LoopInfo.h revision 60f422f894ae9aff2f508f34733be36f5a0ed20a
1//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  A natural loop
12// has exactly one entry-point, which is called the header. Note that natural
13// loops may actually be several loops that share the same header node.
14//
15// This analysis calculates the nesting structure of loops in a function.  For
16// each natural loop identified, this analysis identifies natural loops
17// contained entirely within the loop and the basic blocks the make up the loop.
18//
19// It can calculate on the fly various bits of information, for example:
20//
21//  * whether there is a preheader for the loop
22//  * the number of back edges to the header
23//  * whether or not a particular block branches out of the loop
24//  * the successor blocks of the loop
25//  * the loop depth
26//  * the trip count
27//  * etc...
28//
29//===----------------------------------------------------------------------===//
30
31#ifndef LLVM_ANALYSIS_LOOP_INFO_H
32#define LLVM_ANALYSIS_LOOP_INFO_H
33
34#include "llvm/Pass.h"
35#include "llvm/ADT/DepthFirstIterator.h"
36#include "llvm/ADT/GraphTraits.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/Analysis/Dominators.h"
39#include "llvm/Support/CFG.h"
40#include "llvm/Support/raw_ostream.h"
41#include <algorithm>
42
43namespace llvm {
44
45template<typename T>
46static void RemoveFromVector(std::vector<T*> &V, T *N) {
47  typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
48  assert(I != V.end() && "N is not in this list!");
49  V.erase(I);
50}
51
52class DominatorTree;
53class LoopInfo;
54class Loop;
55template<class N, class M> class LoopInfoBase;
56template<class N, class M> class LoopBase;
57
58//===----------------------------------------------------------------------===//
59/// LoopBase class - Instances of this class are used to represent loops that
60/// are detected in the flow graph
61///
62template<class BlockT, class LoopT>
63class LoopBase {
64  LoopT *ParentLoop;
65  // SubLoops - Loops contained entirely within this one.
66  std::vector<LoopT *> SubLoops;
67
68  // Blocks - The list of blocks in this loop.  First entry is the header node.
69  std::vector<BlockT*> Blocks;
70
71  // DO NOT IMPLEMENT
72  LoopBase(const LoopBase<BlockT, LoopT> &);
73  // DO NOT IMPLEMENT
74  const LoopBase<BlockT, LoopT>&operator=(const LoopBase<BlockT, LoopT> &);
75public:
76  /// Loop ctor - This creates an empty loop.
77  LoopBase() : ParentLoop(0) {}
78  ~LoopBase() {
79    for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
80      delete SubLoops[i];
81  }
82
83  /// getLoopDepth - Return the nesting level of this loop.  An outer-most
84  /// loop has depth 1, for consistency with loop depth values used for basic
85  /// blocks, where depth 0 is used for blocks not inside any loops.
86  unsigned getLoopDepth() const {
87    unsigned D = 1;
88    for (const LoopT *CurLoop = ParentLoop; CurLoop;
89         CurLoop = CurLoop->ParentLoop)
90      ++D;
91    return D;
92  }
93  BlockT *getHeader() const { return Blocks.front(); }
94  LoopT *getParentLoop() const { return ParentLoop; }
95
96  /// contains - Return true if the specified loop is contained within in
97  /// this loop.
98  ///
99  bool contains(const LoopT *L) const {
100    if (L == this) return true;
101    if (L == 0)    return false;
102    return contains(L->getParentLoop());
103  }
104
105  /// contains - Return true if the specified basic block is in this loop.
106  ///
107  bool contains(const BlockT *BB) const {
108    return std::find(block_begin(), block_end(), BB) != block_end();
109  }
110
111  /// contains - Return true if the specified instruction is in this loop.
112  ///
113  template<class InstT>
114  bool contains(const InstT *Inst) const {
115    return contains(Inst->getParent());
116  }
117
118  /// iterator/begin/end - Return the loops contained entirely within this loop.
119  ///
120  const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
121  typedef typename std::vector<LoopT *>::const_iterator iterator;
122  iterator begin() const { return SubLoops.begin(); }
123  iterator end() const { return SubLoops.end(); }
124  bool empty() const { return SubLoops.empty(); }
125
126  /// getBlocks - Get a list of the basic blocks which make up this loop.
127  ///
128  const std::vector<BlockT*> &getBlocks() const { return Blocks; }
129  typedef typename std::vector<BlockT*>::const_iterator block_iterator;
130  block_iterator block_begin() const { return Blocks.begin(); }
131  block_iterator block_end() const { return Blocks.end(); }
132
133  /// isLoopExiting - True if terminator in the block can branch to another
134  /// block that is outside of the current loop.
