LoopInfo.h revision 64bf55af6f3cc6c6db985d3840547b5869e57222
1//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  A natural loop
12// has exactly one entry-point, which is called the header. Note that natural
13// loops may actually be several loops that share the same header node.
14//
15// This analysis calculates the nesting structure of loops in a function.  For
16// each natural loop identified, this analysis identifies natural loops
17// contained entirely within the loop and the basic blocks the make up the loop.
18//
19// It can calculate on the fly various bits of information, for example:
20//
21//  * whether there is a preheader for the loop
22//  * the number of back edges to the header
23//  * whether or not a particular block branches out of the loop
24//  * the successor blocks of the loop
25//  * the loop depth
26//  * etc...
27//
28//===----------------------------------------------------------------------===//
29
30#ifndef LLVM_ANALYSIS_LOOPINFO_H
31#define LLVM_ANALYSIS_LOOPINFO_H
32
33#include "llvm/ADT/DenseMap.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/GraphTraits.h"
36#include "llvm/ADT/SmallVector.h"
37#include "llvm/Analysis/Dominators.h"
38#include "llvm/Pass.h"
39#include <algorithm>
40
41namespace llvm {
42
43template<typename T>
44inline void RemoveFromVector(std::vector<T*> &V, T *N) {
45  typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
46  assert(I != V.end() && "N is not in this list!");
47  V.erase(I);
48}
49
50class DominatorTree;
51class LoopInfo;
52class Loop;
53class PHINode;
54class raw_ostream;
55template<class N, class M> class LoopInfoBase;
56template<class N, class M> class LoopBase;
57
58//===----------------------------------------------------------------------===//
59/// LoopBase class - Instances of this class are used to represent loops that
60/// are detected in the flow graph
61///
62template<class BlockT, class LoopT>
63class LoopBase {
64  LoopT *ParentLoop;
65  // SubLoops - Loops contained entirely within this one.
66  std::vector<LoopT *> SubLoops;
67
68  // Blocks - The list of blocks in this loop.  First entry is the header node.
69  std::vector<BlockT*> Blocks;
70
71  LoopBase(const LoopBase<BlockT, LoopT> &) LLVM_DELETED_FUNCTION;
72  const LoopBase<BlockT, LoopT>&
73    operator=(const LoopBase<BlockT, LoopT> &) LLVM_DELETED_FUNCTION;
74public:
75  /// Loop ctor - This creates an empty loop.
76  LoopBase() : ParentLoop(0) {}
77  ~LoopBase() {
78    for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
79      delete SubLoops[i];
80  }
81
82  /// getLoopDepth - Return the nesting level of this loop.  An outer-most
83  /// loop has depth 1, for consistency with loop depth values used for basic
84  /// blocks, where depth 0 is used for blocks not inside any loops.
85  unsigned getLoopDepth() const {
86    unsigned D = 1;
87    for (const LoopT *CurLoop = ParentLoop; CurLoop;
88         CurLoop = CurLoop->ParentLoop)
89      ++D;
90    return D;
91  }
92  BlockT *getHeader() const { return Blocks.front(); }
93  LoopT *getParentLoop() const { return ParentLoop; }
94
95  /// setParentLoop is a raw interface for bypassing addChildLoop.
96  void setParentLoop(LoopT *L) { ParentLoop = L; }
97
98  /// contains - Return true if the specified loop is contained within in
99  /// this loop.
100  ///
101  bool contains(const LoopT *L) const {
102    if (L == this) return true;
103    if (L == 0)    return false;
104    return contains(L->getParentLoop());
105  }
106
107  /// contains - Return true if the specified basic block is in this loop.
108  ///
109  bool contains(const BlockT *BB) const {
110    return std::find(block_begin(), block_end(), BB) != block_end();
111  }
112
113  /// contains - Return true if the specified instruction is in this loop.
114  ///
115  template<class InstT>
116  bool contains(const InstT *Inst) const {
117    return contains(Inst->getParent());
118  }
119
120  /// iterator/begin/end - Return the loops contained entirely within this loop.
121  ///
122  const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
123  std::vector<LoopT *> &getSubLoopsVector() { return SubLoops; }
124  typedef typename std::vector<LoopT *>::const_iterator iterator;
125  typedef typename std::vector<LoopT *>::const_reverse_iterator
126    reverse_iterator;
127  iterator begin() const { return SubLoops.begin(); }
128  iterator end() const { return SubLoops.end(); }
129  reverse_iterator rbegin() const { return SubLoops.rbegin(); }
130  reverse_iterator rend() const { return SubLoops.rend(); }
131  bool empty() const { return SubLoops.empty(); }
132
133  /// getBlocks - Get a list of the basic blocks which make up this loop.
