LoopInfo.h revision 5434c1e73b6e56756719d2aebb952ac7bb3829e0
1//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  A natural loop
12// has exactly one entry-point, which is called the header. Note that natural
13// loops may actually be several loops that share the same header node.
14//
15// This analysis calculates the nesting structure of loops in a function.  For
16// each natural loop identified, this analysis identifies natural loops
17// contained entirely within the loop and the basic blocks the make up the loop.
18//
19// It can calculate on the fly various bits of information, for example:
20//
21//  * whether there is a preheader for the loop
22//  * the number of back edges to the header
23//  * whether or not a particular block branches out of the loop
24//  * the successor blocks of the loop
25//  * the loop depth
26//  * the trip count
27//  * etc...
28//
29//===----------------------------------------------------------------------===//
30
31#ifndef LLVM_ANALYSIS_LOOP_INFO_H
32#define LLVM_ANALYSIS_LOOP_INFO_H
33
34#include "llvm/Pass.h"
35#include "llvm/ADT/DenseMap.h"
36#include "llvm/ADT/DenseSet.h"
37#include "llvm/ADT/DepthFirstIterator.h"
38#include "llvm/ADT/GraphTraits.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/STLExtras.h"
41#include "llvm/Analysis/Dominators.h"
42#include "llvm/Support/CFG.h"
43#include "llvm/Support/raw_ostream.h"
44#include <algorithm>
45#include <map>
46
47namespace llvm {
48
49template<typename T>
50static void RemoveFromVector(std::vector<T*> &V, T *N) {
51  typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
52  assert(I != V.end() && "N is not in this list!");
53  V.erase(I);
54}
55
56class DominatorTree;
57class LoopInfo;
58class Loop;
59class PHINode;
60template<class N, class M> class LoopInfoBase;
61template<class N, class M> class LoopBase;
62
63//===----------------------------------------------------------------------===//
64/// LoopBase class - Instances of this class are used to represent loops that
65/// are detected in the flow graph
66///
67template<class BlockT, class LoopT>
68class LoopBase {
69  LoopT *ParentLoop;
70  // SubLoops - Loops contained entirely within this one.
71  std::vector<LoopT *> SubLoops;
72
73  // Blocks - The list of blocks in this loop.  First entry is the header node.
74  std::vector<BlockT*> Blocks;
75
76  // DO NOT IMPLEMENT
77  LoopBase(const LoopBase<BlockT, LoopT> &);
78  // DO NOT IMPLEMENT
79  const LoopBase<BlockT, LoopT>&operator=(const LoopBase<BlockT, LoopT> &);
80public:
81  /// Loop ctor - This creates an empty loop.
82  LoopBase() : ParentLoop(0) {}
83  ~LoopBase() {
84    for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
85      delete SubLoops[i];
86  }
87
88  /// getLoopDepth - Return the nesting level of this loop.  An outer-most
89  /// loop has depth 1, for consistency with loop depth values used for basic
90  /// blocks, where depth 0 is used for blocks not inside any loops.
91  unsigned getLoopDepth() const {
92    unsigned D = 1;
93    for (const LoopT *CurLoop = ParentLoop; CurLoop;
94         CurLoop = CurLoop->ParentLoop)
95      ++D;
96    return D;
97  }
98  BlockT *getHeader() const { return Blocks.front(); }
99  LoopT *getParentLoop() const { return ParentLoop; }
100
101  /// contains - Return true if the specified loop is contained within in
102  /// this loop.
103  ///
104  bool contains(const LoopT *L) const {
105    if (L == this) return true;
106    if (L == 0)    return false;
107    return contains(L->getParentLoop());
108  }
109
110  /// contains - Return true if the specified basic block is in this loop.
111  ///
112  bool contains(const BlockT *BB) const {
113    return std::find(block_begin(), block_end(), BB) != block_end();
114  }
115
116  /// contains - Return true if the specified instruction is in this loop.
117  ///
118  template<class InstT>
119  bool contains(const InstT *Inst) const {
120    return contains(Inst->getParent());
121  }
122
123  /// iterator/begin/end - Return the loops contained entirely within this loop.
124  ///
125  const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
126  typedef typename std::vector<LoopT *>::const_iterator iterator;
127  iterator begin() const { return SubLoops.begin(); }
128  iterator end() const { return SubLoops.end(); }
129  bool empty() const { return SubLoops.empty(); }
130
131  /// getBlocks - Get a list of the basic blocks which make up this loop.
132  ///
133  const std::vector<BlockT*> &getBlocks() const { return Blocks; }
134  typedef typename std::vector<BlockT*>::const_iterator block_iterator;
135  block_iterator block_begin() const { return Blocks.begin(); }
136  block_iterator block_end() const { return Blocks.end(); }
137
138  /// getNumBlocks - Get the number of blocks in this loop in constant time.
139  unsigned getNumBlocks() const {
140    return Blocks.size();
141  }
142
143  /// isLoopExiting - True if terminator in the block can branch to another
144  /// block that is outside of the current loop.
