LoopInfo.h revision 6bec5bb344fc0374431aed1cb63418de607a1aec
1//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  A natural loop
12// has exactly one entry-point, which is called the header. Note that natural
13// loops may actually be several loops that share the same header node.
14//
15// This analysis calculates the nesting structure of loops in a function.  For
16// each natural loop identified, this analysis identifies natural loops
17// contained entirely within the loop and the basic blocks the make up the loop.
18//
19// It can calculate on the fly various bits of information, for example:
20//
21//  * whether there is a preheader for the loop
22//  * the number of back edges to the header
23//  * whether or not a particular block branches out of the loop
24//  * the successor blocks of the loop
25//  * the loop depth
26//  * the trip count
27//  * etc...
28//
29//===----------------------------------------------------------------------===//
30
31#ifndef LLVM_ANALYSIS_LOOP_INFO_H
32#define LLVM_ANALYSIS_LOOP_INFO_H
33
34#include "llvm/Pass.h"
35#include "llvm/ADT/DepthFirstIterator.h"
36#include "llvm/ADT/GraphTraits.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/Analysis/Dominators.h"
39#include "llvm/Support/CFG.h"
40#include "llvm/Support/raw_ostream.h"
41#include <algorithm>
42
43namespace llvm {
44
45template<typename T>
46static void RemoveFromVector(std::vector<T*> &V, T *N) {
47  typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
48  assert(I != V.end() && "N is not in this list!");
49  V.erase(I);
50}
51
52class DominatorTree;
53class LoopInfo;
54class Loop;
55template<class N, class M> class LoopInfoBase;
56template<class N, class M> class LoopBase;
57
58//===----------------------------------------------------------------------===//
59/// LoopBase class - Instances of this class are used to represent loops that
60/// are detected in the flow graph
61///
62template<class BlockT, class LoopT>
63class LoopBase {
64  LoopT *ParentLoop;
65  // SubLoops - Loops contained entirely within this one.
66  std::vector<LoopT *> SubLoops;
67
68  // Blocks - The list of blocks in this loop.  First entry is the header node.
69  std::vector<BlockT*> Blocks;
70
71  // DO NOT IMPLEMENT
72  LoopBase(const LoopBase<BlockT, LoopT> &);
73  // DO NOT IMPLEMENT
74  const LoopBase<BlockT, LoopT>&operator=(const LoopBase<BlockT, LoopT> &);
75public:
76  /// Loop ctor - This creates an empty loop.
77  LoopBase() : ParentLoop(0) {}
78  ~LoopBase() {
79    for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
80      delete SubLoops[i];
81  }
82
83  /// getLoopDepth - Return the nesting level of this loop.  An outer-most
84  /// loop has depth 1, for consistency with loop depth values used for basic
85  /// blocks, where depth 0 is used for blocks not inside any loops.
86  unsigned getLoopDepth() const {
87    unsigned D = 1;
88    for (const LoopT *CurLoop = ParentLoop; CurLoop;
89         CurLoop = CurLoop->ParentLoop)
90      ++D;
91    return D;
92  }
93  BlockT *getHeader() const { return Blocks.front(); }
94  LoopT *getParentLoop() const { return ParentLoop; }
95
96  /// contains - Return true if the specified basic block is in this loop
97  ///
98  bool contains(const BlockT *BB) const {
99    return std::find(block_begin(), block_end(), BB) != block_end();
100  }
101
102  /// iterator/begin/end - Return the loops contained entirely within this loop.
103  ///
104  const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
105  typedef typename std::vector<LoopT *>::const_iterator iterator;
106  iterator begin() const { return SubLoops.begin(); }
107  iterator end() const { return SubLoops.end(); }
108  bool empty() const { return SubLoops.empty(); }
109
110  /// getBlocks - Get a list of the basic blocks which make up this loop.
111  ///
112  const std::vector<BlockT*> &getBlocks() const { return Blocks; }
113  typedef typename std::vector<BlockT*>::const_iterator block_iterator;
114  block_iterator block_begin() const { return Blocks.begin(); }
115  block_iterator block_end() const { return Blocks.end(); }
116
117  /// isLoopExiting - True if terminator in the block can branch to another
118  /// block that is outside of the current loop.
