LoopInfo.h revision 1827e8263c9cb5dc29eea4999d8729f7376af4e1
1//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  Note that natural
12// loops may actually be several loops that share the same header node.
13//
14// This analysis calculates the nesting structure of loops in a function.  For
15// each natural loop identified, this analysis identifies natural loops
16// contained entirely within the loop and the basic blocks the make up the loop.
17//
18// It can calculate on the fly various bits of information, for example:
19//
20//  * whether there is a preheader for the loop
21//  * the number of back edges to the header
22//  * whether or not a particular block branches out of the loop
23//  * the successor blocks of the loop
24//  * the loop depth
25//  * the trip count
26//  * etc...
27//
28//===----------------------------------------------------------------------===//
29
30#ifndef LLVM_ANALYSIS_LOOP_INFO_H
31#define LLVM_ANALYSIS_LOOP_INFO_H
32
33#include "llvm/Pass.h"
34#include "llvm/Constants.h"
35#include "llvm/Instructions.h"
36#include "llvm/ADT/DepthFirstIterator.h"
37#include "llvm/ADT/GraphTraits.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/Analysis/Dominators.h"
41#include "llvm/Support/CFG.h"
42#include "llvm/Support/Streams.h"
43#include <algorithm>
44#include <ostream>
45
46namespace llvm {
47
48template<typename T>
49static void RemoveFromVector(std::vector<T*> &V, T *N) {
50  typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
51  assert(I != V.end() && "N is not in this list!");
52  V.erase(I);
53}
54
55class DominatorTree;
56class LoopInfo;
57template<class N> class LoopInfoBase;
58template<class N> class LoopBase;
59
60typedef LoopBase<BasicBlock> Loop;
61
62//===----------------------------------------------------------------------===//
63/// LoopBase class - Instances of this class are used to represent loops that
64/// are detected in the flow graph
65///
66template<class BlockT>
67class LoopBase {
68  LoopBase<BlockT> *ParentLoop;
69  // SubLoops - Loops contained entirely within this one.
70  std::vector<LoopBase<BlockT>*> SubLoops;
71
72  // Blocks - The list of blocks in this loop.  First entry is the header node.
73  std::vector<BlockT*> Blocks;
74
75  LoopBase(const LoopBase<BlockT> &);                  // DO NOT IMPLEMENT
76  const LoopBase<BlockT>&operator=(const LoopBase<BlockT> &);// DO NOT IMPLEMENT
77public:
78  /// Loop ctor - This creates an empty loop.
79  LoopBase() : ParentLoop(0) {}
80  ~LoopBase() {
81    for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
82      delete SubLoops[i];
83  }
84
85  /// getLoopDepth - Return the nesting level of this loop.  An outer-most
86  /// loop has depth 1, for consistency with loop depth values used for basic
87  /// blocks, where depth 0 is used for blocks not inside any loops.
88  unsigned getLoopDepth() const {
89    unsigned D = 1;
90    for (const LoopBase<BlockT> *CurLoop = ParentLoop; CurLoop;
91         CurLoop = CurLoop->ParentLoop)
92      ++D;
93    return D;
94  }
95  BlockT *getHeader() const { return Blocks.front(); }
96  LoopBase<BlockT> *getParentLoop() const { return ParentLoop; }
97
98  /// contains - Return true if the specified basic block is in this loop
99  ///
100  bool contains(const BlockT *BB) const {
101    return std::find(block_begin(), block_end(), BB) != block_end();
102  }
103
104  /// iterator/begin/end - Return the loops contained entirely within this loop.
105  ///
106  const std::vector<LoopBase<BlockT>*> &getSubLoops() const { return SubLoops; }
107  typedef typename std::vector<LoopBase<BlockT>*>::const_iterator iterator;
108  iterator begin() const { return SubLoops.begin(); }
109  iterator end() const { return SubLoops.end(); }
110  bool empty() const { return SubLoops.empty(); }
111
112  /// getBlocks - Get a list of the basic blocks which make up this loop.
113  ///
114  const std::vector<BlockT*> &getBlocks() const { return Blocks; }
115  typedef typename std::vector<BlockT*>::const_iterator block_iterator;
116  block_iterator block_begin() const { return Blocks.begin(); }
117  block_iterator block_end() const { return Blocks.end(); }
118
119  /// isLoopExit - True if terminator in the block can branch to another block
120  /// that is outside of the current loop.
121  ///
122  bool isLoopExit(const BlockT *BB) const {
123    typedef GraphTraits<BlockT*> BlockTraits;
124    for (typename BlockTraits::ChildIteratorType SI =
125         BlockTraits::child_begin(const_cast<BlockT*>(BB)),
126         SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
127      if (!contains(*SI))
128        return true;
129    }
130    return false;
131  }
132
133  /// getNumBackEdges - Calculate the number of back edges to the loop header
134  ///
135  unsigned getNumBackEdges() const {
136    unsigned NumBackEdges = 0;
137    BlockT *H = getHeader();
138
139    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
140    for (typename InvBlockTraits::ChildIteratorType I =
141         InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
142         E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
143      if (contains(*I))
144        ++NumBackEdges;
145
146    return NumBackEdges;
147  }
148
149  /// isLoopInvariant - Return true if the specified value is loop invariant
150  ///
151  inline bool isLoopInvariant(Value *V) const {
152    if (Instruction *I = dyn_cast<Instruction>(V))
153      return !contains(I->getParent());
154    return true;  // All non-instructions are loop invariant
155  }
156
157  //===--------------------------------------------------------------------===//
158  // APIs for simple analysis of the loop.