134  ///
135  const std::vector<BlockT*> &getBlocks() const { return Blocks; }
136  std::vector<BlockT*> &getBlocksVector() { return Blocks; }
137  typedef typename std::vector<BlockT*>::const_iterator block_iterator;
138  block_iterator block_begin() const { return Blocks.begin(); }
139  block_iterator block_end() const { return Blocks.end(); }
140
141  /// getNumBlocks - Get the number of blocks in this loop in constant time.
142  unsigned getNumBlocks() const {
143    return Blocks.size();
144  }
145
146  /// isLoopExiting - True if terminator in the block can branch to another
147  /// block that is outside of the current loop.
148  ///
149  bool isLoopExiting(const BlockT *BB) const {
150    typedef GraphTraits<const BlockT*> BlockTraits;
151    for (typename BlockTraits::ChildIteratorType SI =
152         BlockTraits::child_begin(BB),
153         SE = BlockTraits::child_end(BB); SI != SE; ++SI) {
154      if (!contains(*SI))
155        return true;
156    }
157    return false;
158  }
159
160  /// getNumBackEdges - Calculate the number of back edges to the loop header
161  ///
162  unsigned getNumBackEdges() const {
163    unsigned NumBackEdges = 0;
164    BlockT *H = getHeader();
165
166    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
167    for (typename InvBlockTraits::ChildIteratorType I =
168         InvBlockTraits::child_begin(H),
169         E = InvBlockTraits::child_end(H); I != E; ++I)
170      if (contains(*I))
171        ++NumBackEdges;
172
173    return NumBackEdges;
174  }
175
176  //===--------------------------------------------------------------------===//
177  // APIs for simple analysis of the loop.
178  //
179  // Note that all of these methods can fail on general loops (ie, there may not
180  // be a preheader, etc).  For best success, the loop simplification and
181  // induction variable canonicalization pass should be used to normalize loops
182  // for easy analysis.  These methods assume canonical loops.
183
184  /// getExitingBlocks - Return all blocks inside the loop that have successors
185  /// outside of the loop.  These are the blocks _inside of the current loop_
186  /// which branch out.  The returned list is always unique.
187  ///
188  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
189
190  /// getExitingBlock - If getExitingBlocks would return exactly one block,
191  /// return that block. Otherwise return null.
192  BlockT *getExitingBlock() const;
193
194  /// getExitBlocks - Return all of the successor blocks of this loop.  These
195  /// are the blocks _outside of the current loop_ which are branched to.
196  ///
197  void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const;
198
199  /// getExitBlock - If getExitBlocks would return exactly one block,
200  /// return that block. Otherwise return null.
201  BlockT *getExitBlock() const;
202
203  /// Edge type.
204  typedef std::pair<const BlockT*, const BlockT*> Edge;
205
206  /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
207  void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
208
209  /// getLoopPreheader - If there is a preheader for this loop, return it.  A
210  /// loop has a preheader if there is only one edge to the header of the loop
211  /// from outside of the loop.  If this is the case, the block branching to the
212  /// header of the loop is the preheader node.
213  ///
214  /// This method returns null if there is no preheader for the loop.
215  ///
216  BlockT *getLoopPreheader() const;
217
218  /// getLoopPredecessor - If the given loop's header has exactly one unique
219  /// predecessor outside the loop, return it. Otherwise return null.
220  /// This is less strict that the loop "preheader" concept, which requires
221  /// the predecessor to have exactly one successor.
222  ///
223  BlockT *getLoopPredecessor() const;
224
225  /// getLoopLatch - If there is a single latch block for this loop, return it.
226  /// A latch block is a block that contains a branch back to the header.
227  BlockT *getLoopLatch() const;
228
229  //===--------------------------------------------------------------------===//
230  // APIs for updating loop information after changing the CFG
231  //
232
233  /// addBasicBlockToLoop - This method is used by other analyses to update loop
234  /// information.  NewBB is set to be a new member of the current loop.
235  /// Because of this, it is added as a member of all parent loops, and is added
236  /// to the specified LoopInfo object as being in the current basic block.  It
237  /// is not valid to replace the loop header with this method.