135  ///
136  bool isLoopExiting(const BlockT *BB) const {
137    typedef GraphTraits<BlockT*> BlockTraits;
138    for (typename BlockTraits::ChildIteratorType SI =
139         BlockTraits::child_begin(const_cast<BlockT*>(BB)),
140         SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
141      if (!contains(*SI))
142        return true;
143    }
144    return false;
145  }
146
147  /// getNumBackEdges - Calculate the number of back edges to the loop header
148  ///
149  unsigned getNumBackEdges() const {
150    unsigned NumBackEdges = 0;
151    BlockT *H = getHeader();
152
153    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
154    for (typename InvBlockTraits::ChildIteratorType I =
155         InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
156         E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
157      if (contains(*I))
158        ++NumBackEdges;
159
160    return NumBackEdges;
161  }
162
163  //===--------------------------------------------------------------------===//
164  // APIs for simple analysis of the loop.
165  //
166  // Note that all of these methods can fail on general loops (ie, there may not
167  // be a preheader, etc).  For best success, the loop simplification and
168  // induction variable canonicalization pass should be used to normalize loops
169  // for easy analysis.  These methods assume canonical loops.
170
171  /// getExitingBlocks - Return all blocks inside the loop that have successors
172  /// outside of the loop.  These are the blocks _inside of the current loop_
173  /// which branch out.  The returned list is always unique.
174  ///
175  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
176    // Sort the blocks vector so that we can use binary search to do quick
177    // lookups.
178    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
179    std::sort(LoopBBs.begin(), LoopBBs.end());
180
181    typedef GraphTraits<BlockT*> BlockTraits;
182    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
183      for (typename BlockTraits::ChildIteratorType I =
184          BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
185          I != E; ++I)
186        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
187          // Not in current loop? It must be an exit block.
188          ExitingBlocks.push_back(*BI);
189          break;
190        }
191  }
192
193  /// getExitingBlock - If getExitingBlocks would return exactly one block,
194  /// return that block. Otherwise return null.
195  BlockT *getExitingBlock() const {
196    SmallVector<BlockT*, 8> ExitingBlocks;
197    getExitingBlocks(ExitingBlocks);
198    if (ExitingBlocks.size() == 1)
199      return ExitingBlocks[0];
200    return 0;
201  }
202
203  /// getExitBlocks - Return all of the successor blocks of this loop.  These
204  /// are the blocks _outside of the current loop_ which are branched to.
205  ///
206  void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
207    // Sort the blocks vector so that we can use binary search to do quick
208    // lookups.
209    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
210    std::sort(LoopBBs.begin(), LoopBBs.end());
211
212    typedef GraphTraits<BlockT*> BlockTraits;
213    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
214      for (typename BlockTraits::ChildIteratorType I =
215           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
216           I != E; ++I)
217        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
218          // Not in current loop? It must be an exit block.
219          ExitBlocks.push_back(*I);
220  }
221
222  /// getExitBlock - If getExitBlocks would return exactly one block,
223  /// return that block. Otherwise return null.
224  BlockT *getExitBlock() const {
225    SmallVector<BlockT*, 8> ExitBlocks;
226    getExitBlocks(ExitBlocks);
227    if (ExitBlocks.size() == 1)
228      return ExitBlocks[0];
229    return 0;
230  }
231
232  /// Edge type.
233  typedef std::pair<BlockT*, BlockT*> Edge;
234
235  /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
236  template <typename EdgeT>
237  void getExitEdges(SmallVectorImpl<EdgeT> &ExitEdges) const {
238    // Sort the blocks vector so that we can use binary search to do quick
239    // lookups.
240    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
241    std::sort(LoopBBs.begin(), LoopBBs.end());
242
243    typedef GraphTraits<BlockT*> BlockTraits;
244    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
245      for (typename BlockTraits::ChildIteratorType I =
246           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
247           I != E; ++I)
248        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
249          // Not in current loop? It must be an exit block.
250          ExitEdges.push_back(EdgeT(*BI, *I));
251  }
252
253  /// getLoopPreheader - If there is a preheader for this loop, return it.  A
254  /// loop has a preheader if there is only one edge to the header of the loop
255  /// from outside of the loop.  If this is the case, the block branching to the
256  /// header of the loop is the preheader node.
257  ///
258  /// This method returns null if there is no preheader for the loop.
259  ///
260  BlockT *getLoopPreheader() const {
261    // Keep track of nodes outside the loop branching to the header...
262    BlockT *Out = getLoopPredecessor();
263    if (!Out) return 0;
264
265    // Make sure there is only one exit out of the preheader.
266    typedef GraphTraits<BlockT*> BlockTraits;
267    typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
268    ++SI;
269    if (SI != BlockTraits::child_end(Out))
270      return 0;  // Multiple exits from the block, must not be a preheader.
271
272    // The predecessor has exactly one successor, so it is a preheader.
273    return Out;
274  }
275
276  /// getLoopPredecessor - If the given loop's header has exactly one unique
277  /// predecessor outside the loop, return it. Otherwise return null.
278  /// This is less strict that the loop "preheader" concept, which requires
279  /// the predecessor to have exactly one successor.
