParent() == From->getParent())
1037      return true;
1038    // If the instruction is not defined in a loop then it can safely replace
1039    // anything.
1040    Loop *ToLoop = getLoopFor(I->getParent());
1041    if (!ToLoop) return true;
1042    // If the replacing instruction is defined in the same loop as the original
1043    // instruction, or in a loop that contains it as an inner loop, then using
1044    // it as a replacement will not break LCSSA form.
1045    return ToLoop->contains(getLoopFor(From->getParent()));
1046  }
1047};
1048
1049
1050// Allow clients to walk the list of nested loops...
1051template <> struct GraphTraits<const Loop*> {
1052  typedef const Loop NodeType;
1053  typedef LoopInfo::iterator ChildIteratorType;
1054
1055  static NodeType *getEntryNode(const Loop *L) { return L; }
1056  static inline ChildIteratorType child_begin(NodeType *N) {
1057    return N->begin();
1058  }
1059  static inline ChildIteratorType child_end(NodeType *N) {
1060    return N->end();
1061  }
1062};
1063
1064template <> struct GraphTraits<Loop*> {
1065  typedef Loop NodeType;
1066  typedef LoopInfo::iterator ChildIteratorType;
1067
1068  static NodeType *getEntryNode(Loop *L) { return L; }
1069  static inline ChildIteratorType child_begin(NodeType *N) {
1070    return N->begin();
1071  }
1072  static inline ChildIteratorType child_end(NodeType *N) {
1073    return N->end();
1074  }
1075};
1076
1077template<class BlockT, class LoopT>
1078void
1079LoopBase<BlockT, LoopT>::addBasicBlockToLoop(BlockT *NewBB,
1080                                             LoopInfoBase<BlockT, LoopT> &LIB) {
1081  assert((Blocks.empty() || LIB[getHeader()] == this) &&
1082         "Incorrect LI specified for this loop!");
1083  assert(NewBB && "Cannot add a null basic block to the loop!");
1084  assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
1085
1086  LoopT *L = static_cast<LoopT *>(this);
1087
1088  // Add the loop mapping to the LoopInfo object...
1089  LIB.BBMap[NewBB] = L;
1090
1091  // Add the basic block to this loop and all parent loops...
1092  while (L) {
1093    L->Blocks.push_back(NewBB);
1094    L = L->getParentLoop();
1095  }
1096}
1097
1098} // End llvm namespace
1099
1100#endif
1101