159  //
160  // Note that all of these methods can fail on general loops (ie, there may not
161  // be a preheader, etc).  For best success, the loop simplification and
162  // induction variable canonicalization pass should be used to normalize loops
163  // for easy analysis.  These methods assume canonical loops.
164
165  /// getExitingBlocks - Return all blocks inside the loop that have successors
166  /// outside of the loop.  These are the blocks _inside of the current loop_
167  /// which branch out.  The returned list is always unique.
168  ///
169  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
170    // Sort the blocks vector so that we can use binary search to do quick
171    // lookups.
172    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
173    std::sort(LoopBBs.begin(), LoopBBs.end());
174
175    typedef GraphTraits<BlockT*> BlockTraits;
176    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
177      for (typename BlockTraits::ChildIteratorType I =
178          BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
179          I != E; ++I)
180        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
181          // Not in current loop? It must be an exit block.
182          ExitingBlocks.push_back(*BI);
183          break;
184        }
185  }
186
187  /// getExitingBlock - If getExitingBlocks would return exactly one block,
188  /// return that block. Otherwise return null.
189  BlockT *getExitingBlock() const {
190    SmallVector<BlockT*, 8> ExitingBlocks;
191    getExitingBlocks(ExitingBlocks);
192    if (ExitingBlocks.size() == 1)
193      return ExitingBlocks[0];
194    return 0;
195  }
196
197  /// getExitBlocks - Return all of the successor blocks of this loop.  These
198  /// are the blocks _outside of the current loop_ which are branched to.
199  ///
200  void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
201    // Sort the blocks vector so that we can use binary search to do quick
202    // lookups.
203    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
204    std::sort(LoopBBs.begin(), LoopBBs.end());
205
206    typedef GraphTraits<BlockT*> BlockTraits;
207    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
208      for (typename BlockTraits::ChildIteratorType I =
209           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
210           I != E; ++I)
211        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
212          // Not in current loop? It must be an exit block.
213          ExitBlocks.push_back(*I);
214  }
215
216  /// getExitBlock - If getExitBlocks would return exactly one block,
217  /// return that block. Otherwise return null.
218  BlockT *getExitBlock() const {
219    SmallVector<BlockT*, 8> ExitBlocks;
220    getExitBlocks(ExitBlocks);
221    if (ExitBlocks.size() == 1)
222      return ExitBlocks[0];
223    return 0;
224  }
225
226  /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
227  /// These are the blocks _outside of the current loop_ which are branched to.
228  /// This assumes that loop is in canonical form.
229  ///
230  void getUniqueExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
231    // Sort the blocks vector so that we can use binary search to do quick
232    // lookups.
233    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
234    std::sort(LoopBBs.begin(), LoopBBs.end());
235
236    std::vector<BlockT*> switchExitBlocks;
237
238    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
239
240      BlockT *current = *BI;
241      switchExitBlocks.clear();
242
243      typedef GraphTraits<BlockT*> BlockTraits;
244      typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
245      for (typename BlockTraits::ChildIteratorType I =
246           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
247           I != E; ++I) {
248        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
249      // If block is inside the loop then it is not a exit block.
250          continue;
251
252        typename InvBlockTraits::ChildIteratorType PI =
253                                                InvBlockTraits::child_begin(*I);
254        BlockT *firstPred = *PI;
255
256        // If current basic block is this exit block's first predecessor
257        // then only insert exit block in to the output ExitBlocks vector.
258        // This ensures that same exit block is not inserted twice into
259        // ExitBlocks vector.
260        if (current != firstPred)
261          continue;
262
263        // If a terminator has more then two successors, for example SwitchInst,
264        // then it is possible that there are multiple edges from current block
265        // to one exit block.
266        if (std::distance(BlockTraits::child_begin(current),
267                          BlockTraits::child_end(current)) <= 2) {
268          ExitBlocks.push_back(*I);
269          continue;
270        }
271
272        // In case of multiple edges from current block to exit block, collect
273        // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
274        // duplicate edges.
275        if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
276            == switchExitBlocks.end()) {
277          switchExitBlocks.push_back(*I);
278          ExitBlocks.push_back(*I);
279        }
280      }
281    }
282  }
283
284  /// getLoopPreheader - If there is a preheader for this loop, return it.  A
285  /// loop has a preheader if there is only one edge to the header of the loop
286  /// from outside of the loop.  If this is the case, the block branching to the
287  /// header of the loop is the preheader node.
288  ///
289  /// This method returns null if there is no preheader for the loop.
290  ///
291  BlockT *getLoopPreheader() const {
292    // Keep track of nodes outside the loop branching to the header...