119  ///
120  bool isLoopExiting(const BlockT *BB) const {
121    typedef GraphTraits<BlockT*> BlockTraits;
122    for (typename BlockTraits::ChildIteratorType SI =
123         BlockTraits::child_begin(const_cast<BlockT*>(BB)),
124         SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
125      if (!contains(*SI))
126        return true;
127    }
128    return false;
129  }
130
131  /// getNumBackEdges - Calculate the number of back edges to the loop header
132  ///
133  unsigned getNumBackEdges() const {
134    unsigned NumBackEdges = 0;
135    BlockT *H = getHeader();
136
137    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
138    for (typename InvBlockTraits::ChildIteratorType I =
139         InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
140         E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
141      if (contains(*I))
142        ++NumBackEdges;
143
144    return NumBackEdges;
145  }
146
147  //===--------------------------------------------------------------------===//
148  // APIs for simple analysis of the loop.
149  //
150  // Note that all of these methods can fail on general loops (ie, there may not
151  // be a preheader, etc).  For best success, the loop simplification and
152  // induction variable canonicalization pass should be used to normalize loops
153  // for easy analysis.  These methods assume canonical loops.
154
155  /// getExitingBlocks - Return all blocks inside the loop that have successors
156  /// outside of the loop.  These are the blocks _inside of the current loop_
157  /// which branch out.  The returned list is always unique.
158  ///
159  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
160    // Sort the blocks vector so that we can use binary search to do quick
161    // lookups.
162    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
163    std::sort(LoopBBs.begin(), LoopBBs.end());
164
165    typedef GraphTraits<BlockT*> BlockTraits;
166    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
167      for (typename BlockTraits::ChildIteratorType I =
168          BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
169          I != E; ++I)
170        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
171          // Not in current loop? It must be an exit block.
172          ExitingBlocks.push_back(*BI);
173          break;
174        }
175  }
176
177  /// getExitingBlock - If getExitingBlocks would return exactly one block,
178  /// return that block. Otherwise return null.
179  BlockT *getExitingBlock() const {
180    SmallVector<BlockT*, 8> ExitingBlocks;
181    getExitingBlocks(ExitingBlocks);
182    if (ExitingBlocks.size() == 1)
183      return ExitingBlocks[0];
184    return 0;
185  }
186
187  /// getExitBlocks - Return all of the successor blocks of this loop.  These
188  /// are the blocks _outside of the current loop_ which are branched to.
189  ///
190  void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
191    // Sort the blocks vector so that we can use binary search to do quick
192    // lookups.
193    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
194    std::sort(LoopBBs.begin(), LoopBBs.end());
195
196    typedef GraphTraits<BlockT*> BlockTraits;
197    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
198      for (typename BlockTraits::ChildIteratorType I =
199           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
200           I != E; ++I)
201        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
202          // Not in current loop? It must be an exit block.
203          ExitBlocks.push_back(*I);
204  }
205
206  /// getExitBlock - If getExitBlocks would return exactly one block,
207  /// return that block. Otherwise return null.
208  BlockT *getExitBlock() const {
209    SmallVector<BlockT*, 8> ExitBlocks;
210    getExitBlocks(ExitBlocks);
211    if (ExitBlocks.size() == 1)
212      return ExitBlocks[0];
213    return 0;
214  }
215
216  /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
217  typedef std::pair<const BlockT*,const BlockT*> Edge;
218  void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const {
219    // Sort the blocks vector so that we can use binary search to do quick
220    // lookups.
221    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
222    std::sort(LoopBBs.begin(), LoopBBs.end());
223
224    typedef GraphTraits<BlockT*> BlockTraits;
225    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
226      for (typename BlockTraits::ChildIteratorType I =
227           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
228           I != E; ++I)
229        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
230          // Not in current loop? It must be an exit block.
231          ExitEdges.push_back(std::make_pair(*BI, *I));
232  }
233
234  /// getLoopPreheader - If there is a preheader for this loop, return it.  A
235  /// loop has a preheader if there is only one edge to the header of the loop
236  /// from outside of the loop.  If this is the case, the block branching to the
237  /// header of the loop is the preheader node.