145  ///
146  bool isLoopExiting(const BlockT *BB) const {
147    typedef GraphTraits<BlockT*> BlockTraits;
148    for (typename BlockTraits::ChildIteratorType SI =
149         BlockTraits::child_begin(const_cast<BlockT*>(BB)),
150         SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
151      if (!contains(*SI))
152        return true;
153    }
154    return false;
155  }
156
157  /// getNumBackEdges - Calculate the number of back edges to the loop header
158  ///
159  unsigned getNumBackEdges() const {
160    unsigned NumBackEdges = 0;
161    BlockT *H = getHeader();
162
163    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
164    for (typename InvBlockTraits::ChildIteratorType I =
165         InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
166         E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
167      if (contains(*I))
168        ++NumBackEdges;
169
170    return NumBackEdges;
171  }
172
173  //===--------------------------------------------------------------------===//
174  // APIs for simple analysis of the loop.
175  //
176  // Note that all of these methods can fail on general loops (ie, there may not
177  // be a preheader, etc).  For best success, the loop simplification and
178  // induction variable canonicalization pass should be used to normalize loops
179  // for easy analysis.  These methods assume canonical loops.
180
181  /// getExitingBlocks - Return all blocks inside the loop that have successors
182  /// outside of the loop.  These are the blocks _inside of the current loop_
183  /// which branch out.  The returned list is always unique.
184  ///
185  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
186    // Sort the blocks vector so that we can use binary search to do quick
187    // lookups.
188    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
189    std::sort(LoopBBs.begin(), LoopBBs.end());
190
191    typedef GraphTraits<BlockT*> BlockTraits;
192    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
193      for (typename BlockTraits::ChildIteratorType I =
194          BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
195          I != E; ++I)
196        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
197          // Not in current loop? It must be an exit block.
198          ExitingBlocks.push_back(*BI);
199          break;
200        }
201  }
202
203  /// getExitingBlock - If getExitingBlocks would return exactly one block,
204  /// return that block. Otherwise return null.
205  BlockT *getExitingBlock() const {
206    SmallVector<BlockT*, 8> ExitingBlocks;
207    getExitingBlocks(ExitingBlocks);
208    if (ExitingBlocks.size() == 1)
209      return ExitingBlocks[0];
210    return 0;
211  }
212
213  /// getExitBlocks - Return all of the successor blocks of this loop.  These
214  /// are the blocks _outside of the current loop_ which are branched to.
215  ///
216  void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
217    // Sort the blocks vector so that we can use binary search to do quick
218    // lookups.
219    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
220    std::sort(LoopBBs.begin(), LoopBBs.end());
221
222    typedef GraphTraits<BlockT*> BlockTraits;
223    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
224      for (typename BlockTraits::ChildIteratorType I =
225           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
226           I != E; ++I)
227        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
228          // Not in current loop? It must be an exit block.
229          ExitBlocks.push_back(*I);
230  }
231
232  /// getExitBlock - If getExitBlocks would return exactly one block,
233  /// return that block. Otherwise return null.
234  BlockT *getExitBlock() const {
235    SmallVector<BlockT*, 8> ExitBlocks;
236    getExitBlocks(ExitBlocks);
237    if (ExitBlocks.size() == 1)
238      return ExitBlocks[0];
239    return 0;
240  }
241
242  /// Edge type.
243  typedef std::pair<BlockT*, BlockT*> Edge;
244
245  /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
246  template <typename EdgeT>
247  void getExitEdges(SmallVectorImpl<EdgeT> &ExitEdges) const {
248    // Sort the blocks vector so that we can use binary search to do quick
249    // lookups.
250    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
251    array_pod_sort(LoopBBs.begin(), LoopBBs.end());
252
253    typedef GraphTraits<BlockT*> BlockTraits;
254    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
255      for (typename BlockTraits::ChildIteratorType I =
256           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
257           I != E; ++I)
258        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
259          // Not in current loop? It must be an exit block.
260          ExitEdges.push_back(EdgeT(*BI, *I));
261  }
262
263  /// getLoopPreheader - If there is a preheader for this loop, return it.  A
264  /// loop has a preheader if there is only one edge to the header of the loop
265  /// from outside of the loop.  If this is the case, the block branching to the
266  /// header of the loop is the preheader node.
267  ///
268  /// This method returns null if there is no preheader for the loop.
269  ///
270  BlockT *getLoopPreheader() const {
271    // Keep track of nodes outside the loop branching to the header...
272    BlockT *Out = getLoopPredecessor();
273    if (!Out) return 0;
274
275    // Make sure there is only one exit out of the preheader.
276    typedef GraphTraits<BlockT*> BlockTraits;
277    typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
278    ++SI;
279    if (SI != BlockTraits::child_end(Out))
280      return 0;  // Multiple exits from the block, must not be a preheader.
281
282    // The predecessor has exactly one successor, so it is a preheader.
283    return Out;
284  }
285
286  /// getLoopPredecessor - If the given loop's header has exactly one unique
287  /// predecessor outside the loop, return it. Otherwise return null.
288  /// This is less strict that the loop "preheader" concept, which requires
289  /// the predecessor to have exactly one successor.
290  ///
291  BlockT *getLoopPredecessor() const {
292    // Keep track of nodes outside the loop branching to the header...