238  ///
239  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
240
241  /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
242  /// the OldChild entry in our children list with NewChild, and updates the
243  /// parent pointer of OldChild to be null and the NewChild to be this loop.
244  /// This updates the loop depth of the new child.
245  void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
246
247  /// addChildLoop - Add the specified loop to be a child of this loop.  This
248  /// updates the loop depth of the new child.
249  ///
250  void addChildLoop(LoopT *NewChild) {
251    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
252    NewChild->ParentLoop = static_cast<LoopT *>(this);
253    SubLoops.push_back(NewChild);
254  }
255
256  /// removeChildLoop - This removes the specified child from being a subloop of
257  /// this loop.  The loop is not deleted, as it will presumably be inserted
258  /// into another loop.
259  LoopT *removeChildLoop(iterator I) {
260    assert(I != SubLoops.end() && "Cannot remove end iterator!");
261    LoopT *Child = *I;
262    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
263    SubLoops.erase(SubLoops.begin()+(I-begin()));
264    Child->ParentLoop = 0;
265    return Child;
266  }
267
268  /// addBlockEntry - This adds a basic block directly to the basic block list.
269  /// This should only be used by transformations that create new loops.  Other
270  /// transformations should use addBasicBlockToLoop.
271  void addBlockEntry(BlockT *BB) {
272    Blocks.push_back(BB);
273  }
274
275  /// moveToHeader - This method is used to move BB (which must be part of this
276  /// loop) to be the loop header of the loop (the block that dominates all
277  /// others).
278  void moveToHeader(BlockT *BB) {
279    if (Blocks[0] == BB) return;
280    for (unsigned i = 0; ; ++i) {
281      assert(i != Blocks.size() && "Loop does not contain BB!");
282      if (Blocks[i] == BB) {
283        Blocks[i] = Blocks[0];
284        Blocks[0] = BB;
285        return;
286      }
287    }
288  }
289
290  /// removeBlockFromLoop - This removes the specified basic block from the
291  /// current loop, updating the Blocks as appropriate.  This does not update
292  /// the mapping in the LoopInfo class.
293  void removeBlockFromLoop(BlockT *BB) {
294    RemoveFromVector(Blocks, BB);
295  }
296
297  /// verifyLoop - Verify loop structure
298  void verifyLoop() const;
299
300  /// verifyLoop - Verify loop structure of this loop and all nested loops.
301  void verifyLoopNest(DenseSet<const LoopT*> *Loops) const;
302
303  void print(raw_ostream &OS, unsigned Depth = 0) const;
304
305protected:
306  friend class LoopInfoBase<BlockT, LoopT>;
307  explicit LoopBase(BlockT *BB) : ParentLoop(0) {
308    Blocks.push_back(BB);
309  }
310};
311
312template<class BlockT, class LoopT>
313raw_ostream& operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
314  Loop.print(OS);
315  return OS;
316}
317
318// Implementation in LoopInfoImpl.h
319#ifdef __GNUC__
320__extension__ extern template class LoopBase<BasicBlock, Loop>;
321#endif
322
323class Loop : public LoopBase<BasicBlock, Loop> {
324public:
325  Loop() {}
326
327  /// isLoopInvariant - Return true if the specified value is loop invariant
328  ///
329  bool isLoopInvariant(Value *V) const;
330
331  /// hasLoopInvariantOperands - Return true if all the operands of the
332  /// specified instruction are loop invariant.
333  bool hasLoopInvariantOperands(Instruction *I) const;
334
335  /// makeLoopInvariant - If the given value is an instruction inside of the
336  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
337  /// Return true if the value after any hoisting is loop invariant. This
338  /// function can be used as a slightly more aggressive replacement for
339  /// isLoopInvariant.
340  ///
341  /// If InsertPt is specified, it is the point to hoist instructions to.
342  /// If null, the terminator of the loop preheader is used.
343  ///
344  bool makeLoopInvariant(Value *V, bool &Changed,
345                         Instruction *InsertPt = 0) const;
346
347  /// makeLoopInvariant - If the given instruction is inside of the
348  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
349  /// Return true if the instruction after any hoisting is loop invariant. This
350  /// function can be used as a slightly more aggressive replacement for
351  /// isLoopInvariant.
352  ///
353  /// If InsertPt is specified, it is the point to hoist instructions to.