280  ///
281  BlockT *getLoopPredecessor() const {
282    // Keep track of nodes outside the loop branching to the header...
283    BlockT *Out = 0;
284
285    // Loop over the predecessors of the header node...
286    BlockT *Header = getHeader();
287    typedef GraphTraits<BlockT*> BlockTraits;
288    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
289    for (typename InvBlockTraits::ChildIteratorType PI =
290         InvBlockTraits::child_begin(Header),
291         PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
292      typename InvBlockTraits::NodeType *N = *PI;
293      if (!contains(N)) {     // If the block is not in the loop...
294        if (Out && Out != N)
295          return 0;             // Multiple predecessors outside the loop
296        Out = N;
297      }
298    }
299
300    // Make sure there is only one exit out of the preheader.
301    assert(Out && "Header of loop has no predecessors from outside loop?");
302    return Out;
303  }
304
305  /// getLoopLatch - If there is a single latch block for this loop, return it.
306  /// A latch block is a block that contains a branch back to the header.
307  BlockT *getLoopLatch() const {
308    BlockT *Header = getHeader();
309    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
310    typename InvBlockTraits::ChildIteratorType PI =
311                                            InvBlockTraits::child_begin(Header);
312    typename InvBlockTraits::ChildIteratorType PE =
313                                              InvBlockTraits::child_end(Header);
314    BlockT *Latch = 0;
315    for (; PI != PE; ++PI) {
316      typename InvBlockTraits::NodeType *N = *PI;
317      if (contains(N)) {
318        if (Latch) return 0;
319        Latch = N;
320      }
321    }
322
323    return Latch;
324  }
325
326  //===--------------------------------------------------------------------===//
327  // APIs for updating loop information after changing the CFG
328  //
329
330  /// addBasicBlockToLoop - This method is used by other analyses to update loop
331  /// information.  NewBB is set to be a new member of the current loop.
332  /// Because of this, it is added as a member of all parent loops, and is added
333  /// to the specified LoopInfo object as being in the current basic block.  It
334  /// is not valid to replace the loop header with this method.
335  ///
336  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
337
338  /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
339  /// the OldChild entry in our children list with NewChild, and updates the
340  /// parent pointer of OldChild to be null and the NewChild to be this loop.
341  /// This updates the loop depth of the new child.
342  void replaceChildLoopWith(LoopT *OldChild,
343                            LoopT *NewChild) {
344    assert(OldChild->ParentLoop == this && "This loop is already broken!");
345    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
346    typename std::vector<LoopT *>::iterator I =
347                          std::find(SubLoops.begin(), SubLoops.end(), OldChild);
348    assert(I != SubLoops.end() && "OldChild not in loop!");
349    *I = NewChild;
350    OldChild->ParentLoop = 0;
351    NewChild->ParentLoop = static_cast<LoopT *>(this);
352  }
353
354  /// addChildLoop - Add the specified loop to be a child of this loop.  This
355  /// updates the loop depth of the new child.
356  ///
357  void addChildLoop(LoopT *NewChild) {
358    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
359    NewChild->ParentLoop = static_cast<LoopT *>(this);
360    SubLoops.push_back(NewChild);
361  }
362
363  /// removeChildLoop - This removes the specified child from being a subloop of
364  /// this loop.  The loop is not deleted, as it will presumably be inserted
365  /// into another loop.
366  LoopT *removeChildLoop(iterator I) {
367    assert(I != SubLoops.end() && "Cannot remove end iterator!");
368    LoopT *Child = *I;
369    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
370    SubLoops.erase(SubLoops.begin()+(I-begin()));
371    Child->ParentLoop = 0;
372    return Child;
373  }
374
375  /// addBlockEntry - This adds a basic block directly to the basic block list.
376  /// This should only be used by transformations that create new loops.  Other
377  /// transformations should use addBasicBlockToLoop.
378  void addBlockEntry(BlockT *BB) {
379    Blocks.push_back(BB);
380  }
381
382  /// moveToHeader - This method is used to move BB (which must be part of this
383  /// loop) to be the loop header of the loop (the block that dominates all
384  /// others).
385  void moveToHeader(BlockT *BB) {
386    if (Blocks[0] == BB) return;
387    for (unsigned i = 0; ; ++i) {
388      assert(i != Blocks.size() && "Loop does not contain BB!");
389      if (Blocks[i] == BB) {
390        Blocks[i] = Blocks[0];
391        Blocks[0] = BB;
392        return;
393      }
394    }
395  }
396
397  /// removeBlockFromLoop - This removes the specified basic block from the
398  /// current loop, updating the Blocks as appropriate.  This does not update
399  /// the mapping in the LoopInfo class.
400  void removeBlockFromLoop(BlockT *BB) {
401    RemoveFromVector(Blocks, BB);
402  }
403
404  /// verifyLoop - Verify loop structure
405  void verifyLoop() const {
406#ifndef NDEBUG
407    assert(!Blocks.empty() && "Loop header is missing");
408
409    // Sort the blocks vector so that we can use binary search to do quick
410    // lookups.