238  ///
239  /// This method returns null if there is no preheader for the loop.
240  ///
241  BlockT *getLoopPreheader() const {
242    // Keep track of nodes outside the loop branching to the header...
243    BlockT *Out = 0;
244
245    // Loop over the predecessors of the header node...
246    BlockT *Header = getHeader();
247    typedef GraphTraits<BlockT*> BlockTraits;
248    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
249    for (typename InvBlockTraits::ChildIteratorType PI =
250         InvBlockTraits::child_begin(Header),
251         PE = InvBlockTraits::child_end(Header); PI != PE; ++PI)
252      if (!contains(*PI)) {     // If the block is not in the loop...
253        if (Out && Out != *PI)
254          return 0;             // Multiple predecessors outside the loop
255        Out = *PI;
256      }
257
258    // Make sure there is only one exit out of the preheader.
259    assert(Out && "Header of loop has no predecessors from outside loop?");
260    typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
261    ++SI;
262    if (SI != BlockTraits::child_end(Out))
263      return 0;  // Multiple exits from the block, must not be a preheader.
264
265    // If there is exactly one preheader, return it.  If there was zero, then
266    // Out is still null.
267    return Out;
268  }
269
270  /// getLoopLatch - If there is a single latch block for this loop, return it.
271  /// A latch block is a block that contains a branch back to the header.
272  BlockT *getLoopLatch() const {
273    BlockT *Header = getHeader();
274    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
275    typename InvBlockTraits::ChildIteratorType PI =
276                                            InvBlockTraits::child_begin(Header);
277    typename InvBlockTraits::ChildIteratorType PE =
278                                              InvBlockTraits::child_end(Header);
279    BlockT *Latch = 0;
280    for (; PI != PE; ++PI)
281      if (contains(*PI)) {
282        if (Latch) return 0;
283        Latch = *PI;
284      }
285
286    return Latch;
287  }
288
289  //===--------------------------------------------------------------------===//
290  // APIs for updating loop information after changing the CFG
291  //
292
293  /// addBasicBlockToLoop - This method is used by other analyses to update loop
294  /// information.  NewBB is set to be a new member of the current loop.
295  /// Because of this, it is added as a member of all parent loops, and is added
296  /// to the specified LoopInfo object as being in the current basic block.  It
297  /// is not valid to replace the loop header with this method.
298  ///
299  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
300
301  /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
302  /// the OldChild entry in our children list with NewChild, and updates the
303  /// parent pointer of OldChild to be null and the NewChild to be this loop.
304  /// This updates the loop depth of the new child.
305  void replaceChildLoopWith(LoopT *OldChild,
306                            LoopT *NewChild) {
307    assert(OldChild->ParentLoop == this && "This loop is already broken!");
308    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
309    typename std::vector<LoopT *>::iterator I =
310                          std::find(SubLoops.begin(), SubLoops.end(), OldChild);
311    assert(I != SubLoops.end() && "OldChild not in loop!");
312    *I = NewChild;
313    OldChild->ParentLoop = 0;
314    NewChild->ParentLoop = static_cast<LoopT *>(this);
315  }
316
317  /// addChildLoop - Add the specified loop to be a child of this loop.  This
318  /// updates the loop depth of the new child.
319  ///
320  void addChildLoop(LoopT *NewChild) {
321    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
322    NewChild->ParentLoop = static_cast<LoopT *>(this);
323    SubLoops.push_back(NewChild);
324  }
325
326  /// removeChildLoop - This removes the specified child from being a subloop of
327  /// this loop.  The loop is not deleted, as it will presumably be inserted
328  /// into another loop.
329  LoopT *removeChildLoop(iterator I) {
330    assert(I != SubLoops.end() && "Cannot remove end iterator!");
331    LoopT *Child = *I;
332    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
333    SubLoops.erase(SubLoops.begin()+(I-begin()));
334    Child->ParentLoop = 0;
335    return Child;
336  }
337
338  /// addBlockEntry - This adds a basic block directly to the basic block list.