293    BlockT *Out = 0;
294
295    // Loop over the predecessors of the header node...
296    BlockT *Header = getHeader();
297    typedef GraphTraits<BlockT*> BlockTraits;
298    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
299    for (typename InvBlockTraits::ChildIteratorType PI =
300         InvBlockTraits::child_begin(Header),
301         PE = InvBlockTraits::child_end(Header); PI != PE; ++PI)
302      if (!contains(*PI)) {     // If the block is not in the loop...
303        if (Out && Out != *PI)
304          return 0;             // Multiple predecessors outside the loop
305        Out = *PI;
306      }
307
308    // Make sure there is only one exit out of the preheader.
309    assert(Out && "Header of loop has no predecessors from outside loop?");
310    typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
311    ++SI;
312    if (SI != BlockTraits::child_end(Out))
313      return 0;  // Multiple exits from the block, must not be a preheader.
314
315    // If there is exactly one preheader, return it.  If there was zero, then
316    // Out is still null.
317    return Out;
318  }
319
320  /// getLoopLatch - If there is a single latch block for this loop, return it.
321  /// A latch block is a block that contains a branch back to the header.
322  /// A loop header in normal form has two edges into it: one from a preheader
323  /// and one from a latch block.
324  BlockT *getLoopLatch() const {
325    BlockT *Header = getHeader();
326    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
327    typename InvBlockTraits::ChildIteratorType PI =
328                                            InvBlockTraits::child_begin(Header);
329    typename InvBlockTraits::ChildIteratorType PE =
330                                              InvBlockTraits::child_end(Header);
331    if (PI == PE) return 0;  // no preds?
332
333    BlockT *Latch = 0;
334    if (contains(*PI))
335      Latch = *PI;
336    ++PI;
337    if (PI == PE) return 0;  // only one pred?
338
339    if (contains(*PI)) {
340      if (Latch) return 0;  // multiple backedges
341      Latch = *PI;
342    }
343    ++PI;
344    if (PI != PE) return 0;  // more than two preds
345
346    return Latch;
347  }
348
349  /// getCanonicalInductionVariable - Check to see if the loop has a canonical
350  /// induction variable: an integer recurrence that starts at 0 and increments
351  /// by one each time through the loop.  If so, return the phi node that
352  /// corresponds to it.
353  ///
354  inline PHINode *getCanonicalInductionVariable() const {
355    BlockT *H = getHeader();
356
357    BlockT *Incoming = 0, *Backedge = 0;
358    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
359    typename InvBlockTraits::ChildIteratorType PI =
360                                                 InvBlockTraits::child_begin(H);
361    assert(PI != InvBlockTraits::child_end(H) &&
362           "Loop must have at least one backedge!");
363    Backedge = *PI++;
364    if (PI == InvBlockTraits::child_end(H)) return 0;  // dead loop
365    Incoming = *PI++;
366    if (PI != InvBlockTraits::child_end(H)) return 0;  // multiple backedges?
367
368    if (contains(Incoming)) {
369      if (contains(Backedge))
370        return 0;
371      std::swap(Incoming, Backedge);
372    } else if (!contains(Backedge))
373      return 0;
374
375    // Loop over all of the PHI nodes, looking for a canonical indvar.
376    for (typename BlockT::iterator I = H->begin(); isa<PHINode>(I); ++I) {
377      PHINode *PN = cast<PHINode>(I);
378      if (ConstantInt *CI =
379          dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
380        if (CI->isNullValue())
381          if (Instruction *Inc =
382              dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
383            if (Inc->getOpcode() == Instruction::Add &&
384                Inc->getOperand(0) == PN)
385              if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
386                if (CI->equalsInt(1))
387                  return PN;
388    }
389    return 0;
390  }
391
392  /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
393  /// the canonical induction variable value for the "next" iteration of the
394  /// loop.  This always succeeds if getCanonicalInductionVariable succeeds.
395  ///
396  inline Instruction *getCanonicalInductionVariableIncrement() const {
397    if (PHINode *PN = getCanonicalInductionVariable()) {
398      bool P1InLoop = contains(PN->getIncomingBlock(1));
399      return cast<Instruction>(PN->getIncomingValue(P1InLoop));
400    }
401    return 0;
402  }
403
404  /// getTripCount - Return a loop-invariant LLVM value indicating the number of
405  /// times the loop will be executed.  Note that this means that the backedge
406  /// of the loop executes N-1 times.  If the trip-count cannot be determined,
407  /// this returns null.
408  ///
409  inline Value *getTripCount() const {
410    // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
411    // canonical induction variable and V is the trip count of the loop.