411    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
412    std::sort(LoopBBs.begin(), LoopBBs.end());
413
414    // Check the individual blocks.
415    for (block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
416      BlockT *BB = *I;
417      bool HasInsideLoopSuccs = false;
418      bool HasInsideLoopPreds = false;
419      SmallVector<BlockT *, 2> OutsideLoopPreds;
420
421      typedef GraphTraits<BlockT*> BlockTraits;
422      for (typename BlockTraits::ChildIteratorType SI =
423           BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
424           SI != SE; ++SI)
425        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *SI)) {
426          HasInsideLoopSuccs = true;
427          break;
428        }
429      typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
430      for (typename InvBlockTraits::ChildIteratorType PI =
431           InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
432           PI != PE; ++PI) {
433        typename InvBlockTraits::NodeType *N = *PI;
434        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), N))
435          HasInsideLoopPreds = true;
436        else
437          OutsideLoopPreds.push_back(N);
438      }
439
440      if (BB == getHeader()) {
441        assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
442      } else if (!OutsideLoopPreds.empty()) {
443        // A non-header loop shouldn't be reachable from outside the loop,
444        // though it is permitted if the predecessor is not itself actually
445        // reachable.
446        BlockT *EntryBB = BB->getParent()->begin();
447        for (df_iterator<BlockT *> NI = df_begin(EntryBB),
448             NE = df_end(EntryBB); NI != NE; ++NI)
449          for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
450            assert(*NI != OutsideLoopPreds[i] &&
451                   "Loop has multiple entry points!");
452      }
453      assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
454      assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
455      assert(BB != getHeader()->getParent()->begin() &&
456             "Loop contains function entry block!");
457    }
458
459    // Check the subloops.
460    for (iterator I = begin(), E = end(); I != E; ++I)
461      // Each block in each subloop should be contained within this loop.
462      for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
463           BI != BE; ++BI) {
464        assert(std::binary_search(LoopBBs.begin(), LoopBBs.end(), *BI) &&
465               "Loop does not contain all the blocks of a subloop!");
466      }
467
468    // Check the parent loop pointer.
469    if (ParentLoop) {
470      assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
471               ParentLoop->end() &&
472             "Loop is not a subloop of its parent!");
473    }
474#endif
475  }
476
477  /// verifyLoop - Verify loop structure of this loop and all nested loops.
478  void verifyLoopNest() const {
479    // Verify this loop.
480    verifyLoop();
481    // Verify the subloops.
482    for (iterator I = begin(), E = end(); I != E; ++I)
483      (*I)->verifyLoopNest();
484  }
485
486  void print(raw_ostream &OS, unsigned Depth = 0) const {
487    OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
488       << " containing: ";
489
490    for (unsigned i = 0; i < getBlocks().size(); ++i) {
491      if (i) OS << ",";
492      BlockT *BB = getBlocks()[i];
493      WriteAsOperand(OS, BB, false);
494      if (BB == getHeader())    OS << "<header>";
495      if (BB == getLoopLatch()) OS << "<latch>";
496      if (isLoopExiting(BB))    OS << "<exiting>";
497    }
498    OS << "\n";
499
500    for (iterator I = begin(), E = end(); I != E; ++I)
501      (*I)->print(OS, Depth+2);
502  }
503
504protected:
505  friend class LoopInfoBase<BlockT, LoopT>;
506  explicit LoopBase(BlockT *BB) : ParentLoop(0) {
507    Blocks.push_back(BB);
508  }
509};
510
511class Loop : public LoopBase<BasicBlock, Loop> {
512public:
513  Loop() {}
514
515  /// isLoopInvariant - Return true if the specified value is loop invariant
516  ///
517  bool isLoopInvariant(Value *V) const;
518
519  /// isLoopInvariant - Return true if the specified instruction is
520  /// loop-invariant.
521  ///
522  bool isLoopInvariant(Instruction *I) const;
523
524  /// makeLoopInvariant - If the given value is an instruction inside of the
525  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
526  /// Return true if the value after any hoisting is loop invariant. This
527  /// function can be used as a slightly more aggressive replacement for
528  /// isLoopInvariant.
529  ///
530  /// If InsertPt is specified, it is the point to hoist instructions to.
531  /// If null, the terminator of the loop preheader is used.
532  ///
533  bool makeLoopInvariant(Value *V, bool &Changed,
534                         Instruction *InsertPt = 0) const;
535
536  /// makeLoopInvariant - If the given instruction is inside of the
537  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
538  /// Return true if the instruction after any hoisting is loop invariant. This
539  /// function can be used as a slightly more aggressive replacement for
540  /// isLoopInvariant.
541  ///
542  /// If InsertPt is specified, it is the point to hoist instructions to.
543  /// If null, the terminator of the loop preheader is used.