293    BlockT *Out = 0;
294
295    // Loop over the predecessors of the header node...
296    BlockT *Header = getHeader();
297    typedef GraphTraits<BlockT*> BlockTraits;
298    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
299    for (typename InvBlockTraits::ChildIteratorType PI =
300         InvBlockTraits::child_begin(Header),
301         PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
302      typename InvBlockTraits::NodeType *N = *PI;
303      if (!contains(N)) {     // If the block is not in the loop...
304        if (Out && Out != N)
305          return 0;             // Multiple predecessors outside the loop
306        Out = N;
307      }
308    }
309
310    // Make sure there is only one exit out of the preheader.
311    assert(Out && "Header of loop has no predecessors from outside loop?");
312    return Out;
313  }
314
315  /// getLoopLatch - If there is a single latch block for this loop, return it.
316  /// A latch block is a block that contains a branch back to the header.
317  BlockT *getLoopLatch() const {
318    BlockT *Header = getHeader();
319    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
320    typename InvBlockTraits::ChildIteratorType PI =
321                                            InvBlockTraits::child_begin(Header);
322    typename InvBlockTraits::ChildIteratorType PE =
323                                              InvBlockTraits::child_end(Header);
324    BlockT *Latch = 0;
325    for (; PI != PE; ++PI) {
326      typename InvBlockTraits::NodeType *N = *PI;
327      if (contains(N)) {
328        if (Latch) return 0;
329        Latch = N;
330      }
331    }
332
333    return Latch;
334  }
335
336  //===--------------------------------------------------------------------===//
337  // APIs for updating loop information after changing the CFG
338  //
339
340  /// addBasicBlockToLoop - This method is used by other analyses to update loop
341  /// information.  NewBB is set to be a new member of the current loop.
342  /// Because of this, it is added as a member of all parent loops, and is added
343  /// to the specified LoopInfo object as being in the current basic block.  It
344  /// is not valid to replace the loop header with this method.
345  ///
346  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
347
348  /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
349  /// the OldChild entry in our children list with NewChild, and updates the
350  /// parent pointer of OldChild to be null and the NewChild to be this loop.
351  /// This updates the loop depth of the new child.
352  void replaceChildLoopWith(LoopT *OldChild,
353                            LoopT *NewChild) {
354    assert(OldChild->ParentLoop == this && "This loop is already broken!");
355    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
356    typename std::vector<LoopT *>::iterator I =
357                          std::find(SubLoops.begin(), SubLoops.end(), OldChild);
358    assert(I != SubLoops.end() && "OldChild not in loop!");
359    *I = NewChild;
360    OldChild->ParentLoop = 0;
361    NewChild->ParentLoop = static_cast<LoopT *>(this);
362  }
363
364  /// addChildLoop - Add the specified loop to be a child of this loop.  This
365  /// updates the loop depth of the new child.
366  ///
367  void addChildLoop(LoopT *NewChild) {
368    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
369    NewChild->ParentLoop = static_cast<LoopT *>(this);
370    SubLoops.push_back(NewChild);
371  }
372
373  /// removeChildLoop - This removes the specified child from being a subloop of
374  /// this loop.  The loop is not deleted, as it will presumably be inserted
375  /// into another loop.
376  LoopT *removeChildLoop(iterator I) {
377    assert(I != SubLoops.end() && "Cannot remove end iterator!");
378    LoopT *Child = *I;
379    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
380    SubLoops.erase(SubLoops.begin()+(I-begin()));
381    Child->ParentLoop = 0;
382    return Child;
383  }
384
385  /// addBlockEntry - This adds a basic block directly to the basic block list.
386  /// This should only be used by transformations that create new loops.  Other
387  /// transformations should use addBasicBlockToLoop.
388  void addBlockEntry(BlockT *BB) {
389    Blocks.push_back(BB);
390  }
391
392  /// moveToHeader - This method is used to move BB (which must be part of this
393  /// loop) to be the loop header of the loop (the block that dominates all
394  /// others).
395  void moveToHeader(BlockT *BB) {
396    if (Blocks[0] == BB) return;
397    for (unsigned i = 0; ; ++i) {
398      assert(i != Blocks.size() && "Loop does not contain BB!");
399      if (Blocks[i] == BB) {
400        Blocks[i] = Blocks[0];
401        Blocks[0] = BB;
402        return;
403      }
404    }
405  }
406
407  /// removeBlockFromLoop - This removes the specified basic block from the
408  /// current loop, updating the Blocks as appropriate.  This does not update
409  /// the mapping in the LoopInfo class.
410  void removeBlockFromLoop(BlockT *BB) {
411    RemoveFromVector(Blocks, BB);
412  }
413
414  /// verifyLoop - Verify loop structure
415  void verifyLoop() const {
416#ifndef NDEBUG
417    assert(!Blocks.empty() && "Loop header is missing");
418
419    // Sort the blocks vector so that we can use binary search to do quick
420    // lookups.
421    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
422    std::sort(LoopBBs.begin(), LoopBBs.end());
423
424    // Check the individual blocks.