412    Instruction *Inc = getCanonicalInductionVariableIncrement();
413    if (Inc == 0) return 0;
414    PHINode *IV = cast<PHINode>(Inc->getOperand(0));
415
416    BlockT *BackedgeBlock =
417            IV->getIncomingBlock(contains(IV->getIncomingBlock(1)));
418
419    if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
420      if (BI->isConditional()) {
421        if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
422          if (ICI->getOperand(0) == Inc) {
423            if (BI->getSuccessor(0) == getHeader()) {
424              if (ICI->getPredicate() == ICmpInst::ICMP_NE)
425                return ICI->getOperand(1);
426            } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
427              return ICI->getOperand(1);
428            }
429          }
430        }
431      }
432
433    return 0;
434  }
435
436  /// getSmallConstantTripCount - Returns the trip count of this loop as a
437  /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
438  /// of not constant. Will also return 0 if the trip count is very large
439  /// (>= 2^32)
440  inline unsigned getSmallConstantTripCount() const {
441    Value* TripCount = this->getTripCount();
442    if (TripCount) {
443      if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) {
444        // Guard against huge trip counts.
445        if (TripCountC->getValue().getActiveBits() <= 32) {
446          return (unsigned)TripCountC->getZExtValue();
447        }
448      }
449    }
450    return 0;
451  }
452
453  /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
454  /// trip count of this loop as a normal unsigned value, if possible. This
455  /// means that the actual trip count is always a multiple of the returned
456  /// value (don't forget the trip count could very well be zero as well!).
457  ///
458  /// Returns 1 if the trip count is unknown or not guaranteed to be the
459  /// multiple of a constant (which is also the case if the trip count is simply
460  /// constant, use getSmallConstantTripCount for that case), Will also return 1
461  /// if the trip count is very large (>= 2^32).
462  inline unsigned getSmallConstantTripMultiple() const {
463    Value* TripCount = this->getTripCount();
464    // This will hold the ConstantInt result, if any
465    ConstantInt *Result = NULL;
466    if (TripCount) {
467      // See if the trip count is constant itself
468      Result = dyn_cast<ConstantInt>(TripCount);
469      // if not, see if it is a multiplication
470      if (!Result)
471        if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) {
472          switch (BO->getOpcode()) {
473          case BinaryOperator::Mul:
474            Result = dyn_cast<ConstantInt>(BO->getOperand(1));
475            break;
476          default:
477            break;
478          }
479        }
480    }
481    // Guard against huge trip counts.
482    if (Result && Result->getValue().getActiveBits() <= 32) {
483      return (unsigned)Result->getZExtValue();
484    } else {
485      return 1;
486    }
487  }
488
489  /// isLCSSAForm - Return true if the Loop is in LCSSA form
490  inline bool isLCSSAForm() const {
491    // Sort the blocks vector so that we can use binary search to do quick
492    // lookups.
493    SmallPtrSet<BlockT*, 16> LoopBBs(block_begin(), block_end());
494
495    for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
496      BlockT *BB = *BI;
497      for (typename BlockT::iterator I = BB->begin(), E = BB->end(); I != E;++I)
498        for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
499             ++UI) {
500          BlockT *UserBB = cast<Instruction>(*UI)->getParent();
501          if (PHINode *P = dyn_cast<PHINode>(*UI)) {
502            UserBB = P->getIncomingBlock(UI);
503          }
504
505          // Check the current block, as a fast-path.  Most values are used in
506          // the same block they are defined in.
507          if (UserBB != BB && !LoopBBs.count(UserBB))
508            return false;
509        }
510    }
511
512    return true;
513  }
514
515  //===--------------------------------------------------------------------===//
516  // APIs for updating loop information after changing the CFG
517  //
518
519  /// addBasicBlockToLoop - This method is used by other analyses to update loop
520  /// information.  NewBB is set to be a new member of the current loop.
521  /// Because of this, it is added as a member of all parent loops, and is added
522  /// to the specified LoopInfo object as being in the current basic block.  It
523  /// is not valid to replace the loop header with this method.
524  ///
525  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT> &LI);
526
527  /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
528  /// the OldChild entry in our children list with NewChild, and updates the
529  /// parent pointer of OldChild to be null and the NewChild to be this loop.
530  /// This updates the loop depth of the new child.
531  void replaceChildLoopWith(LoopBase<BlockT> *OldChild,
532                            LoopBase<BlockT> *NewChild) {
533    assert(OldChild->ParentLoop == this && "This loop is already broken!");
534    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
535    typename std::vector<LoopBase<BlockT>*>::iterator I =
536                          std::find(SubLoops.begin(), SubLoops.end(), OldChild);
537    assert(I != SubLoops.end() && "OldChild not in loop!");
538    *I = NewChild;
539    OldChild->ParentLoop = 0;
540    NewChild->ParentLoop = this;
541  }
542
543  /// addChildLoop - Add the specified loop to be a child of this loop.  This
544  /// updates the loop depth of the new child.
545  ///
546  void addChildLoop(LoopBase<BlockT> *NewChild) {
547    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
548    NewChild->ParentLoop = this;
549    SubLoops.push_back(NewChild);
550  }
551
552  /// removeChildLoop - This removes the specified child from being a subloop of
553  /// this loop.  The loop is not deleted, as it will presumably be inserted
554  /// into another loop.
555  LoopBase<BlockT> *removeChildLoop(iterator I) {
556    assert(I != SubLoops.end() && "Cannot remove end iterator!");
557    LoopBase<BlockT> *Child = *I;
558    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
559    SubLoops.erase(SubLoops.begin()+(I-begin()));
560    Child->ParentLoop = 0;
561    return Child;
562  }
563
564  /// addBlockEntry - This adds a basic block directly to the basic block list.