354  /// If null, the terminator of the loop preheader is used.
355  ///
356  bool makeLoopInvariant(Instruction *I, bool &Changed,
357                         Instruction *InsertPt = 0) const;
358
359  /// getCanonicalInductionVariable - Check to see if the loop has a canonical
360  /// induction variable: an integer recurrence that starts at 0 and increments
361  /// by one each time through the loop.  If so, return the phi node that
362  /// corresponds to it.
363  ///
364  /// The IndVarSimplify pass transforms loops to have a canonical induction
365  /// variable.
366  ///
367  PHINode *getCanonicalInductionVariable() const;
368
369  /// isLCSSAForm - Return true if the Loop is in LCSSA form
370  bool isLCSSAForm(DominatorTree &DT) const;
371
372  /// isLoopSimplifyForm - Return true if the Loop is in the form that
373  /// the LoopSimplify form transforms loops to, which is sometimes called
374  /// normal form.
375  bool isLoopSimplifyForm() const;
376
377  /// isSafeToClone - Return true if the loop body is safe to clone in practice.
378  bool isSafeToClone() const;
379
380  /// Returns true if the loop is annotated parallel.
381  ///
382  /// A parallel loop can be assumed to not contain any dependencies between
383  /// iterations by the compiler. That is, any loop-carried dependency checking
384  /// can be skipped completely when parallelizing the loop on the target
385  /// machine. Thus, if the parallel loop information originates from the
386  /// programmer, e.g. via the OpenMP parallel for pragma, it is the
387  /// programmer's responsibility to ensure there are no loop-carried
388  /// dependencies. The final execution order of the instructions across
389  /// iterations is not guaranteed, thus, the end result might or might not
390  /// implement actual concurrent execution of instructions across multiple
391  /// iterations.
392  bool isAnnotatedParallel() const;
393
394  /// hasDedicatedExits - Return true if no exit block for the loop
395  /// has a predecessor that is outside the loop.
396  bool hasDedicatedExits() const;
397
398  /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
399  /// These are the blocks _outside of the current loop_ which are branched to.
400  /// This assumes that loop exits are in canonical form.
401  ///
402  void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
403
404  /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
405  /// block, return that block. Otherwise return null.
406  BasicBlock *getUniqueExitBlock() const;
407
408  void dump() const;
409
410private:
411  friend class LoopInfoBase<BasicBlock, Loop>;
412  explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
413};
414
415//===----------------------------------------------------------------------===//
416/// LoopInfo - This class builds and contains all of the top level loop
417/// structures in the specified function.
418///
419
420template<class BlockT, class LoopT>
421class LoopInfoBase {
422  // BBMap - Mapping of basic blocks to the inner most loop they occur in
423  DenseMap<BlockT *, LoopT *> BBMap;
424  std::vector<LoopT *> TopLevelLoops;
425  friend class LoopBase<BlockT, LoopT>;
426  friend class LoopInfo;
427
428  void operator=(const LoopInfoBase &) LLVM_DELETED_FUNCTION;
429  LoopInfoBase(const LoopInfo &) LLVM_DELETED_FUNCTION;
430public:
431  LoopInfoBase() { }
432  ~LoopInfoBase() { releaseMemory(); }
433
434  void releaseMemory() {
435    for (typename std::vector<LoopT *>::iterator I =
436         TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
437      delete *I;   // Delete all of the loops...
438
439    BBMap.clear();                           // Reset internal state of analysis
440    TopLevelLoops.clear();
441  }
442
443  /// iterator/begin/end - The interface to the top-level loops in the current
444  /// function.
445  ///
446  typedef typename std::vector<LoopT *>::const_iterator iterator;
447  typedef typename std::vector<LoopT *>::const_reverse_iterator
448    reverse_iterator;
449  iterator begin() const { return TopLevelLoops.begin(); }
450  iterator end() const { return TopLevelLoops.end(); }
451  reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); }
452  reverse_iterator rend() const { return TopLevelLoops.rend(); }
453  bool empty() const { return TopLevelLoops.empty(); }
454
455  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
456  /// block is in no loop (for example the entry node), null is returned.
457  ///
458  LoopT *getLoopFor(const BlockT *BB) const {
459    return BBMap.lookup(const_cast<BlockT*>(BB));
460  }
461
462  /// operator[] - same as getLoopFor...