544  ///
545  bool makeLoopInvariant(Instruction *I, bool &Changed,
546                         Instruction *InsertPt = 0) const;
547
548  /// getCanonicalInductionVariable - Check to see if the loop has a canonical
549  /// induction variable: an integer recurrence that starts at 0 and increments
550  /// by one each time through the loop.  If so, return the phi node that
551  /// corresponds to it.
552  ///
553  /// The IndVarSimplify pass transforms loops to have a canonical induction
554  /// variable.
555  ///
556  PHINode *getCanonicalInductionVariable() const;
557
558  /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
559  /// the canonical induction variable value for the "next" iteration of the
560  /// loop.  This always succeeds if getCanonicalInductionVariable succeeds.
561  ///
562  Instruction *getCanonicalInductionVariableIncrement() const;
563
564  /// getTripCount - Return a loop-invariant LLVM value indicating the number of
565  /// times the loop will be executed.  Note that this means that the backedge
566  /// of the loop executes N-1 times.  If the trip-count cannot be determined,
567  /// this returns null.
568  ///
569  /// The IndVarSimplify pass transforms loops to have a form that this
570  /// function easily understands.
571  ///
572  Value *getTripCount() const;
573
574  /// getSmallConstantTripCount - Returns the trip count of this loop as a
575  /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
576  /// of not constant. Will also return 0 if the trip count is very large
577  /// (>= 2^32)
578  ///
579  /// The IndVarSimplify pass transforms loops to have a form that this
580  /// function easily understands.
581  ///
582  unsigned getSmallConstantTripCount() const;
583
584  /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
585  /// trip count of this loop as a normal unsigned value, if possible. This
586  /// means that the actual trip count is always a multiple of the returned
587  /// value (don't forget the trip count could very well be zero as well!).
588  ///
589  /// Returns 1 if the trip count is unknown or not guaranteed to be the
590  /// multiple of a constant (which is also the case if the trip count is simply
591  /// constant, use getSmallConstantTripCount for that case), Will also return 1
592  /// if the trip count is very large (>= 2^32).
593  unsigned getSmallConstantTripMultiple() const;
594
595  /// isLCSSAForm - Return true if the Loop is in LCSSA form
596  bool isLCSSAForm(DominatorTree &DT) const;
597
598  /// isLoopSimplifyForm - Return true if the Loop is in the form that
599  /// the LoopSimplify form transforms loops to, which is sometimes called
600  /// normal form.
601  bool isLoopSimplifyForm() const;
602
603  /// hasDedicatedExits - Return true if no exit block for the loop
604  /// has a predecessor that is outside the loop.
605  bool hasDedicatedExits() const;
606
607  /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
608  /// These are the blocks _outside of the current loop_ which are branched to.
609  /// This assumes that loop exits are in canonical form.
610  ///
611  void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
612
613  /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
614  /// block, return that block. Otherwise return null.
615  BasicBlock *getUniqueExitBlock() const;
616
617  void dump() const;
618
619private:
620  friend class LoopInfoBase<BasicBlock, Loop>;
621  explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
622};
623
624//===----------------------------------------------------------------------===//
625/// LoopInfo - This class builds and contains all of the top level loop
626/// structures in the specified function.
627///
628
629template<class BlockT, class LoopT>
630class LoopInfoBase {
631  // BBMap - Mapping of basic blocks to the inner most loop they occur in
632  std::map<BlockT *, LoopT *> BBMap;
633  std::vector<LoopT *> TopLevelLoops;
634  friend class LoopBase<BlockT, LoopT>;
635
636  void operator=(const LoopInfoBase &); // do not implement
637  LoopInfoBase(const LoopInfo &);       // do not implement
638public:
639  LoopInfoBase() { }
640  ~LoopInfoBase() { releaseMemory(); }
641
642  void releaseMemory() {
643    for (typename std::vector<LoopT *>::iterator I =
644         TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
645      delete *I;   // Delete all of the loops...
646
647    BBMap.clear();                           // Reset internal state of analysis
648    TopLevelLoops.clear();
649  }
650
651  /// iterator/begin/end - The interface to the top-level loops in the current
652  /// function.
653  ///
654  typedef typename std::vector<LoopT *>::const_iterator iterator;
655  iterator begin() const { return TopLevelLoops.begin(); }
656  iterator end() const { return TopLevelLoops.end(); }
657  bool empty() const { return TopLevelLoops.empty(); }
658
659  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
660  /// block is in no loop (for example the entry node), null is returned.
661  ///
662  LoopT *getLoopFor(const BlockT *BB) const {
663    typename std::map<BlockT *, LoopT *>::const_iterator I=
664      BBMap.find(const_cast<BlockT*>(BB));
665    return I != BBMap.end() ? I->second : 0;
666  }
667
668  /// operator[] - same as getLoopFor...
