LoopInfo.h revision 37aa33bc11c01a7142bfa2428a5a4d219b07b6c3
1//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  A natural loop
12// has exactly one entry-point, which is called the header. Note that natural
13// loops may actually be several loops that share the same header node.
14//
15// This analysis calculates the nesting structure of loops in a function.  For
16// each natural loop identified, this analysis identifies natural loops
17// contained entirely within the loop and the basic blocks the make up the loop.
18//
19// It can calculate on the fly various bits of information, for example:
20//
21//  * whether there is a preheader for the loop
22//  * the number of back edges to the header
23//  * whether or not a particular block branches out of the loop
24//  * the successor blocks of the loop
25//  * the loop depth
26//  * etc...
27//
28//===----------------------------------------------------------------------===//
29
30#ifndef LLVM_ANALYSIS_LOOP_INFO_H
31#define LLVM_ANALYSIS_LOOP_INFO_H
32
33#include "llvm/Pass.h"
34#include "llvm/ADT/DenseMap.h"
35#include "llvm/ADT/DenseSet.h"
36#include "llvm/ADT/DepthFirstIterator.h"
37#include "llvm/ADT/GraphTraits.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/STLExtras.h"
40#include "llvm/Analysis/Dominators.h"
41#include "llvm/Support/CFG.h"
42#include "llvm/Support/raw_ostream.h"
43#include <algorithm>
44#include <map>
45
46namespace llvm {
47
48template<typename T>
49static void RemoveFromVector(std::vector<T*> &V, T *N) {
50  typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
51  assert(I != V.end() && "N is not in this list!");
52  V.erase(I);
53}
54
55class DominatorTree;
56class LoopInfo;
57class Loop;
58class PHINode;
59template<class N, class M> class LoopInfoBase;
60template<class N, class M> class LoopBase;
61
62//===----------------------------------------------------------------------===//
63/// LoopBase class - Instances of this class are used to represent loops that
64/// are detected in the flow graph
65///
66template<class BlockT, class LoopT>
67class LoopBase {
68  LoopT *ParentLoop;
69  // SubLoops - Loops contained entirely within this one.
70  std::vector<LoopT *> SubLoops;
71
72  // Blocks - The list of blocks in this loop.  First entry is the header node.
73  std::vector<BlockT*> Blocks;
74
75  // DO NOT IMPLEMENT
76  LoopBase(const LoopBase<BlockT, LoopT> &);
77  // DO NOT IMPLEMENT
78  const LoopBase<BlockT, LoopT>&operator=(const LoopBase<BlockT, LoopT> &);
79public:
80  /// Loop ctor - This creates an empty loop.
81  LoopBase() : ParentLoop(0) {}
82  ~LoopBase() {
83    for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
84      delete SubLoops[i];
85  }
86
87  /// getLoopDepth - Return the nesting level of this loop.  An outer-most
88  /// loop has depth 1, for consistency with loop depth values used for basic
89  /// blocks, where depth 0 is used for blocks not inside any loops.
90  unsigned getLoopDepth() const {
91    unsigned D = 1;
92    for (const LoopT *CurLoop = ParentLoop; CurLoop;
93         CurLoop = CurLoop->ParentLoop)
94      ++D;
95    return D;
96  }
97  BlockT *getHeader() const { return Blocks.front(); }
98  LoopT *getParentLoop() const { return ParentLoop; }
99
100  /// setParentLoop is a raw interface for bypassing addChildLoop.
101  void setParentLoop(LoopT *L) { ParentLoop = L; }
102
103  /// contains - Return true if the specified loop is contained within in
104  /// this loop.
105  ///
106  bool contains(const LoopT *L) const {
107    if (L == this) return true;
108    if (L == 0)    return false;
109    return contains(L->getParentLoop());
110  }
111
112  /// contains - Return true if the specified basic block is in this loop.
113  ///
114  bool contains(const BlockT *BB) const {
115    return std::find(block_begin(), block_end(), BB) != block_end();
116  }
117
118  /// contains - Return true if the specified instruction is in this loop.
119  ///
120  template<class InstT>
121  bool contains(const InstT *Inst) const {
122    return contains(Inst->getParent());
123  }
124
125  /// iterator/begin/end - Return the loops contained entirely within this loop.