463  ///
464  const LoopT *operator[](const BlockT *BB) const {
465    return getLoopFor(BB);
466  }
467
468  /// getLoopDepth - Return the loop nesting level of the specified block.  A
469  /// depth of 0 means the block is not inside any loop.
470  ///
471  unsigned getLoopDepth(const BlockT *BB) const {
472    const LoopT *L = getLoopFor(BB);
473    return L ? L->getLoopDepth() : 0;
474  }
475
476  // isLoopHeader - True if the block is a loop header node
477  bool isLoopHeader(BlockT *BB) const {
478    const LoopT *L = getLoopFor(BB);
479    return L && L->getHeader() == BB;
480  }
481
482  /// removeLoop - This removes the specified top-level loop from this loop info
483  /// object.  The loop is not deleted, as it will presumably be inserted into
484  /// another loop.
485  LoopT *removeLoop(iterator I) {
486    assert(I != end() && "Cannot remove end iterator!");
487    LoopT *L = *I;
488    assert(L->getParentLoop() == 0 && "Not a top-level loop!");
489    TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
490    return L;
491  }
492
493  /// changeLoopFor - Change the top-level loop that contains BB to the
494  /// specified loop.  This should be used by transformations that restructure
495  /// the loop hierarchy tree.
496  void changeLoopFor(BlockT *BB, LoopT *L) {
497    if (!L) {
498      BBMap.erase(BB);
499      return;
500    }
501    BBMap[BB] = L;
502  }
503
504  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
505  /// list with the indicated loop.
506  void changeTopLevelLoop(LoopT *OldLoop,
507                          LoopT *NewLoop) {
508    typename std::vector<LoopT *>::iterator I =
509                 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
510    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
511    *I = NewLoop;
512    assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
513           "Loops already embedded into a subloop!");
514  }
515
516  /// addTopLevelLoop - This adds the specified loop to the collection of
517  /// top-level loops.
518  void addTopLevelLoop(LoopT *New) {
519    assert(New->getParentLoop() == 0 && "Loop already in subloop!");
520    TopLevelLoops.push_back(New);
521  }
522
523  /// removeBlock - This method completely removes BB from all data structures,
524  /// including all of the Loop objects it is nested in and our mapping from
525  /// BasicBlocks to loops.
526  void removeBlock(BlockT *BB) {
527    typename DenseMap<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
528    if (I != BBMap.end()) {
529      for (LoopT *L = I->second; L; L = L->getParentLoop())
530        L->removeBlockFromLoop(BB);
531
532      BBMap.erase(I);
533    }
534  }
535
536  // Internals
537
538  static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
539                                      const LoopT *ParentLoop) {
540    if (SubLoop == 0) return true;
541    if (SubLoop == ParentLoop) return false;
542    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
543  }
544
545  /// Create the loop forest using a stable algorithm.
546  void Analyze(DominatorTreeBase<BlockT> &DomTree);
547
548  // Debugging
549
550  void print(raw_ostream &OS) const;
551};
552
553// Implementation in LoopInfoImpl.h
554#ifdef __GNUC__
555__extension__ extern template class LoopInfoBase<BasicBlock, Loop>;
556#endif
557
558class LoopInfo : public FunctionPass {
559  LoopInfoBase<BasicBlock, Loop> LI;
560  friend class LoopBase<BasicBlock, Loop>;
561
562  void operator=(const LoopInfo &) LLVM_DELETED_FUNCTION;
563  LoopInfo(const LoopInfo &) LLVM_DELETED_FUNCTION;
564public:
565  static char ID; // Pass identification, replacement for typeid
566
567  LoopInfo() : FunctionPass(ID) {
568    initializeLoopInfoPass(*PassRegistry::getPassRegistry());
569  }
570
571  LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
572
573  /// iterator/begin/end - The interface to the top-level loops in the current
574  /// function.
575  ///
576  typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
577  typedef LoopInfoBase<BasicBlock, Loop>::reverse_iterator reverse_iterator;
578  inline iterator begin() const { return LI.begin(); }
579  inline iterator end() const { return LI.end(); }
580  inline reverse_iterator rbegin() const { return LI.rbegin(); }
581  inline reverse_iterator rend() const { return LI.rend(); }
582  bool empty() const { return LI.empty(); }
583
584  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
585  /// block is in no loop (for example the entry node), null is returned.