339  /// This should only be used by transformations that create new loops.  Other
340  /// transformations should use addBasicBlockToLoop.
341  void addBlockEntry(BlockT *BB) {
342    Blocks.push_back(BB);
343  }
344
345  /// moveToHeader - This method is used to move BB (which must be part of this
346  /// loop) to be the loop header of the loop (the block that dominates all
347  /// others).
348  void moveToHeader(BlockT *BB) {
349    if (Blocks[0] == BB) return;
350    for (unsigned i = 0; ; ++i) {
351      assert(i != Blocks.size() && "Loop does not contain BB!");
352      if (Blocks[i] == BB) {
353        Blocks[i] = Blocks[0];
354        Blocks[0] = BB;
355        return;
356      }
357    }
358  }
359
360  /// removeBlockFromLoop - This removes the specified basic block from the
361  /// current loop, updating the Blocks as appropriate.  This does not update
362  /// the mapping in the LoopInfo class.
363  void removeBlockFromLoop(BlockT *BB) {
364    RemoveFromVector(Blocks, BB);
365  }
366
367  /// verifyLoop - Verify loop structure
368  void verifyLoop() const {
369#ifndef NDEBUG
370    assert(!Blocks.empty() && "Loop header is missing");
371
372    // Sort the blocks vector so that we can use binary search to do quick
373    // lookups.
374    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
375    std::sort(LoopBBs.begin(), LoopBBs.end());
376
377    // Check the individual blocks.
378    for (block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
379      BlockT *BB = *I;
380      bool HasInsideLoopSuccs = false;
381      bool HasInsideLoopPreds = false;
382      SmallVector<BlockT *, 2> OutsideLoopPreds;
383
384      typedef GraphTraits<BlockT*> BlockTraits;
385      for (typename BlockTraits::ChildIteratorType SI =
386           BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
387           SI != SE; ++SI)
388        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *SI)) {
389          HasInsideLoopSuccs = true;
390          break;
391        }
392      typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
393      for (typename InvBlockTraits::ChildIteratorType PI =
394           InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
395           PI != PE; ++PI) {
396        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *PI))
397          HasInsideLoopPreds = true;
398        else
399          OutsideLoopPreds.push_back(*PI);
400      }
401
402      if (BB == getHeader()) {
403        assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
404      } else if (!OutsideLoopPreds.empty()) {
405        // A non-header loop shouldn't be reachable from outside the loop,
406        // though it is permitted if the predecessor is not itself actually
407        // reachable.
408        BlockT *EntryBB = BB->getParent()->begin();
409        for (df_iterator<BlockT *> NI = df_begin(EntryBB),
410             NE = df_end(EntryBB); NI != NE; ++NI)
411          for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
412            assert(*NI != OutsideLoopPreds[i] &&
413                   "Loop has multiple entry points!");
414      }
415      assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
416      assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
417      assert(BB != getHeader()->getParent()->begin() &&
418             "Loop contains function entry block!");
419    }
420
421    // Check the subloops.
422    for (iterator I = begin(), E = end(); I != E; ++I)
423      // Each block in each subloop should be contained within this loop.
424      for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
425           BI != BE; ++BI) {
426        assert(std::binary_search(LoopBBs.begin(), LoopBBs.end(), *BI) &&
427               "Loop does not contain all the blocks of a subloop!");
428      }
429
430    // Check the parent loop pointer.
431    if (ParentLoop) {
432      assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
433               ParentLoop->end() &&
434             "Loop is not a subloop of its parent!");
435    }
436#endif
437  }
438
439  /// verifyLoop - Verify loop structure of this loop and all nested loops.
440  void verifyLoopNest() const {
441    // Verify this loop.
442    verifyLoop();
443    // Verify the subloops.