565  /// This should only be used by transformations that create new loops.  Other
566  /// transformations should use addBasicBlockToLoop.
567  void addBlockEntry(BlockT *BB) {
568    Blocks.push_back(BB);
569  }
570
571  /// moveToHeader - This method is used to move BB (which must be part of this
572  /// loop) to be the loop header of the loop (the block that dominates all
573  /// others).
574  void moveToHeader(BlockT *BB) {
575    if (Blocks[0] == BB) return;
576    for (unsigned i = 0; ; ++i) {
577      assert(i != Blocks.size() && "Loop does not contain BB!");
578      if (Blocks[i] == BB) {
579        Blocks[i] = Blocks[0];
580        Blocks[0] = BB;
581        return;
582      }
583    }
584  }
585
586  /// removeBlockFromLoop - This removes the specified basic block from the
587  /// current loop, updating the Blocks as appropriate.  This does not update
588  /// the mapping in the LoopInfo class.
589  void removeBlockFromLoop(BlockT *BB) {
590    RemoveFromVector(Blocks, BB);
591  }
592
593  /// verifyLoop - Verify loop structure
594  void verifyLoop() const {
595#ifndef NDEBUG
596    assert (getHeader() && "Loop header is missing");
597    assert (getLoopPreheader() && "Loop preheader is missing");
598    assert (getLoopLatch() && "Loop latch is missing");
599    for (iterator I = SubLoops.begin(), E = SubLoops.end(); I != E; ++I)
600      (*I)->verifyLoop();
601#endif
602  }
603
604  void print(std::ostream &OS, unsigned Depth = 0) const {
605    OS << std::string(Depth*2, ' ') << "Loop at depth " << getLoopDepth()
606       << " containing: ";
607
608    for (unsigned i = 0; i < getBlocks().size(); ++i) {
609      if (i) OS << ",";
610      BlockT *BB = getBlocks()[i];
611      WriteAsOperand(OS, BB, false);
612      if (BB == getHeader())    OS << "<header>";
613      if (BB == getLoopLatch()) OS << "<latch>";
614      if (isLoopExit(BB))       OS << "<exit>";
615    }
616    OS << "\n";
617
618    for (iterator I = begin(), E = end(); I != E; ++I)
619      (*I)->print(OS, Depth+2);
620  }
621
622  void print(std::ostream *O, unsigned Depth = 0) const {
623    if (O) print(*O, Depth);
624  }
625
626  void dump() const {
627    print(cerr);
628  }
629
630private:
631  friend class LoopInfoBase<BlockT>;
632  explicit LoopBase(BlockT *BB) : ParentLoop(0) {
633    Blocks.push_back(BB);
634  }
635};
636
637
638//===----------------------------------------------------------------------===//
639/// LoopInfo - This class builds and contains all of the top level loop
640/// structures in the specified function.
641///
642
643template<class BlockT>
644class LoopInfoBase {
645  // BBMap - Mapping of basic blocks to the inner most loop they occur in
646  std::map<BlockT*, LoopBase<BlockT>*> BBMap;
647  std::vector<LoopBase<BlockT>*> TopLevelLoops;
648  friend class LoopBase<BlockT>;
649
650public:
651  LoopInfoBase() { }
652  ~LoopInfoBase() { releaseMemory(); }
653
654  void releaseMemory() {
655    for (typename std::vector<LoopBase<BlockT>* >::iterator I =
656         TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
657      delete *I;   // Delete all of the loops...
658
659    BBMap.clear();                           // Reset internal state of analysis
660    TopLevelLoops.clear();
661  }
662
663  /// iterator/begin/end - The interface to the top-level loops in the current
664  /// function.
665  ///
666  typedef typename std::vector<LoopBase<BlockT>*>::const_iterator iterator;
667  iterator begin() const { return TopLevelLoops.begin(); }
668  iterator end() const { return TopLevelLoops.end(); }
669  bool empty() const { return TopLevelLoops.empty(); }
670
671  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
672  /// block is in no loop (for example the entry node), null is returned.
673  ///
674  LoopBase<BlockT> *getLoopFor(const BlockT *BB) const {
675    typename std::map<BlockT *, LoopBase<BlockT>*>::const_iterator I=
676      BBMap.find(const_cast<BlockT*>(BB));
677    return I != BBMap.end() ? I->second : 0;
678  }
679
680  /// operator[] - same as getLoopFor...
681  ///
682  const LoopBase<BlockT> *operator[](const BlockT *BB) const {
683    return getLoopFor(BB);
684  }
685
686  /// getLoopDepth - Return the loop nesting level of the specified block.  A
687  /// depth of 0 means the block is not inside any loop.
688  ///
689  unsigned getLoopDepth(const BlockT *BB) const {
690    const LoopBase<BlockT> *L = getLoopFor(BB);
691    return L ? L->getLoopDepth() : 0;
692  }
693
694  // isLoopHeader - True if the block is a loop header node
695  bool isLoopHeader(BlockT *BB) const {
696    const LoopBase<BlockT> *L = getLoopFor(BB);
697    return L && L->getHeader() == BB;
698  }
699
700  /// removeLoop - This removes the specified top-level loop from this loop info
701  /// object.  The loop is not deleted, as it will presumably be inserted into
702  /// another loop.