425    for (block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
426      BlockT *BB = *I;
427      bool HasInsideLoopSuccs = false;
428      bool HasInsideLoopPreds = false;
429      SmallVector<BlockT *, 2> OutsideLoopPreds;
430
431      typedef GraphTraits<BlockT*> BlockTraits;
432      for (typename BlockTraits::ChildIteratorType SI =
433           BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
434           SI != SE; ++SI)
435        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *SI)) {
436          HasInsideLoopSuccs = true;
437          break;
438        }
439      typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
440      for (typename InvBlockTraits::ChildIteratorType PI =
441           InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
442           PI != PE; ++PI) {
443        typename InvBlockTraits::NodeType *N = *PI;
444        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), N))
445          HasInsideLoopPreds = true;
446        else
447          OutsideLoopPreds.push_back(N);
448      }
449
450      if (BB == getHeader()) {
451        assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
452      } else if (!OutsideLoopPreds.empty()) {
453        // A non-header loop shouldn't be reachable from outside the loop,
454        // though it is permitted if the predecessor is not itself actually
455        // reachable.
456        BlockT *EntryBB = BB->getParent()->begin();
457        for (df_iterator<BlockT *> NI = df_begin(EntryBB),
458             NE = df_end(EntryBB); NI != NE; ++NI)
459          for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
460            assert(*NI != OutsideLoopPreds[i] &&
461                   "Loop has multiple entry points!");
462      }
463      assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
464      assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
465      assert(BB != getHeader()->getParent()->begin() &&
466             "Loop contains function entry block!");
467    }
468
469    // Check the subloops.
470    for (iterator I = begin(), E = end(); I != E; ++I)
471      // Each block in each subloop should be contained within this loop.
472      for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
473           BI != BE; ++BI) {
474        assert(std::binary_search(LoopBBs.begin(), LoopBBs.end(), *BI) &&
475               "Loop does not contain all the blocks of a subloop!");
476      }
477
478    // Check the parent loop pointer.
479    if (ParentLoop) {
480      assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
481               ParentLoop->end() &&
482             "Loop is not a subloop of its parent!");
483    }
484#endif
485  }
486
487  /// verifyLoop - Verify loop structure of this loop and all nested loops.
488  void verifyLoopNest(DenseSet<const LoopT*> *Loops) const {
489    Loops->insert(static_cast<const LoopT *>(this));
490    // Verify this loop.
491    verifyLoop();
492    // Verify the subloops.
493    for (iterator I = begin(), E = end(); I != E; ++I)
494      (*I)->verifyLoopNest(Loops);
495  }
496
497  void print(raw_ostream &OS, unsigned Depth = 0) const {
498    OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
499       << " containing: ";
500
501    for (unsigned i = 0; i < getBlocks().size(); ++i) {
502      if (i) OS << ",";
503      BlockT *BB = getBlocks()[i];
504      WriteAsOperand(OS, BB, false);
505      if (BB == getHeader())    OS << "<header>";
506      if (BB == getLoopLatch()) OS << "<latch>";
507      if (isLoopExiting(BB))    OS << "<exiting>";
508    }
509    OS << "\n";
510
511    for (iterator I = begin(), E = end(); I != E; ++I)
512      (*I)->print(OS, Depth+2);
513  }
514
515protected:
516  friend class LoopInfoBase<BlockT, LoopT>;
517  explicit LoopBase(BlockT *BB) : ParentLoop(0) {
518    Blocks.push_back(BB);
519  }
520};
521
522template<class BlockT, class LoopT>
523raw_ostream& operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
524  Loop.print(OS);
525  return OS;
526}
527
528class Loop : public LoopBase<BasicBlock, Loop> {
529public:
530  Loop() {}
531
532  /// isLoopInvariant - Return true if the specified value is loop invariant
533  ///
534  bool isLoopInvariant(Value *V) const;
535
536  /// hasLoopInvariantOperands - Return true if all the operands of the
537  /// specified instruction are loop invariant.
538  bool hasLoopInvariantOperands(Instruction *I) const;
539
540  /// makeLoopInvariant - If the given value is an instruction inside of the
541  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
542  /// Return true if the value after any hoisting is loop invariant. This
543  /// function can be used as a slightly more aggressive replacement for
544  /// isLoopInvariant.
545  ///
546  /// If InsertPt is specified, it is the point to hoist instructions to.
547  /// If null, the terminator of the loop preheader is used.
548  ///
549  bool makeLoopInvariant(Value *V, bool &Changed,
550                         Instruction *InsertPt = 0) const;
551
552  /// makeLoopInvariant - If the given instruction is inside of the
553  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
554  /// Return true if the instruction after any hoisting is loop invariant. This
555  /// function can be used as a slightly more aggressive replacement for
556  /// isLoopInvariant.
557  ///
558  /// If InsertPt is specified, it is the point to hoist instructions to.
559  /// If null, the terminator of the loop preheader is used.
560  ///
561  bool makeLoopInvariant(Instruction *I, bool &Changed,
562                         Instruction *InsertPt = 0) const;
563
564  /// getCanonicalInductionVariable - Check to see if the loop has a canonical
565  /// induction variable: an integer recurrence that starts at 0 and increments
566  /// by one each time through the loop.  If so, return the phi node that
567  /// corresponds to it.