444    for (iterator I = begin(), E = end(); I != E; ++I)
445      (*I)->verifyLoopNest();
446  }
447
448  void print(raw_ostream &OS, unsigned Depth = 0) const {
449    OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
450       << " containing: ";
451
452    for (unsigned i = 0; i < getBlocks().size(); ++i) {
453      if (i) OS << ",";
454      BlockT *BB = getBlocks()[i];
455      WriteAsOperand(OS, BB, false);
456      if (BB == getHeader())    OS << "<header>";
457      if (BB == getLoopLatch()) OS << "<latch>";
458      if (isLoopExiting(BB))    OS << "<exiting>";
459    }
460    OS << "\n";
461
462    for (iterator I = begin(), E = end(); I != E; ++I)
463      (*I)->print(OS, Depth+2);
464  }
465
466  void dump() const {
467    print(errs());
468  }
469
470protected:
471  friend class LoopInfoBase<BlockT, LoopT>;
472  explicit LoopBase(BlockT *BB) : ParentLoop(0) {
473    Blocks.push_back(BB);
474  }
475};
476
477class Loop : public LoopBase<BasicBlock, Loop> {
478public:
479  Loop() {}
480
481  /// isLoopInvariant - Return true if the specified value is loop invariant
482  ///
483  bool isLoopInvariant(Value *V) const;
484
485  /// isLoopInvariant - Return true if the specified instruction is
486  /// loop-invariant.
487  ///
488  bool isLoopInvariant(Instruction *I) const;
489
490  /// makeLoopInvariant - If the given value is an instruction inside of the
491  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
492  /// Return true if the value after any hoisting is loop invariant. This
493  /// function can be used as a slightly more aggressive replacement for
494  /// isLoopInvariant.
495  ///
496  /// If InsertPt is specified, it is the point to hoist instructions to.
497  /// If null, the terminator of the loop preheader is used.
498  ///
499  bool makeLoopInvariant(Value *V, bool &Changed,
500                         Instruction *InsertPt = 0) const;
501
502  /// makeLoopInvariant - If the given instruction is inside of the
503  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
504  /// Return true if the instruction after any hoisting is loop invariant. This
505  /// function can be used as a slightly more aggressive replacement for
506  /// isLoopInvariant.
507  ///
508  /// If InsertPt is specified, it is the point to hoist instructions to.
509  /// If null, the terminator of the loop preheader is used.
510  ///
511  bool makeLoopInvariant(Instruction *I, bool &Changed,
512                         Instruction *InsertPt = 0) const;
513
514  /// getCanonicalInductionVariable - Check to see if the loop has a canonical
515  /// induction variable: an integer recurrence that starts at 0 and increments
516  /// by one each time through the loop.  If so, return the phi node that
517  /// corresponds to it.
518  ///
519  /// The IndVarSimplify pass transforms loops to have a canonical induction
520  /// variable.
521  ///
522  PHINode *getCanonicalInductionVariable() const;
523
524  /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
525  /// the canonical induction variable value for the "next" iteration of the
526  /// loop.  This always succeeds if getCanonicalInductionVariable succeeds.
527  ///
528  Instruction *getCanonicalInductionVariableIncrement() const;
529
530  /// getTripCount - Return a loop-invariant LLVM value indicating the number of
531  /// times the loop will be executed.  Note that this means that the backedge
532  /// of the loop executes N-1 times.  If the trip-count cannot be determined,
533  /// this returns null.
534  ///
535  /// The IndVarSimplify pass transforms loops to have a form that this
536  /// function easily understands.
537  ///
538  Value *getTripCount() const;
539
540  /// getSmallConstantTripCount - Returns the trip count of this loop as a
541  /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
542  /// of not constant. Will also return 0 if the trip count is very large
543  /// (>= 2^32)
544  unsigned getSmallConstantTripCount() const;
545
546  /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
547  /// trip count of this loop as a normal unsigned value, if possible. This
548  /// means that the actual trip count is always a multiple of the returned
549  /// value (don't forget the trip count could very well be zero as well!).
550  ///
551  /// Returns 1 if the trip count is unknown or not guaranteed to be the
552  /// multiple of a constant (which is also the case if the trip count is simply
553  /// constant, use getSmallConstantTripCount for that case), Will also return 1
554  /// if the trip count is very large (>= 2^32).