703  LoopBase<BlockT> *removeLoop(iterator I) {
704    assert(I != end() && "Cannot remove end iterator!");
705    LoopBase<BlockT> *L = *I;
706    assert(L->getParentLoop() == 0 && "Not a top-level loop!");
707    TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
708    return L;
709  }
710
711  /// changeLoopFor - Change the top-level loop that contains BB to the
712  /// specified loop.  This should be used by transformations that restructure
713  /// the loop hierarchy tree.
714  void changeLoopFor(BlockT *BB, LoopBase<BlockT> *L) {
715    LoopBase<BlockT> *&OldLoop = BBMap[BB];
716    assert(OldLoop && "Block not in a loop yet!");
717    OldLoop = L;
718  }
719
720  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
721  /// list with the indicated loop.
722  void changeTopLevelLoop(LoopBase<BlockT> *OldLoop,
723                          LoopBase<BlockT> *NewLoop) {
724    typename std::vector<LoopBase<BlockT>*>::iterator I =
725                 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
726    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
727    *I = NewLoop;
728    assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
729           "Loops already embedded into a subloop!");
730  }
731
732  /// addTopLevelLoop - This adds the specified loop to the collection of
733  /// top-level loops.
734  void addTopLevelLoop(LoopBase<BlockT> *New) {
735    assert(New->getParentLoop() == 0 && "Loop already in subloop!");
736    TopLevelLoops.push_back(New);
737  }
738
739  /// removeBlock - This method completely removes BB from all data structures,
740  /// including all of the Loop objects it is nested in and our mapping from
741  /// BasicBlocks to loops.
742  void removeBlock(BlockT *BB) {
743    typename std::map<BlockT *, LoopBase<BlockT>*>::iterator I = BBMap.find(BB);
744    if (I != BBMap.end()) {
745      for (LoopBase<BlockT> *L = I->second; L; L = L->getParentLoop())
746        L->removeBlockFromLoop(BB);
747
748      BBMap.erase(I);
749    }
750  }
751
752  // Internals
753
754  static bool isNotAlreadyContainedIn(const LoopBase<BlockT> *SubLoop,
755                                      const LoopBase<BlockT> *ParentLoop) {
756    if (SubLoop == 0) return true;
757    if (SubLoop == ParentLoop) return false;
758    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
759  }
760
761  void Calculate(DominatorTreeBase<BlockT> &DT) {
762    BlockT *RootNode = DT.getRootNode()->getBlock();
763
764    for (df_iterator<BlockT*> NI = df_begin(RootNode),
765           NE = df_end(RootNode); NI != NE; ++NI)
766      if (LoopBase<BlockT> *L = ConsiderForLoop(*NI, DT))
767        TopLevelLoops.push_back(L);
768  }
769
770  LoopBase<BlockT> *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
771    if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node?
772
773    std::vector<BlockT *> TodoStack;
774
775    // Scan the predecessors of BB, checking to see if BB dominates any of
776    // them.  This identifies backedges which target this node...
777    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
778    for (typename InvBlockTraits::ChildIteratorType I =
779         InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
780         I != E; ++I)
781      if (DT.dominates(BB, *I))   // If BB dominates it's predecessor...
782        TodoStack.push_back(*I);
783
784    if (TodoStack.empty()) return 0;  // No backedges to this block...
785
786    // Create a new loop to represent this basic block...
787    LoopBase<BlockT> *L = new LoopBase<BlockT>(BB);
788    BBMap[BB] = L;
789
790    BlockT *EntryBlock = BB->getParent()->begin();
791
792    while (!TodoStack.empty()) {  // Process all the nodes in the loop
793      BlockT *X = TodoStack.back();
794      TodoStack.pop_back();
795
796      if (!L->contains(X) &&         // As of yet unprocessed??
797          DT.dominates(EntryBlock, X)) {   // X is reachable from entry block?
798        // Check to see if this block already belongs to a loop.  If this occurs
799        // then we have a case where a loop that is supposed to be a child of
800        // the current loop was processed before the current loop.  When this
801        // occurs, this child loop gets added to a part of the current loop,
802        // making it a sibling to the current loop.  We have to reparent this
803        // loop.
804        if (LoopBase<BlockT> *SubLoop =
805            const_cast<LoopBase<BlockT>*>(getLoopFor(X)))
806          if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
807            // Remove the subloop from it's current parent...
808            assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
809            LoopBase<BlockT> *SLP = SubLoop->ParentLoop;  // SubLoopParent
810            typename std::vector<LoopBase<BlockT>*>::iterator I =
811              std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
812            assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
813            SLP->SubLoops.erase(I);   // Remove from parent...
814
815            // Add the subloop to THIS loop...
816            SubLoop->ParentLoop = L;
817            L->SubLoops.push_back(SubLoop);
818          }
819
820        // Normal case, add the block to our loop...