568  ///
569  /// The IndVarSimplify pass transforms loops to have a canonical induction
570  /// variable.
571  ///
572  PHINode *getCanonicalInductionVariable() const;
573
574  /// getTripCount - Return a loop-invariant LLVM value indicating the number of
575  /// times the loop will be executed.  Note that this means that the backedge
576  /// of the loop executes N-1 times.  If the trip-count cannot be determined,
577  /// this returns null.
578  ///
579  /// The IndVarSimplify pass transforms loops to have a form that this
580  /// function easily understands.
581  ///
582  Value *getTripCount() const;
583
584  /// getSmallConstantTripCount - Returns the trip count of this loop as a
585  /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
586  /// of not constant. Will also return 0 if the trip count is very large
587  /// (>= 2^32)
588  ///
589  /// The IndVarSimplify pass transforms loops to have a form that this
590  /// function easily understands.
591  ///
592  unsigned getSmallConstantTripCount() const;
593
594  /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
595  /// trip count of this loop as a normal unsigned value, if possible. This
596  /// means that the actual trip count is always a multiple of the returned
597  /// value (don't forget the trip count could very well be zero as well!).
598  ///
599  /// Returns 1 if the trip count is unknown or not guaranteed to be the
600  /// multiple of a constant (which is also the case if the trip count is simply
601  /// constant, use getSmallConstantTripCount for that case), Will also return 1
602  /// if the trip count is very large (>= 2^32).
603  unsigned getSmallConstantTripMultiple() const;
604
605  /// isLCSSAForm - Return true if the Loop is in LCSSA form
606  bool isLCSSAForm(DominatorTree &DT) const;
607
608  /// isLoopSimplifyForm - Return true if the Loop is in the form that
609  /// the LoopSimplify form transforms loops to, which is sometimes called
610  /// normal form.
611  bool isLoopSimplifyForm() const;
612
613  /// hasDedicatedExits - Return true if no exit block for the loop
614  /// has a predecessor that is outside the loop.
615  bool hasDedicatedExits() const;
616
617  /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
618  /// These are the blocks _outside of the current loop_ which are branched to.
619  /// This assumes that loop exits are in canonical form.
620  ///
621  void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
622
623  /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
624  /// block, return that block. Otherwise return null.
625  BasicBlock *getUniqueExitBlock() const;
626
627  void dump() const;
628
629private:
630  friend class LoopInfoBase<BasicBlock, Loop>;
631  explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
632};
633
634//===----------------------------------------------------------------------===//
635/// LoopInfo - This class builds and contains all of the top level loop
636/// structures in the specified function.
637///
638
639template<class BlockT, class LoopT>
640class LoopInfoBase {
641  // BBMap - Mapping of basic blocks to the inner most loop they occur in
642  DenseMap<BlockT *, LoopT *> BBMap;
643  std::vector<LoopT *> TopLevelLoops;
644  friend class LoopBase<BlockT, LoopT>;
645  friend class LoopInfo;
646
647  void operator=(const LoopInfoBase &); // do not implement
648  LoopInfoBase(const LoopInfo &);       // do not implement
649public:
650  LoopInfoBase() { }
651  ~LoopInfoBase() { releaseMemory(); }
652
653  void releaseMemory() {
654    for (typename std::vector<LoopT *>::iterator I =
655         TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
656      delete *I;   // Delete all of the loops...
657
658    BBMap.clear();                           // Reset internal state of analysis
659    TopLevelLoops.clear();
660  }
661
662  /// iterator/begin/end - The interface to the top-level loops in the current
663  /// function.
664  ///
665  typedef typename std::vector<LoopT *>::const_iterator iterator;
666  iterator begin() const { return TopLevelLoops.begin(); }
667  iterator end() const { return TopLevelLoops.end(); }
668  bool empty() const { return TopLevelLoops.empty(); }
669
670  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
671  /// block is in no loop (for example the entry node), null is returned.
672  ///
673  LoopT *getLoopFor(const BlockT *BB) const {
674    typename DenseMap<BlockT *, LoopT *>::const_iterator I=
675      BBMap.find(const_cast<BlockT*>(BB));
676    return I != BBMap.end() ? I->second : 0;
677  }
678
679  /// operator[] - same as getLoopFor...
680  ///
681  const LoopT *operator[](const BlockT *BB) const {
682    return getLoopFor(BB);
683  }
684
685  /// getLoopDepth - Return the loop nesting level of the specified block.  A
686  /// depth of 0 means the block is not inside any loop.
687  ///
688  unsigned getLoopDepth(const BlockT *BB) const {
689    const LoopT *L = getLoopFor(BB);
690    return L ? L->getLoopDepth() : 0;
691  }
692
693  // isLoopHeader - True if the block is a loop header node
694  bool isLoopHeader(BlockT *BB) const {
695    const LoopT *L = getLoopFor(BB);
696    return L && L->getHeader() == BB;
697  }
698
699  /// removeLoop - This removes the specified top-level loop from this loop info
700  /// object.  The loop is not deleted, as it will presumably be inserted into
701  /// another loop.