555  unsigned getSmallConstantTripMultiple() const;
556
557  /// isLCSSAForm - Return true if the Loop is in LCSSA form
558  bool isLCSSAForm() const;
559
560  /// isLoopSimplifyForm - Return true if the Loop is in the form that
561  /// the LoopSimplify form transforms loops to, which is sometimes called
562  /// normal form.
563  bool isLoopSimplifyForm() const;
564
565  /// hasDedicatedExits - Return true if no exit block for the loop
566  /// has a predecessor that is outside the loop.
567  bool hasDedicatedExits() const;
568
569  /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
570  /// These are the blocks _outside of the current loop_ which are branched to.
571  /// This assumes that loop exits are in canonical form.
572  ///
573  void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
574
575  /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
576  /// block, return that block. Otherwise return null.
577  BasicBlock *getUniqueExitBlock() const;
578
579private:
580  friend class LoopInfoBase<BasicBlock, Loop>;
581  explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
582};
583
584//===----------------------------------------------------------------------===//
585/// LoopInfo - This class builds and contains all of the top level loop
586/// structures in the specified function.
587///
588
589template<class BlockT, class LoopT>
590class LoopInfoBase {
591  // BBMap - Mapping of basic blocks to the inner most loop they occur in
592  std::map<BlockT *, LoopT *> BBMap;
593  std::vector<LoopT *> TopLevelLoops;
594  friend class LoopBase<BlockT, LoopT>;
595
596  void operator=(const LoopInfoBase &); // do not implement
597  LoopInfoBase(const LoopInfo &);       // do not implement
598public:
599  LoopInfoBase() { }
600  ~LoopInfoBase() { releaseMemory(); }
601
602  void releaseMemory() {
603    for (typename std::vector<LoopT *>::iterator I =
604         TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
605      delete *I;   // Delete all of the loops...
606
607    BBMap.clear();                           // Reset internal state of analysis
608    TopLevelLoops.clear();
609  }
610
611  /// iterator/begin/end - The interface to the top-level loops in the current
612  /// function.
613  ///
614  typedef typename std::vector<LoopT *>::const_iterator iterator;
615  iterator begin() const { return TopLevelLoops.begin(); }
616  iterator end() const { return TopLevelLoops.end(); }
617  bool empty() const { return TopLevelLoops.empty(); }
618
619  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
620  /// block is in no loop (for example the entry node), null is returned.
621  ///
622  LoopT *getLoopFor(const BlockT *BB) const {
623    typename std::map<BlockT *, LoopT *>::const_iterator I=
624      BBMap.find(const_cast<BlockT*>(BB));
625    return I != BBMap.end() ? I->second : 0;
626  }
627
628  /// operator[] - same as getLoopFor...
629  ///
630  const LoopT *operator[](const BlockT *BB) const {
631    return getLoopFor(BB);
632  }
633
634  /// getLoopDepth - Return the loop nesting level of the specified block.  A
635  /// depth of 0 means the block is not inside any loop.
636  ///
637  unsigned getLoopDepth(const BlockT *BB) const {
638    const LoopT *L = getLoopFor(BB);
639    return L ? L->getLoopDepth() : 0;
640  }
641
642  // isLoopHeader - True if the block is a loop header node
643  bool isLoopHeader(BlockT *BB) const {
644    const LoopT *L = getLoopFor(BB);
645    return L && L->getHeader() == BB;
646  }
647
648  /// removeLoop - This removes the specified top-level loop from this loop info
649  /// object.  The loop is not deleted, as it will presumably be inserted into
650  /// another loop.
651  LoopT *removeLoop(iterator I) {
652    assert(I != end() && "Cannot remove end iterator!");
653    LoopT *L = *I;
654    assert(L->getParentLoop() == 0 && "Not a top-level loop!");
655    TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
656    return L;
657  }
658
659  /// changeLoopFor - Change the top-level loop that contains BB to the
660  /// specified loop.  This should be used by transformations that restructure
661  /// the loop hierarchy tree.
662  void changeLoopFor(BlockT *BB, LoopT *L) {
663    LoopT *&OldLoop = BBMap[BB];
664    assert(OldLoop && "Block not in a loop yet!");
665    OldLoop = L;
666  }
667
668  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
669  /// list with the indicated loop.