669  ///
670  const LoopT *operator[](const BlockT *BB) const {
671    return getLoopFor(BB);
672  }
673
674  /// getLoopDepth - Return the loop nesting level of the specified block.  A
675  /// depth of 0 means the block is not inside any loop.
676  ///
677  unsigned getLoopDepth(const BlockT *BB) const {
678    const LoopT *L = getLoopFor(BB);
679    return L ? L->getLoopDepth() : 0;
680  }
681
682  // isLoopHeader - True if the block is a loop header node
683  bool isLoopHeader(BlockT *BB) const {
684    const LoopT *L = getLoopFor(BB);
685    return L && L->getHeader() == BB;
686  }
687
688  /// removeLoop - This removes the specified top-level loop from this loop info
689  /// object.  The loop is not deleted, as it will presumably be inserted into
690  /// another loop.
691  LoopT *removeLoop(iterator I) {
692    assert(I != end() && "Cannot remove end iterator!");
693    LoopT *L = *I;
694    assert(L->getParentLoop() == 0 && "Not a top-level loop!");
695    TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
696    return L;
697  }
698
699  /// changeLoopFor - Change the top-level loop that contains BB to the
700  /// specified loop.  This should be used by transformations that restructure
701  /// the loop hierarchy tree.
702  void changeLoopFor(BlockT *BB, LoopT *L) {
703    LoopT *&OldLoop = BBMap[BB];
704    assert(OldLoop && "Block not in a loop yet!");
705    OldLoop = L;
706  }
707
708  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
709  /// list with the indicated loop.
710  void changeTopLevelLoop(LoopT *OldLoop,
711                          LoopT *NewLoop) {
712    typename std::vector<LoopT *>::iterator I =
713                 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
714    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
715    *I = NewLoop;
716    assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
717           "Loops already embedded into a subloop!");
718  }
719
720  /// addTopLevelLoop - This adds the specified loop to the collection of
721  /// top-level loops.
722  void addTopLevelLoop(LoopT *New) {
723    assert(New->getParentLoop() == 0 && "Loop already in subloop!");
724    TopLevelLoops.push_back(New);
725  }
726
727  /// removeBlock - This method completely removes BB from all data structures,
728  /// including all of the Loop objects it is nested in and our mapping from
729  /// BasicBlocks to loops.
730  void removeBlock(BlockT *BB) {
731    typename std::map<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
732    if (I != BBMap.end()) {
733      for (LoopT *L = I->second; L; L = L->getParentLoop())
734        L->removeBlockFromLoop(BB);
735
736      BBMap.erase(I);
737    }
738  }
739
740  // Internals
741
742  static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
743                                      const LoopT *ParentLoop) {
744    if (SubLoop == 0) return true;
745    if (SubLoop == ParentLoop) return false;
746    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
747  }
748
749  void Calculate(DominatorTreeBase<BlockT> &DT) {
750    BlockT *RootNode = DT.getRootNode()->getBlock();
751
752    for (df_iterator<BlockT*> NI = df_begin(RootNode),
753           NE = df_end(RootNode); NI != NE; ++NI)
754      if (LoopT *L = ConsiderForLoop(*NI, DT))
755        TopLevelLoops.push_back(L);
756  }
757
758  LoopT *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
759    if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node?
760
761    std::vector<BlockT *> TodoStack;
762
763    // Scan the predecessors of BB, checking to see if BB dominates any of
764    // them.  This identifies backedges which target this node...
765    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
766    for (typename InvBlockTraits::ChildIteratorType I =
767         InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
768         I != E; ++I) {
769      typename InvBlockTraits::NodeType *N = *I;
770      if (DT.dominates(BB, N))   // If BB dominates its predecessor...
771          TodoStack.push_back(N);
772    }
773
774    if (TodoStack.empty()) return 0;  // No backedges to this block...
775
776    // Create a new loop to represent this basic block...
777    LoopT *L = new LoopT(BB);
778    BBMap[BB] = L;
779
780    BlockT *EntryBlock = BB->getParent()->begin();
781
782    while (!TodoStack.empty()) {  // Process all the nodes in the loop
783      BlockT *X = TodoStack.back();
784      TodoStack.pop_back();
785
786      if (!L->contains(X) &&         // As of yet unprocessed??
787          DT.dominates(EntryBlock, X)) {   // X is reachable from entry block?
788        // Check to see if this block already belongs to a loop.  If this occurs
789        // then we have a case where a loop that is supposed to be a child of
790        // the current loop was processed before the current loop.  When this
791        // occurs, this child loop gets added to a part of the current loop,
792        // making it a sibling to the current loop.  We have to reparent this
793        // loop.
794        if (LoopT *SubLoop =
795            const_cast<LoopT *>(getLoopFor(X)))
796          if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
797            // Remove the subloop from its current parent...
798            assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
799            LoopT *SLP = SubLoop->ParentLoop;  // SubLoopParent
800            typename std::vector<LoopT *>::iterator I =
801              std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
802            assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
803            SLP->SubLoops.erase(I);   // Remove from parent...
804
805            // Add the subloop to THIS loop...