126  ///
127  const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
128  std::vector<LoopT *> &getSubLoopsVector() { return SubLoops; }
129  typedef typename std::vector<LoopT *>::const_iterator iterator;
130  iterator begin() const { return SubLoops.begin(); }
131  iterator end() const { return SubLoops.end(); }
132  bool empty() const { return SubLoops.empty(); }
133
134  /// getBlocks - Get a list of the basic blocks which make up this loop.
135  ///
136  const std::vector<BlockT*> &getBlocks() const { return Blocks; }
137  std::vector<BlockT*> &getBlocksVector() { return Blocks; }
138  typedef typename std::vector<BlockT*>::const_iterator block_iterator;
139  block_iterator block_begin() const { return Blocks.begin(); }
140  block_iterator block_end() const { return Blocks.end(); }
141
142  /// getNumBlocks - Get the number of blocks in this loop in constant time.
143  unsigned getNumBlocks() const {
144    return Blocks.size();
145  }
146
147  /// isLoopExiting - True if terminator in the block can branch to another
148  /// block that is outside of the current loop.
149  ///
150  bool isLoopExiting(const BlockT *BB) const {
151    typedef GraphTraits<BlockT*> BlockTraits;
152    for (typename BlockTraits::ChildIteratorType SI =
153         BlockTraits::child_begin(const_cast<BlockT*>(BB)),
154         SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
155      if (!contains(*SI))
156        return true;
157    }
158    return false;
159  }
160
161  /// getNumBackEdges - Calculate the number of back edges to the loop header
162  ///
163  unsigned getNumBackEdges() const {
164    unsigned NumBackEdges = 0;
165    BlockT *H = getHeader();
166
167    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
168    for (typename InvBlockTraits::ChildIteratorType I =
169         InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
170         E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
171      if (contains(*I))
172        ++NumBackEdges;
173
174    return NumBackEdges;
175  }
176
177  //===--------------------------------------------------------------------===//
178  // APIs for simple analysis of the loop.
179  //
180  // Note that all of these methods can fail on general loops (ie, there may not
181  // be a preheader, etc).  For best success, the loop simplification and
182  // induction variable canonicalization pass should be used to normalize loops
183  // for easy analysis.  These methods assume canonical loops.
184
185  /// getExitingBlocks - Return all blocks inside the loop that have successors
186  /// outside of the loop.  These are the blocks _inside of the current loop_
187  /// which branch out.  The returned list is always unique.
188  ///
189  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
190
191  /// getExitingBlock - If getExitingBlocks would return exactly one block,
192  /// return that block. Otherwise return null.
193  BlockT *getExitingBlock() const;
194
195  /// getExitBlocks - Return all of the successor blocks of this loop.  These
196  /// are the blocks _outside of the current loop_ which are branched to.
197  ///
198  void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const;
199
200  /// getExitBlock - If getExitBlocks would return exactly one block,
201  /// return that block. Otherwise return null.
202  BlockT *getExitBlock() const;
203
204  /// Edge type.
205  typedef std::pair<const BlockT*, const BlockT*> Edge;
206
207  /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
208  void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
209
210  /// getLoopPreheader - If there is a preheader for this loop, return it.  A
211  /// loop has a preheader if there is only one edge to the header of the loop
212  /// from outside of the loop.  If this is the case, the block branching to the
213  /// header of the loop is the preheader node.
214  ///
215  /// This method returns null if there is no preheader for the loop.
216  ///
217  BlockT *getLoopPreheader() const;
218
219  /// getLoopPredecessor - If the given loop's header has exactly one unique
220  /// predecessor outside the loop, return it. Otherwise return null.
221  /// This is less strict that the loop "preheader" concept, which requires
222  /// the predecessor to have exactly one successor.
223  ///
224  BlockT *getLoopPredecessor() const;
225
226  /// getLoopLatch - If there is a single latch block for this loop, return it.
227  /// A latch block is a block that contains a branch back to the header.
228  BlockT *getLoopLatch() const;
229
230  //===--------------------------------------------------------------------===//
231  // APIs for updating loop information after changing the CFG
232  //
233
234  /// addBasicBlockToLoop - This method is used by other analyses to update loop
235  /// information.  NewBB is set to be a new member of the current loop.