821        L->Blocks.push_back(X);
822
823        typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
824
825        // Add all of the predecessors of X to the end of the work stack...
826        TodoStack.insert(TodoStack.end(), InvBlockTraits::child_begin(X),
827                         InvBlockTraits::child_end(X));
828      }
829    }
830
831    // If there are any loops nested within this loop, create them now!
832    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
833         E = L->Blocks.end(); I != E; ++I)
834      if (LoopBase<BlockT> *NewLoop = ConsiderForLoop(*I, DT)) {
835        L->SubLoops.push_back(NewLoop);
836        NewLoop->ParentLoop = L;
837      }
838
839    // Add the basic blocks that comprise this loop to the BBMap so that this
840    // loop can be found for them.
841    //
842    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
843           E = L->Blocks.end(); I != E; ++I) {
844      typename std::map<BlockT*, LoopBase<BlockT>*>::iterator BBMI =
845                                                          BBMap.find(*I);
846      if (BBMI == BBMap.end())                       // Not in map yet...
847        BBMap.insert(BBMI, std::make_pair(*I, L));   // Must be at this level
848    }
849
850    // Now that we have a list of all of the child loops of this loop, check to
851    // see if any of them should actually be nested inside of each other.  We
852    // can accidentally pull loops our of their parents, so we must make sure to
853    // organize the loop nests correctly now.
854    {
855      std::map<BlockT*, LoopBase<BlockT>*> ContainingLoops;
856      for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
857        LoopBase<BlockT> *Child = L->SubLoops[i];
858        assert(Child->getParentLoop() == L && "Not proper child loop?");
859
860        if (LoopBase<BlockT> *ContainingLoop =
861                                          ContainingLoops[Child->getHeader()]) {
862          // If there is already a loop which contains this loop, move this loop
863          // into the containing loop.
864          MoveSiblingLoopInto(Child, ContainingLoop);
865          --i;  // The loop got removed from the SubLoops list.
866        } else {
867          // This is currently considered to be a top-level loop.  Check to see
868          // if any of the contained blocks are loop headers for subloops we
869          // have already processed.
870          for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
871            LoopBase<BlockT> *&BlockLoop = ContainingLoops[Child->Blocks[b]];
872            if (BlockLoop == 0) {   // Child block not processed yet...
873              BlockLoop = Child;
874            } else if (BlockLoop != Child) {
875              LoopBase<BlockT> *SubLoop = BlockLoop;
876              // Reparent all of the blocks which used to belong to BlockLoops
877              for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j)
878                ContainingLoops[SubLoop->Blocks[j]] = Child;
879
880              // There is already a loop which contains this block, that means
881              // that we should reparent the loop which the block is currently
882              // considered to belong to to be a child of this loop.
883              MoveSiblingLoopInto(SubLoop, Child);
884              --i;  // We just shrunk the SubLoops list.
885            }
886          }
887        }
888      }
889    }
890
891    return L;
892  }
893
894  /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
895  /// of the NewParent Loop, instead of being a sibling of it.
896  void MoveSiblingLoopInto(LoopBase<BlockT> *NewChild,
897                           LoopBase<BlockT> *NewParent) {
898    LoopBase<BlockT> *OldParent = NewChild->getParentLoop();
899    assert(OldParent && OldParent == NewParent->getParentLoop() &&
900           NewChild != NewParent && "Not sibling loops!");
901
902    // Remove NewChild from being a child of OldParent
903    typename std::vector<LoopBase<BlockT>*>::iterator I =
904      std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
905                NewChild);
906    assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
907    OldParent->SubLoops.erase(I);   // Remove from parent's subloops list
908    NewChild->ParentLoop = 0;
909
910    InsertLoopInto(NewChild, NewParent);
911  }
912
913  /// InsertLoopInto - This inserts loop L into the specified parent loop.  If
914  /// the parent loop contains a loop which should contain L, the loop gets
915  /// inserted into L instead.
916  void InsertLoopInto(LoopBase<BlockT> *L, LoopBase<BlockT> *Parent) {
917    BlockT *LHeader = L->getHeader();
918    assert(Parent->contains(LHeader) &&
919           "This loop should not be inserted here!");
920
921    // Check to see if it belongs in a child loop...
922    for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
923         i != e; ++i)
924      if (Parent->SubLoops[i]->contains(LHeader)) {
925        InsertLoopInto(L, Parent->SubLoops[i]);
926        return;
927      }
928
929    // If not, insert it here!
930    Parent->SubLoops.push_back(L);
931    L->ParentLoop = Parent;
932  }
933
934  // Debugging
935
936  void print(std::ostream &OS, const Module* ) const {
937    for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
938      TopLevelLoops[i]->print(OS);
939  #if 0
940    for (std::map<BasicBlock*, Loop*>::const_iterator I = BBMap.begin(),
941           E = BBMap.end(); I != E; ++I)
942      OS << "BB '" << I->first->getName() << "' level = "
943         << I->second->getLoopDepth() << "\n";
944  #endif
945  }
946};
947
948class LoopInfo : public FunctionPass {
949  LoopInfoBase<BasicBlock>* LI;
950  friend class LoopBase<BasicBlock>;
951
952public:
953  static char ID; // Pass identification, replacement for typeid
954
955  LoopInfo() : FunctionPass(&ID) {
956    LI = new LoopInfoBase<BasicBlock>();
957  }
958
959  ~LoopInfo() { delete LI; }
960
961  LoopInfoBase<BasicBlock>& getBase() { return *LI; }
962
963  /// iterator/begin/end - The interface to the top-level loops in the current
964  /// function.