806            SubLoop->ParentLoop = L;
807            L->SubLoops.push_back(SubLoop);
808          }
809
810        // Normal case, add the block to our loop...
811        L->Blocks.push_back(X);
812
813        typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
814
815        // Add all of the predecessors of X to the end of the work stack...
816        TodoStack.insert(TodoStack.end(), InvBlockTraits::child_begin(X),
817                         InvBlockTraits::child_end(X));
818      }
819    }
820
821    // If there are any loops nested within this loop, create them now!
822    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
823         E = L->Blocks.end(); I != E; ++I)
824      if (LoopT *NewLoop = ConsiderForLoop(*I, DT)) {
825        L->SubLoops.push_back(NewLoop);
826        NewLoop->ParentLoop = L;
827      }
828
829    // Add the basic blocks that comprise this loop to the BBMap so that this
830    // loop can be found for them.
831    //
832    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
833           E = L->Blocks.end(); I != E; ++I)
834      BBMap.insert(std::make_pair(*I, L));
835
836    // Now that we have a list of all of the child loops of this loop, check to
837    // see if any of them should actually be nested inside of each other.  We
838    // can accidentally pull loops our of their parents, so we must make sure to
839    // organize the loop nests correctly now.
840    {
841      std::map<BlockT *, LoopT *> ContainingLoops;
842      for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
843        LoopT *Child = L->SubLoops[i];
844        assert(Child->getParentLoop() == L && "Not proper child loop?");
845
846        if (LoopT *ContainingLoop = ContainingLoops[Child->getHeader()]) {
847          // If there is already a loop which contains this loop, move this loop
848          // into the containing loop.
849          MoveSiblingLoopInto(Child, ContainingLoop);
850          --i;  // The loop got removed from the SubLoops list.
851        } else {
852          // This is currently considered to be a top-level loop.  Check to see
853          // if any of the contained blocks are loop headers for subloops we
854          // have already processed.
855          for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
856            LoopT *&BlockLoop = ContainingLoops[Child->Blocks[b]];
857            if (BlockLoop == 0) {   // Child block not processed yet...
858              BlockLoop = Child;
859            } else if (BlockLoop != Child) {
860              LoopT *SubLoop = BlockLoop;
861              // Reparent all of the blocks which used to belong to BlockLoops
862              for (unsigned j = 0, f = SubLoop->Blocks.size(); j != f; ++j)
863                ContainingLoops[SubLoop->Blocks[j]] = Child;
864
865              // There is already a loop which contains this block, that means
866              // that we should reparent the loop which the block is currently
867              // considered to belong to to be a child of this loop.
868              MoveSiblingLoopInto(SubLoop, Child);
869              --i;  // We just shrunk the SubLoops list.
870            }
871          }
872        }
873      }
874    }
875
876    return L;
877  }
878
879  /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
880  /// of the NewParent Loop, instead of being a sibling of it.
881  void MoveSiblingLoopInto(LoopT *NewChild,
882                           LoopT *NewParent) {
883    LoopT *OldParent = NewChild->getParentLoop();
884    assert(OldParent && OldParent == NewParent->getParentLoop() &&
885           NewChild != NewParent && "Not sibling loops!");
886
887    // Remove NewChild from being a child of OldParent
888    typename std::vector<LoopT *>::iterator I =
889      std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
890                NewChild);
891    assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
892    OldParent->SubLoops.erase(I);   // Remove from parent's subloops list
893    NewChild->ParentLoop = 0;
894
895    InsertLoopInto(NewChild, NewParent);
896  }
897
898  /// InsertLoopInto - This inserts loop L into the specified parent loop.  If
899  /// the parent loop contains a loop which should contain L, the loop gets
900  /// inserted into L instead.
901  void InsertLoopInto(LoopT *L, LoopT *Parent) {
902    BlockT *LHeader = L->getHeader();
903    assert(Parent->contains(LHeader) &&
904           "This loop should not be inserted here!");
905
906    // Check to see if it belongs in a child loop...
907    for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
908         i != e; ++i)
909      if (Parent->SubLoops[i]->contains(LHeader)) {
910        InsertLoopInto(L, Parent->SubLoops[i]);
911        return;
912      }
913
914    // If not, insert it here!
915    Parent->SubLoops.push_back(L);
916    L->ParentLoop = Parent;
917  }
918
919  // Debugging
920
921  void print(raw_ostream &OS) const {
922    for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
923      TopLevelLoops[i]->print(OS);
924  #if 0
925    for (std::map<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
926           E = BBMap.end(); I != E; ++I)
927      OS << "BB '" << I->first->getName() << "' level = "
928         << I->second->getLoopDepth() << "\n";
929  #endif
930  }
931};
932
933class LoopInfo : public FunctionPass {
934  LoopInfoBase<BasicBlock, Loop> LI;
935  friend class LoopBase<BasicBlock, Loop>;
936
937  void operator=(const LoopInfo &); // do not implement
938  LoopInfo(const LoopInfo &);       // do not implement
939public:
940  static char ID; // Pass identification, replacement for typeid
941
942  LoopInfo() : FunctionPass(&ID) {}
943
944  LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
945
946  /// iterator/begin/end - The interface to the top-level loops in the current
947  /// function.