702  LoopT *removeLoop(iterator I) {
703    assert(I != end() && "Cannot remove end iterator!");
704    LoopT *L = *I;
705    assert(L->getParentLoop() == 0 && "Not a top-level loop!");
706    TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
707    return L;
708  }
709
710  /// changeLoopFor - Change the top-level loop that contains BB to the
711  /// specified loop.  This should be used by transformations that restructure
712  /// the loop hierarchy tree.
713  void changeLoopFor(BlockT *BB, LoopT *L) {
714    if (!L) {
715      typename DenseMap<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
716      if (I != BBMap.end())
717        BBMap.erase(I);
718      return;
719    }
720    BBMap[BB] = L;
721  }
722
723  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
724  /// list with the indicated loop.
725  void changeTopLevelLoop(LoopT *OldLoop,
726                          LoopT *NewLoop) {
727    typename std::vector<LoopT *>::iterator I =
728                 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
729    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
730    *I = NewLoop;
731    assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
732           "Loops already embedded into a subloop!");
733  }
734
735  /// addTopLevelLoop - This adds the specified loop to the collection of
736  /// top-level loops.
737  void addTopLevelLoop(LoopT *New) {
738    assert(New->getParentLoop() == 0 && "Loop already in subloop!");
739    TopLevelLoops.push_back(New);
740  }
741
742  /// removeBlock - This method completely removes BB from all data structures,
743  /// including all of the Loop objects it is nested in and our mapping from
744  /// BasicBlocks to loops.
745  void removeBlock(BlockT *BB) {
746    typename DenseMap<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
747    if (I != BBMap.end()) {
748      for (LoopT *L = I->second; L; L = L->getParentLoop())
749        L->removeBlockFromLoop(BB);
750
751      BBMap.erase(I);
752    }
753  }
754
755  // Internals
756
757  static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
758                                      const LoopT *ParentLoop) {
759    if (SubLoop == 0) return true;
760    if (SubLoop == ParentLoop) return false;
761    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
762  }
763
764  void Calculate(DominatorTreeBase<BlockT> &DT) {
765    BlockT *RootNode = DT.getRootNode()->getBlock();
766
767    for (df_iterator<BlockT*> NI = df_begin(RootNode),
768           NE = df_end(RootNode); NI != NE; ++NI)
769      if (LoopT *L = ConsiderForLoop(*NI, DT))
770        TopLevelLoops.push_back(L);
771  }
772
773  LoopT *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
774    if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node?
775
776    std::vector<BlockT *> TodoStack;
777
778    // Scan the predecessors of BB, checking to see if BB dominates any of
779    // them.  This identifies backedges which target this node...
780    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
781    for (typename InvBlockTraits::ChildIteratorType I =
782         InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
783         I != E; ++I) {
784      typename InvBlockTraits::NodeType *N = *I;
785      if (DT.dominates(BB, N))   // If BB dominates its predecessor...
786          TodoStack.push_back(N);
787    }
788
789    if (TodoStack.empty()) return 0;  // No backedges to this block...
790
791    // Create a new loop to represent this basic block...
792    LoopT *L = new LoopT(BB);
793    BBMap[BB] = L;
794
795    BlockT *EntryBlock = BB->getParent()->begin();
796
797    while (!TodoStack.empty()) {  // Process all the nodes in the loop
798      BlockT *X = TodoStack.back();
799      TodoStack.pop_back();
800
801      if (!L->contains(X) &&         // As of yet unprocessed??
802          DT.dominates(EntryBlock, X)) {   // X is reachable from entry block?
803        // Check to see if this block already belongs to a loop.  If this occurs
804        // then we have a case where a loop that is supposed to be a child of
805        // the current loop was processed before the current loop.  When this
806        // occurs, this child loop gets added to a part of the current loop,
807        // making it a sibling to the current loop.  We have to reparent this
808        // loop.
809        if (LoopT *SubLoop =
810            const_cast<LoopT *>(getLoopFor(X)))
811          if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
812            // Remove the subloop from its current parent...
813            assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
814            LoopT *SLP = SubLoop->ParentLoop;  // SubLoopParent
815            typename std::vector<LoopT *>::iterator I =
816              std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
817            assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
818            SLP->SubLoops.erase(I);   // Remove from parent...
819
820            // Add the subloop to THIS loop...
821            SubLoop->ParentLoop = L;
822            L->SubLoops.push_back(SubLoop);
823          }
824
825        // Normal case, add the block to our loop...
826        L->Blocks.push_back(X);
827
828        typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
829
830        // Add all of the predecessors of X to the end of the work stack...
831        TodoStack.insert(TodoStack.end(), InvBlockTraits::child_begin(X),
832                         InvBlockTraits::child_end(X));
833      }
834    }
835
836    // If there are any loops nested within this loop, create them now!
837    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
838         E = L->Blocks.end(); I != E; ++I)
839      if (LoopT *NewLoop = ConsiderForLoop(*I, DT)) {
840        L->SubLoops.push_back(NewLoop);
841        NewLoop->ParentLoop = L;
842      }
843
844    // Add the basic blocks that comprise this loop to the BBMap so that this
845    // loop can be found for them.