236  /// Because of this, it is added as a member of all parent loops, and is added
237  /// to the specified LoopInfo object as being in the current basic block.  It
238  /// is not valid to replace the loop header with this method.
239  ///
240  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
241
242  /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
243  /// the OldChild entry in our children list with NewChild, and updates the
244  /// parent pointer of OldChild to be null and the NewChild to be this loop.
245  /// This updates the loop depth of the new child.
246  void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
247
248  /// addChildLoop - Add the specified loop to be a child of this loop.  This
249  /// updates the loop depth of the new child.
250  ///
251  void addChildLoop(LoopT *NewChild) {
252    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
253    NewChild->ParentLoop = static_cast<LoopT *>(this);
254    SubLoops.push_back(NewChild);
255  }
256
257  /// removeChildLoop - This removes the specified child from being a subloop of
258  /// this loop.  The loop is not deleted, as it will presumably be inserted
259  /// into another loop.
260  LoopT *removeChildLoop(iterator I) {
261    assert(I != SubLoops.end() && "Cannot remove end iterator!");
262    LoopT *Child = *I;
263    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
264    SubLoops.erase(SubLoops.begin()+(I-begin()));
265    Child->ParentLoop = 0;
266    return Child;
267  }
268
269  /// addBlockEntry - This adds a basic block directly to the basic block list.
270  /// This should only be used by transformations that create new loops.  Other
271  /// transformations should use addBasicBlockToLoop.
272  void addBlockEntry(BlockT *BB) {
273    Blocks.push_back(BB);
274  }
275
276  /// moveToHeader - This method is used to move BB (which must be part of this
277  /// loop) to be the loop header of the loop (the block that dominates all
278  /// others).
279  void moveToHeader(BlockT *BB) {
280    if (Blocks[0] == BB) return;
281    for (unsigned i = 0; ; ++i) {
282      assert(i != Blocks.size() && "Loop does not contain BB!");
283      if (Blocks[i] == BB) {
284        Blocks[i] = Blocks[0];
285        Blocks[0] = BB;
286        return;
287      }
288    }
289  }
290
291  /// removeBlockFromLoop - This removes the specified basic block from the
292  /// current loop, updating the Blocks as appropriate.  This does not update
293  /// the mapping in the LoopInfo class.
294  void removeBlockFromLoop(BlockT *BB) {
295    RemoveFromVector(Blocks, BB);
296  }
297
298  /// verifyLoop - Verify loop structure
299  void verifyLoop() const;
300
301  /// verifyLoop - Verify loop structure of this loop and all nested loops.
302  void verifyLoopNest(DenseSet<const LoopT*> *Loops) const;
303
304  void print(raw_ostream &OS, unsigned Depth = 0) const;
305
306protected:
307  friend class LoopInfoBase<BlockT, LoopT>;
308  explicit LoopBase(BlockT *BB) : ParentLoop(0) {
309    Blocks.push_back(BB);
310  }
311};
312
313template<class BlockT, class LoopT>
314raw_ostream& operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
315  Loop.print(OS);
316  return OS;
317}
318
319class Loop : public LoopBase<BasicBlock, Loop> {
320public:
321  Loop() {}
322
323  /// isLoopInvariant - Return true if the specified value is loop invariant
324  ///
325  bool isLoopInvariant(Value *V) const;
326
327  /// hasLoopInvariantOperands - Return true if all the operands of the
328  /// specified instruction are loop invariant.
329  bool hasLoopInvariantOperands(Instruction *I) const;
330
331  /// makeLoopInvariant - If the given value is an instruction inside of the
332  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
333  /// Return true if the value after any hoisting is loop invariant. This
334  /// function can be used as a slightly more aggressive replacement for
335  /// isLoopInvariant.
336  ///
337  /// If InsertPt is specified, it is the point to hoist instructions to.
338  /// If null, the terminator of the loop preheader is used.