965  ///
966  typedef std::vector<Loop*>::const_iterator iterator;
967  inline iterator begin() const { return LI->begin(); }
968  inline iterator end() const { return LI->end(); }
969  bool empty() const { return LI->empty(); }
970
971  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
972  /// block is in no loop (for example the entry node), null is returned.
973  ///
974  inline Loop *getLoopFor(const BasicBlock *BB) const {
975    return LI->getLoopFor(BB);
976  }
977
978  /// operator[] - same as getLoopFor...
979  ///
980  inline const Loop *operator[](const BasicBlock *BB) const {
981    return LI->getLoopFor(BB);
982  }
983
984  /// getLoopDepth - Return the loop nesting level of the specified block.  A
985  /// depth of 0 means the block is not inside any loop.
986  ///
987  inline unsigned getLoopDepth(const BasicBlock *BB) const {
988    return LI->getLoopDepth(BB);
989  }
990
991  // isLoopHeader - True if the block is a loop header node
992  inline bool isLoopHeader(BasicBlock *BB) const {
993    return LI->isLoopHeader(BB);
994  }
995
996  /// runOnFunction - Calculate the natural loop information.
997  ///
998  virtual bool runOnFunction(Function &F);
999
1000  virtual void releaseMemory() { LI->releaseMemory(); }
1001
1002  virtual void print(std::ostream &O, const Module* M = 0) const {
1003    if (O) LI->print(O, M);
1004  }
1005
1006  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
1007
1008  /// removeLoop - This removes the specified top-level loop from this loop info
1009  /// object.  The loop is not deleted, as it will presumably be inserted into
1010  /// another loop.
1011  inline Loop *removeLoop(iterator I) { return LI->removeLoop(I); }
1012
1013  /// changeLoopFor - Change the top-level loop that contains BB to the
1014  /// specified loop.  This should be used by transformations that restructure
1015  /// the loop hierarchy tree.
1016  inline void changeLoopFor(BasicBlock *BB, Loop *L) {
1017    LI->changeLoopFor(BB, L);
1018  }
1019
1020  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
1021  /// list with the indicated loop.
1022  inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
1023    LI->changeTopLevelLoop(OldLoop, NewLoop);
1024  }
1025
1026  /// addTopLevelLoop - This adds the specified loop to the collection of
1027  /// top-level loops.
1028  inline void addTopLevelLoop(Loop *New) {
1029    LI->addTopLevelLoop(New);
1030  }
1031
1032  /// removeBlock - This method completely removes BB from all data structures,
1033  /// including all of the Loop objects it is nested in and our mapping from
1034  /// BasicBlocks to loops.
1035  void removeBlock(BasicBlock *BB) {
1036    LI->removeBlock(BB);
1037  }
1038};
1039
1040
1041// Allow clients to walk the list of nested loops...
1042template <> struct GraphTraits<const Loop*> {
1043  typedef const Loop NodeType;
1044  typedef std::vector<Loop*>::const_iterator ChildIteratorType;
1045
1046  static NodeType *getEntryNode(const Loop *L) { return L; }
1047  static inline ChildIteratorType child_begin(NodeType *N) {
1048    return N->begin();
1049  }
1050  static inline ChildIteratorType child_end(NodeType *N) {
1051    return N->end();
1052  }
1053};
1054
1055template <> struct GraphTraits<Loop*> {
1056  typedef Loop NodeType;
1057  typedef std::vector<Loop*>::const_iterator ChildIteratorType;
1058
1059  static NodeType *getEntryNode(Loop *L) { return L; }
1060  static inline ChildIteratorType child_begin(NodeType *N) {
1061    return N->begin();
1062  }
1063  static inline ChildIteratorType child_end(NodeType *N) {
1064    return N->end();
1065  }
1066};
1067
1068template<class BlockT>
1069void LoopBase<BlockT>::addBasicBlockToLoop(BlockT *NewBB,
1070                                           LoopInfoBase<BlockT> &LIB) {
1071  assert((Blocks.empty() || LIB[getHeader()] == this) &&
1072         "Incorrect LI specified for this loop!");
1073  assert(NewBB && "Cannot add a null basic block to the loop!");
1074  assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
1075
1076  // Add the loop mapping to the LoopInfo object...
1077  LIB.BBMap[NewBB] = this;
1078
1079  // Add the basic block to this loop and all parent loops...
1080  LoopBase<BlockT> *L = this;
1081  while (L) {
1082    L->Blocks.push_back(NewBB);
1083    L = L->getParentLoop();
1084  }
1085}
1086
1087} // End llvm namespace
1088
1089#endif
1090