846    //
847    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
848           E = L->Blocks.end(); I != E; ++I)
849      BBMap.insert(std::make_pair(*I, L));
850
851    // Now that we have a list of all of the child loops of this loop, check to
852    // see if any of them should actually be nested inside of each other.  We
853    // can accidentally pull loops our of their parents, so we must make sure to
854    // organize the loop nests correctly now.
855    {
856      std::map<BlockT *, LoopT *> ContainingLoops;
857      for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
858        LoopT *Child = L->SubLoops[i];
859        assert(Child->getParentLoop() == L && "Not proper child loop?");
860
861        if (LoopT *ContainingLoop = ContainingLoops[Child->getHeader()]) {
862          // If there is already a loop which contains this loop, move this loop
863          // into the containing loop.
864          MoveSiblingLoopInto(Child, ContainingLoop);
865          --i;  // The loop got removed from the SubLoops list.
866        } else {
867          // This is currently considered to be a top-level loop.  Check to see
868          // if any of the contained blocks are loop headers for subloops we
869          // have already processed.
870          for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
871            LoopT *&BlockLoop = ContainingLoops[Child->Blocks[b]];
872            if (BlockLoop == 0) {   // Child block not processed yet...
873              BlockLoop = Child;
874            } else if (BlockLoop != Child) {
875              LoopT *SubLoop = BlockLoop;
876              // Reparent all of the blocks which used to belong to BlockLoops
877              for (unsigned j = 0, f = SubLoop->Blocks.size(); j != f; ++j)
878                ContainingLoops[SubLoop->Blocks[j]] = Child;
879
880              // There is already a loop which contains this block, that means
881              // that we should reparent the loop which the block is currently
882              // considered to belong to to be a child of this loop.
883              MoveSiblingLoopInto(SubLoop, Child);
884              --i;  // We just shrunk the SubLoops list.
885            }
886          }
887        }
888      }
889    }
890
891    return L;
892  }
893
894  /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
895  /// of the NewParent Loop, instead of being a sibling of it.
896  void MoveSiblingLoopInto(LoopT *NewChild,
897                           LoopT *NewParent) {
898    LoopT *OldParent = NewChild->getParentLoop();
899    assert(OldParent && OldParent == NewParent->getParentLoop() &&
900           NewChild != NewParent && "Not sibling loops!");
901
902    // Remove NewChild from being a child of OldParent
903    typename std::vector<LoopT *>::iterator I =
904      std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
905                NewChild);
906    assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
907    OldParent->SubLoops.erase(I);   // Remove from parent's subloops list
908    NewChild->ParentLoop = 0;
909
910    InsertLoopInto(NewChild, NewParent);
911  }
912
913  /// InsertLoopInto - This inserts loop L into the specified parent loop.  If
914  /// the parent loop contains a loop which should contain L, the loop gets
915  /// inserted into L instead.
916  void InsertLoopInto(LoopT *L, LoopT *Parent) {
917    BlockT *LHeader = L->getHeader();
918    assert(Parent->contains(LHeader) &&
919           "This loop should not be inserted here!");
920
921    // Check to see if it belongs in a child loop...
922    for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
923         i != e; ++i)
924      if (Parent->SubLoops[i]->contains(LHeader)) {
925        InsertLoopInto(L, Parent->SubLoops[i]);
926        return;
927      }
928
929    // If not, insert it here!
930    Parent->SubLoops.push_back(L);
931    L->ParentLoop = Parent;
932  }
933
934  // Debugging
935
936  void print(raw_ostream &OS) const {
937    for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
938      TopLevelLoops[i]->print(OS);
939  #if 0
940    for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
941           E = BBMap.end(); I != E; ++I)
942      OS << "BB '" << I->first->getName() << "' level = "
943         << I->second->getLoopDepth() << "\n";
944  #endif
945  }
946};
947
948class LoopInfo : public FunctionPass {
949  LoopInfoBase<BasicBlock, Loop> LI;
950  friend class LoopBase<BasicBlock, Loop>;
951
952  void operator=(const LoopInfo &); // do not implement
953  LoopInfo(const LoopInfo &);       // do not implement
954public:
955  static char ID; // Pass identification, replacement for typeid
956
957  LoopInfo() : FunctionPass(ID) {
958    initializeLoopInfoPass(*PassRegistry::getPassRegistry());
959  }
960
961  LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
962
963  /// iterator/begin/end - The interface to the top-level loops in the current
964  /// function.
965  ///
966  typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
967  inline iterator begin() const { return LI.begin(); }
968  inline iterator end() const { return LI.end(); }
969  bool empty() const { return LI.empty(); }
970
971  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
972  /// block is in no loop (for example the entry node), null is returned.
973  ///
974  inline Loop *getLoopFor(const BasicBlock *BB) const {
975    return LI.getLoopFor(BB);
976  }
977
978  /// operator[] - same as getLoopFor...
979  ///
980  inline const Loop *operator[](const BasicBlock *BB) const {
981    return LI.getLoopFor(BB);
982  }
983
984  /// getLoopDepth - Return the loop nesting level of the specified block.  A
985  /// depth of 0 means the block is not inside any loop.