339  ///
340  bool makeLoopInvariant(Value *V, bool &Changed,
341                         Instruction *InsertPt = 0) const;
342
343  /// makeLoopInvariant - If the given instruction is inside of the
344  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
345  /// Return true if the instruction after any hoisting is loop invariant. This
346  /// function can be used as a slightly more aggressive replacement for
347  /// isLoopInvariant.
348  ///
349  /// If InsertPt is specified, it is the point to hoist instructions to.
350  /// If null, the terminator of the loop preheader is used.
351  ///
352  bool makeLoopInvariant(Instruction *I, bool &Changed,
353                         Instruction *InsertPt = 0) const;
354
355  /// getCanonicalInductionVariable - Check to see if the loop has a canonical
356  /// induction variable: an integer recurrence that starts at 0 and increments
357  /// by one each time through the loop.  If so, return the phi node that
358  /// corresponds to it.
359  ///
360  /// The IndVarSimplify pass transforms loops to have a canonical induction
361  /// variable.
362  ///
363  PHINode *getCanonicalInductionVariable() const;
364
365  /// isLCSSAForm - Return true if the Loop is in LCSSA form
366  bool isLCSSAForm(DominatorTree &DT) const;
367
368  /// isLoopSimplifyForm - Return true if the Loop is in the form that
369  /// the LoopSimplify form transforms loops to, which is sometimes called
370  /// normal form.
371  bool isLoopSimplifyForm() const;
372
373  /// isSafeToClone - Return true if the loop body is safe to clone in practice.
374  bool isSafeToClone() const;
375
376  /// hasDedicatedExits - Return true if no exit block for the loop
377  /// has a predecessor that is outside the loop.
378  bool hasDedicatedExits() const;
379
380  /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
381  /// These are the blocks _outside of the current loop_ which are branched to.
382  /// This assumes that loop exits are in canonical form.
383  ///
384  void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
385
386  /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
387  /// block, return that block. Otherwise return null.
388  BasicBlock *getUniqueExitBlock() const;
389
390  void dump() const;
391
392private:
393  friend class LoopInfoBase<BasicBlock, Loop>;
394  explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
395};
396
397//===----------------------------------------------------------------------===//
398/// LoopInfo - This class builds and contains all of the top level loop
399/// structures in the specified function.
400///
401
402template<class BlockT, class LoopT>
403class LoopInfoBase {
404  // BBMap - Mapping of basic blocks to the inner most loop they occur in
405  DenseMap<BlockT *, LoopT *> BBMap;
406  std::vector<LoopT *> TopLevelLoops;
407  friend class LoopBase<BlockT, LoopT>;
408  friend class LoopInfo;
409
410  void operator=(const LoopInfoBase &); // do not implement
411  LoopInfoBase(const LoopInfo &);       // do not implement
412public:
413  LoopInfoBase() { }
414  ~LoopInfoBase() { releaseMemory(); }
415
416  void releaseMemory() {
417    for (typename std::vector<LoopT *>::iterator I =
418         TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
419      delete *I;   // Delete all of the loops...
420
421    BBMap.clear();                           // Reset internal state of analysis
422    TopLevelLoops.clear();
423  }
424
425  /// iterator/begin/end - The interface to the top-level loops in the current
426  /// function.
427  ///
428  typedef typename std::vector<LoopT *>::const_iterator iterator;
429  iterator begin() const { return TopLevelLoops.begin(); }
430  iterator end() const { return TopLevelLoops.end(); }
431  bool empty() const { return TopLevelLoops.empty(); }
432
433  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
434  /// block is in no loop (for example the entry node), null is returned.
435  ///
436  LoopT *getLoopFor(const BlockT *BB) const {
437    return BBMap.lookup(const_cast<BlockT*>(BB));
438  }
439
440  /// operator[] - same as getLoopFor...
441  ///
442  const LoopT *operator[](const BlockT *BB) const {
443    return getLoopFor(BB);
444  }
445
446  /// getLoopDepth - Return the loop nesting level of the specified block.  A
447  /// depth of 0 means the block is not inside any loop.