586  ///
587  inline Loop *getLoopFor(const BasicBlock *BB) const {
588    return LI.getLoopFor(BB);
589  }
590
591  /// operator[] - same as getLoopFor...
592  ///
593  inline const Loop *operator[](const BasicBlock *BB) const {
594    return LI.getLoopFor(BB);
595  }
596
597  /// getLoopDepth - Return the loop nesting level of the specified block.  A
598  /// depth of 0 means the block is not inside any loop.
599  ///
600  inline unsigned getLoopDepth(const BasicBlock *BB) const {
601    return LI.getLoopDepth(BB);
602  }
603
604  // isLoopHeader - True if the block is a loop header node
605  inline bool isLoopHeader(BasicBlock *BB) const {
606    return LI.isLoopHeader(BB);
607  }
608
609  /// runOnFunction - Calculate the natural loop information.
610  ///
611  virtual bool runOnFunction(Function &F);
612
613  virtual void verifyAnalysis() const;
614
615  virtual void releaseMemory() { LI.releaseMemory(); }
616
617  virtual void print(raw_ostream &O, const Module* M = 0) const;
618
619  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
620
621  /// removeLoop - This removes the specified top-level loop from this loop info
622  /// object.  The loop is not deleted, as it will presumably be inserted into
623  /// another loop.
624  inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
625
626  /// changeLoopFor - Change the top-level loop that contains BB to the
627  /// specified loop.  This should be used by transformations that restructure
628  /// the loop hierarchy tree.
629  inline void changeLoopFor(BasicBlock *BB, Loop *L) {
630    LI.changeLoopFor(BB, L);
631  }
632
633  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
634  /// list with the indicated loop.
635  inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
636    LI.changeTopLevelLoop(OldLoop, NewLoop);
637  }
638
639  /// addTopLevelLoop - This adds the specified loop to the collection of
640  /// top-level loops.
641  inline void addTopLevelLoop(Loop *New) {
642    LI.addTopLevelLoop(New);
643  }
644
645  /// removeBlock - This method completely removes BB from all data structures,
646  /// including all of the Loop objects it is nested in and our mapping from
647  /// BasicBlocks to loops.
648  void removeBlock(BasicBlock *BB) {
649    LI.removeBlock(BB);
650  }
651
652  /// updateUnloop - Update LoopInfo after removing the last backedge from a
653  /// loop--now the "unloop". This updates the loop forest and parent loops for
654  /// each block so that Unloop is no longer referenced, but the caller must
655  /// actually delete the Unloop object.
656  void updateUnloop(Loop *Unloop);
657
658  /// replacementPreservesLCSSAForm - Returns true if replacing From with To
659  /// everywhere is guaranteed to preserve LCSSA form.
660  bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
661    // Preserving LCSSA form is only problematic if the replacing value is an
662    // instruction.
663    Instruction *I = dyn_cast<Instruction>(To);
664    if (!I) return true;
665    // If both instructions are defined in the same basic block then replacement
666    // cannot break LCSSA form.
667    if (I->getParent() == From->getParent())
668      return true;
669    // If the instruction is not defined in a loop then it can safely replace
670    // anything.
671    Loop *ToLoop = getLoopFor(I->getParent());
672    if (!ToLoop) return true;
673    // If the replacing instruction is defined in the same loop as the original
674    // instruction, or in a loop that contains it as an inner loop, then using
675    // it as a replacement will not break LCSSA form.
676    return ToLoop->contains(getLoopFor(From->getParent()));
677  }
678};
679
680
681// Allow clients to walk the list of nested loops...
682template <> struct GraphTraits<const Loop*> {
683  typedef const Loop NodeType;
684  typedef LoopInfo::iterator ChildIteratorType;
685
686  static NodeType *getEntryNode(const Loop *L) { return L; }
687  static inline ChildIteratorType child_begin(NodeType *N) {
688    return N->begin();
689  }
690  static inline ChildIteratorType child_end(NodeType *N) {
691    return N->end();
692  }
693};
694
695template <> struct GraphTraits<Loop*> {
696  typedef Loop NodeType;
697  typedef LoopInfo::iterator ChildIteratorType;
698
699  static NodeType *getEntryNode(Loop *L) { return L; }
700  static inline ChildIteratorType child_begin(NodeType *N) {
701    return N->begin();
702  }
703  static inline ChildIteratorType child_end(NodeType *N) {
704    return N->end();
705  }
706};
707
708} // End llvm namespace
709
710#endif
711