986  ///
987  inline unsigned getLoopDepth(const BasicBlock *BB) const {
988    return LI.getLoopDepth(BB);
989  }
990
991  // isLoopHeader - True if the block is a loop header node
992  inline bool isLoopHeader(BasicBlock *BB) const {
993    return LI.isLoopHeader(BB);
994  }
995
996  /// runOnFunction - Calculate the natural loop information.
997  ///
998  virtual bool runOnFunction(Function &F);
999
1000  virtual void verifyAnalysis() const;
1001
1002  virtual void releaseMemory() { LI.releaseMemory(); }
1003
1004  virtual void print(raw_ostream &O, const Module* M = 0) const;
1005
1006  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
1007
1008  /// removeLoop - This removes the specified top-level loop from this loop info
1009  /// object.  The loop is not deleted, as it will presumably be inserted into
1010  /// another loop.
1011  inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
1012
1013  /// changeLoopFor - Change the top-level loop that contains BB to the
1014  /// specified loop.  This should be used by transformations that restructure
1015  /// the loop hierarchy tree.
1016  inline void changeLoopFor(BasicBlock *BB, Loop *L) {
1017    LI.changeLoopFor(BB, L);
1018  }
1019
1020  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
1021  /// list with the indicated loop.
1022  inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
1023    LI.changeTopLevelLoop(OldLoop, NewLoop);
1024  }
1025
1026  /// addTopLevelLoop - This adds the specified loop to the collection of
1027  /// top-level loops.
1028  inline void addTopLevelLoop(Loop *New) {
1029    LI.addTopLevelLoop(New);
1030  }
1031
1032  /// removeBlock - This method completely removes BB from all data structures,
1033  /// including all of the Loop objects it is nested in and our mapping from
1034  /// BasicBlocks to loops.
1035  void removeBlock(BasicBlock *BB) {
1036    LI.removeBlock(BB);
1037  }
1038
1039  /// updateUnloop - Update LoopInfo after removing the last backedge from a
1040  /// loop--now the "unloop". This updates the loop forest and parent loops for
1041  /// each block so that Unloop is no longer referenced, but the caller must
1042  /// actually delete the Unloop object.
1043  void updateUnloop(Loop *Unloop);
1044
1045  /// replacementPreservesLCSSAForm - Returns true if replacing From with To
1046  /// everywhere is guaranteed to preserve LCSSA form.
1047  bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
1048    // Preserving LCSSA form is only problematic if the replacing value is an
1049    // instruction.
1050    Instruction *I = dyn_cast<Instruction>(To);
1051    if (!I) return true;
1052    // If both instructions are defined in the same basic block then replacement
1053    // cannot break LCSSA form.
1054    if (I->getParent() == From->getParent())
1055      return true;
1056    // If the instruction is not defined in a loop then it can safely replace
1057    // anything.
1058    Loop *ToLoop = getLoopFor(I->getParent());
1059    if (!ToLoop) return true;
1060    // If the replacing instruction is defined in the same loop as the original
1061    // instruction, or in a loop that contains it as an inner loop, then using
1062    // it as a replacement will not break LCSSA form.
1063    return ToLoop->contains(getLoopFor(From->getParent()));
1064  }
1065};
1066
1067
1068// Allow clients to walk the list of nested loops...
1069template <> struct GraphTraits<const Loop*> {
1070  typedef const Loop NodeType;
1071  typedef LoopInfo::iterator ChildIteratorType;
1072
1073  static NodeType *getEntryNode(const Loop *L) { return L; }
1074  static inline ChildIteratorType child_begin(NodeType *N) {
1075    return N->begin();
1076  }
1077  static inline ChildIteratorType child_end(NodeType *N) {
1078    return N->end();
1079  }
1080};
1081
1082template <> struct GraphTraits<Loop*> {
1083  typedef Loop NodeType;
1084  typedef LoopInfo::iterator ChildIteratorType;
1085
1086  static NodeType *getEntryNode(Loop *L) { return L; }
1087  static inline ChildIteratorType child_begin(NodeType *N) {
1088    return N->begin();
1089  }
1090  static inline ChildIteratorType child_end(NodeType *N) {
1091    return N->end();
1092  }
1093};
1094
1095template<class BlockT, class LoopT>
1096void
1097LoopBase<BlockT, LoopT>::addBasicBlockToLoop(BlockT *NewBB,
1098                                             LoopInfoBase<BlockT, LoopT> &LIB) {
1099  assert((Blocks.empty() || LIB[getHeader()] == this) &&
1100         "Incorrect LI specified for this loop!");
1101  assert(NewBB && "Cannot add a null basic block to the loop!");
1102  assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
1103
1104  LoopT *L = static_cast<LoopT *>(this);
1105
1106  // Add the loop mapping to the LoopInfo object...
1107  LIB.BBMap[NewBB] = L;
1108
1109  // Add the basic block to this loop and all parent loops...
1110  while (L) {
1111    L->Blocks.push_back(NewBB);
1112    L = L->getParentLoop();
1113  }
1114}
1115
1116} // End llvm namespace
1117
1118#endif
1119