448  ///
449  unsigned getLoopDepth(const BlockT *BB) const {
450    const LoopT *L = getLoopFor(BB);
451    return L ? L->getLoopDepth() : 0;
452  }
453
454  // isLoopHeader - True if the block is a loop header node
455  bool isLoopHeader(BlockT *BB) const {
456    const LoopT *L = getLoopFor(BB);
457    return L && L->getHeader() == BB;
458  }
459
460  /// removeLoop - This removes the specified top-level loop from this loop info
461  /// object.  The loop is not deleted, as it will presumably be inserted into
462  /// another loop.
463  LoopT *removeLoop(iterator I) {
464    assert(I != end() && "Cannot remove end iterator!");
465    LoopT *L = *I;
466    assert(L->getParentLoop() == 0 && "Not a top-level loop!");
467    TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
468    return L;
469  }
470
471  /// changeLoopFor - Change the top-level loop that contains BB to the
472  /// specified loop.  This should be used by transformations that restructure
473  /// the loop hierarchy tree.
474  void changeLoopFor(BlockT *BB, LoopT *L) {
475    if (!L) {
476      BBMap.erase(BB);
477      return;
478    }
479    BBMap[BB] = L;
480  }
481
482  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
483  /// list with the indicated loop.
484  void changeTopLevelLoop(LoopT *OldLoop,
485                          LoopT *NewLoop) {
486    typename std::vector<LoopT *>::iterator I =
487                 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
488    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
489    *I = NewLoop;
490    assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
491           "Loops already embedded into a subloop!");
492  }
493
494  /// addTopLevelLoop - This adds the specified loop to the collection of
495  /// top-level loops.
496  void addTopLevelLoop(LoopT *New) {
497    assert(New->getParentLoop() == 0 && "Loop already in subloop!");
498    TopLevelLoops.push_back(New);
499  }
500
501  /// removeBlock - This method completely removes BB from all data structures,
502  /// including all of the Loop objects it is nested in and our mapping from
503  /// BasicBlocks to loops.
504  void removeBlock(BlockT *BB) {
505    typename DenseMap<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
506    if (I != BBMap.end()) {
507      for (LoopT *L = I->second; L; L = L->getParentLoop())
508        L->removeBlockFromLoop(BB);
509
510      BBMap.erase(I);
511    }
512  }
513
514  // Internals
515
516  static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
517                                      const LoopT *ParentLoop) {
518    if (SubLoop == 0) return true;
519    if (SubLoop == ParentLoop) return false;
520    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
521  }
522
523  void Calculate(DominatorTreeBase<BlockT> &DT);
524
525  LoopT *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT);
526
527  /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
528  /// of the NewParent Loop, instead of being a sibling of it.
529  void MoveSiblingLoopInto(LoopT *NewChild, LoopT *NewParent);
530
531  /// InsertLoopInto - This inserts loop L into the specified parent loop.  If
532  /// the parent loop contains a loop which should contain L, the loop gets
533  /// inserted into L instead.
534  void InsertLoopInto(LoopT *L, LoopT *Parent);
535
536  /// Create the loop forest using a stable algorithm.
537  void Analyze(DominatorTreeBase<BlockT> &DomTree);
538
539  // Debugging
540
541  void print(raw_ostream &OS) const;
542};
543
544class LoopInfo : public FunctionPass {
545  LoopInfoBase<BasicBlock, Loop> LI;
546  friend class LoopBase<BasicBlock, Loop>;
547
548  void operator=(const LoopInfo &); // do not implement
549  LoopInfo(const LoopInfo &);       // do not implement
550public:
551  static char ID; // Pass identification, replacement for typeid
552
553  LoopInfo() : FunctionPass(ID) {
554    initializeLoopInfoPass(*PassRegistry::getPassRegistry());
555  }
556
557  LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
558
559  /// iterator/begin/end - The interface to the top-level loops in the current
560  /// function.
561  ///
562  typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
563  inline iterator begin() const { return LI.begin(); }
564  inline iterator end() const { return LI.end(); }
565  bool empty() const { return LI.empty(); }
566
567  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
568  /// block is in no loop (for example the entry node), null is returned.
569  ///
570  inline Loop *getLoopFor(const BasicBlock *BB) const {
571    return LI.getLoopFor(BB);
572  }
573
574  /// operator[] - same as getLoopFor...