948  ///
949  typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
950  inline iterator begin() const { return LI.begin(); }
951  inline iterator end() const { return LI.end(); }
952  bool empty() const { return LI.empty(); }
953
954  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
955  /// block is in no loop (for example the entry node), null is returned.
956  ///
957  inline Loop *getLoopFor(const BasicBlock *BB) const {
958    return LI.getLoopFor(BB);
959  }
960
961  /// operator[] - same as getLoopFor...
962  ///
963  inline const Loop *operator[](const BasicBlock *BB) const {
964    return LI.getLoopFor(BB);
965  }
966
967  /// getLoopDepth - Return the loop nesting level of the specified block.  A
968  /// depth of 0 means the block is not inside any loop.
969  ///
970  inline unsigned getLoopDepth(const BasicBlock *BB) const {
971    return LI.getLoopDepth(BB);
972  }
973
974  // isLoopHeader - True if the block is a loop header node
975  inline bool isLoopHeader(BasicBlock *BB) const {
976    return LI.isLoopHeader(BB);
977  }
978
979  /// runOnFunction - Calculate the natural loop information.
980  ///
981  virtual bool runOnFunction(Function &F);
982
983  virtual void verifyAnalysis() const;
984
985  virtual void releaseMemory() { LI.releaseMemory(); }
986
987  virtual void print(raw_ostream &O, const Module* M = 0) const;
988
989  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
990
991  /// removeLoop - This removes the specified top-level loop from this loop info
992  /// object.  The loop is not deleted, as it will presumably be inserted into
993  /// another loop.
994  inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
995
996  /// changeLoopFor - Change the top-level loop that contains BB to the
997  /// specified loop.  This should be used by transformations that restructure
998  /// the loop hierarchy tree.
999  inline void changeLoopFor(BasicBlock *BB, Loop *L) {
1000    LI.changeLoopFor(BB, L);
1001  }
1002
1003  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
1004  /// list with the indicated loop.
1005  inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
1006    LI.changeTopLevelLoop(OldLoop, NewLoop);
1007  }
1008
1009  /// addTopLevelLoop - This adds the specified loop to the collection of
1010  /// top-level loops.
1011  inline void addTopLevelLoop(Loop *New) {
1012    LI.addTopLevelLoop(New);
1013  }
1014
1015  /// removeBlock - This method completely removes BB from all data structures,
1016  /// including all of the Loop objects it is nested in and our mapping from
1017  /// BasicBlocks to loops.
1018  void removeBlock(BasicBlock *BB) {
1019    LI.removeBlock(BB);
1020  }
1021};
1022
1023
1024// Allow clients to walk the list of nested loops...
1025template <> struct GraphTraits<const Loop*> {
1026  typedef const Loop NodeType;
1027  typedef LoopInfo::iterator ChildIteratorType;
1028
1029  static NodeType *getEntryNode(const Loop *L) { return L; }
1030  static inline ChildIteratorType child_begin(NodeType *N) {
1031    return N->begin();
1032  }
1033  static inline ChildIteratorType child_end(NodeType *N) {
1034    return N->end();
1035  }
1036};
1037
1038template <> struct GraphTraits<Loop*> {
1039  typedef Loop NodeType;
1040  typedef LoopInfo::iterator ChildIteratorType;
1041
1042  static NodeType *getEntryNode(Loop *L) { return L; }
1043  static inline ChildIteratorType child_begin(NodeType *N) {
1044    return N->begin();
1045  }
1046  static inline ChildIteratorType child_end(NodeType *N) {
1047    return N->end();
1048  }
1049};
1050
1051template<class BlockT, class LoopT>
1052void
1053LoopBase<BlockT, LoopT>::addBasicBlockToLoop(BlockT *NewBB,
1054                                             LoopInfoBase<BlockT, LoopT> &LIB) {
1055  assert((Blocks.empty() || LIB[getHeader()] == this) &&
1056         "Incorrect LI specified for this loop!");
1057  assert(NewBB && "Cannot add a null basic block to the loop!");
1058  assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
1059
1060  LoopT *L = static_cast<LoopT *>(this);
1061
1062  // Add the loop mapping to the LoopInfo object...
1063  LIB.BBMap[NewBB] = L;
1064
1065  // Add the basic block to this loop and all parent loops...
1066  while (L) {
1067    L->Blocks.push_back(NewBB);
1068    L = L->getParentLoop();
1069  }
1070}
1071
1072} // End llvm namespace
1073
1074#endif
1075