575  ///
576  inline const Loop *operator[](const BasicBlock *BB) const {
577    return LI.getLoopFor(BB);
578  }
579
580  /// getLoopDepth - Return the loop nesting level of the specified block.  A
581  /// depth of 0 means the block is not inside any loop.
582  ///
583  inline unsigned getLoopDepth(const BasicBlock *BB) const {
584    return LI.getLoopDepth(BB);
585  }
586
587  // isLoopHeader - True if the block is a loop header node
588  inline bool isLoopHeader(BasicBlock *BB) const {
589    return LI.isLoopHeader(BB);
590  }
591
592  /// runOnFunction - Calculate the natural loop information.
593  ///
594  virtual bool runOnFunction(Function &F);
595
596  virtual void verifyAnalysis() const;
597
598  virtual void releaseMemory() { LI.releaseMemory(); }
599
600  virtual void print(raw_ostream &O, const Module* M = 0) const;
601
602  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
603
604  /// removeLoop - This removes the specified top-level loop from this loop info
605  /// object.  The loop is not deleted, as it will presumably be inserted into
606  /// another loop.
607  inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
608
609  /// changeLoopFor - Change the top-level loop that contains BB to the
610  /// specified loop.  This should be used by transformations that restructure
611  /// the loop hierarchy tree.
612  inline void changeLoopFor(BasicBlock *BB, Loop *L) {
613    LI.changeLoopFor(BB, L);
614  }
615
616  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
617  /// list with the indicated loop.
618  inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
619    LI.changeTopLevelLoop(OldLoop, NewLoop);
620  }
621
622  /// addTopLevelLoop - This adds the specified loop to the collection of
623  /// top-level loops.
624  inline void addTopLevelLoop(Loop *New) {
625    LI.addTopLevelLoop(New);
626  }
627
628  /// removeBlock - This method completely removes BB from all data structures,
629  /// including all of the Loop objects it is nested in and our mapping from
630  /// BasicBlocks to loops.
631  void removeBlock(BasicBlock *BB) {
632    LI.removeBlock(BB);
633  }
634
635  /// updateUnloop - Update LoopInfo after removing the last backedge from a
636  /// loop--now the "unloop". This updates the loop forest and parent loops for
637  /// each block so that Unloop is no longer referenced, but the caller must
638  /// actually delete the Unloop object.
639  void updateUnloop(Loop *Unloop);
640
641  /// replacementPreservesLCSSAForm - Returns true if replacing From with To
642  /// everywhere is guaranteed to preserve LCSSA form.
643  bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
644    // Preserving LCSSA form is only problematic if the replacing value is an
645    // instruction.
646    Instruction *I = dyn_cast<Instruction>(To);
647    if (!I) return true;
648    // If both instructions are defined in the same basic block then replacement
649    // cannot break LCSSA form.
650    if (I->getParent() == From->getParent())
651      return true;
652    // If the instruction is not defined in a loop then it can safely replace
653    // anything.
654    Loop *ToLoop = getLoopFor(I->getParent());
655    if (!ToLoop) return true;
656    // If the replacing instruction is defined in the same loop as the original
657    // instruction, or in a loop that contains it as an inner loop, then using
658    // it as a replacement will not break LCSSA form.
659    return ToLoop->contains(getLoopFor(From->getParent()));
660  }
661};
662
663
664// Allow clients to walk the list of nested loops...
665template <> struct GraphTraits<const Loop*> {
666  typedef const Loop NodeType;
667  typedef LoopInfo::iterator ChildIteratorType;
668
669  static NodeType *getEntryNode(const Loop *L) { return L; }
670  static inline ChildIteratorType child_begin(NodeType *N) {
671    return N->begin();
672  }
673  static inline ChildIteratorType child_end(NodeType *N) {
674    return N->end();
675  }
676};
677
678template <> struct GraphTraits<Loop*> {
679  typedef Loop NodeType;
680  typedef LoopInfo::iterator ChildIteratorType;
681
682  static NodeType *getEntryNode(Loop *L) { return L; }
683  static inline ChildIteratorType child_begin(NodeType *N) {
684    return N->begin();
685  }
686  static inline ChildIteratorType child_end(NodeType *N) {
687    return N->end();
688  }
689};
690
691} // End llvm namespace
692
693#endif
694