670  void changeTopLevelLoop(LoopT *OldLoop,
671                          LoopT *NewLoop) {
672    typename std::vector<LoopT *>::iterator I =
673                 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
674    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
675    *I = NewLoop;
676    assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
677           "Loops already embedded into a subloop!");
678  }
679
680  /// addTopLevelLoop - This adds the specified loop to the collection of
681  /// top-level loops.
682  void addTopLevelLoop(LoopT *New) {
683    assert(New->getParentLoop() == 0 && "Loop already in subloop!");
684    TopLevelLoops.push_back(New);
685  }
686
687  /// removeBlock - This method completely removes BB from all data structures,
688  /// including all of the Loop objects it is nested in and our mapping from
689  /// BasicBlocks to loops.
690  void removeBlock(BlockT *BB) {
691    typename std::map<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
692    if (I != BBMap.end()) {
693      for (LoopT *L = I->second; L; L = L->getParentLoop())
694        L->removeBlockFromLoop(BB);
695
696      BBMap.erase(I);
697    }
698  }
699
700  // Internals
701
702  static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
703                                      const LoopT *ParentLoop) {
704    if (SubLoop == 0) return true;
705    if (SubLoop == ParentLoop) return false;
706    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
707  }
708
709  void Calculate(DominatorTreeBase<BlockT> &DT) {
710    BlockT *RootNode = DT.getRootNode()->getBlock();
711
712    for (df_iterator<BlockT*> NI = df_begin(RootNode),
713           NE = df_end(RootNode); NI != NE; ++NI)
714      if (LoopT *L = ConsiderForLoop(*NI, DT))
715        TopLevelLoops.push_back(L);
716  }
717
718  LoopT *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
719    if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node?
720
721    std::vector<BlockT *> TodoStack;
722
723    // Scan the predecessors of BB, checking to see if BB dominates any of
724    // them.  This identifies backedges which target this node...
725    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
726    for (typename InvBlockTraits::ChildIteratorType I =
727         InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
728         I != E; ++I)
729      if (DT.dominates(BB, *I))   // If BB dominates its predecessor...
730        TodoStack.push_back(*I);
731
732    if (TodoStack.empty()) return 0;  // No backedges to this block...
733
734    // Create a new loop to represent this basic block...
735    LoopT *L = new LoopT(BB);
736    BBMap[BB] = L;
737
738    BlockT *EntryBlock = BB->getParent()->begin();
739
740    while (!TodoStack.empty()) {  // Process all the nodes in the loop
741      BlockT *X = TodoStack.back();
742      TodoStack.pop_back();
743
744      if (!L->contains(X) &&         // As of yet unprocessed??
745          DT.dominates(EntryBlock, X)) {   // X is reachable from entry block?
746        // Check to see if this block already belongs to a loop.  If this occurs
747        // then we have a case where a loop that is supposed to be a child of
748        // the current loop was processed before the current loop.  When this
749        // occurs, this child loop gets added to a part of the current loop,
750        // making it a sibling to the current loop.  We have to reparent this
751        // loop.
752        if (LoopT *SubLoop =
753            const_cast<LoopT *>(getLoopFor(X)))
754          if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
755            // Remove the subloop from its current parent...
756            assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
757            LoopT *SLP = SubLoop->ParentLoop;  // SubLoopParent
758            typename std::vector<LoopT *>::iterator I =
759              std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
760            assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
761            SLP->SubLoops.erase(I);   // Remove from parent...
762
763            // Add the subloop to THIS loop...
764            SubLoop->ParentLoop = L;
765            L->SubLoops.push_back(SubLoop);
766          }
767
768        // Normal case, add the block to our loop...
769        L->Blocks.push_back(X);
770
771        typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
772
773        // Add all of the predecessors of X to the end of the work stack...
774        TodoStack.insert(TodoStack.end(), InvBlockTraits::child_begin(X),
775                         InvBlockTraits::child_end(X));
776      }
777    }
778
779    // If there are any loops nested within this loop, create them now!
780    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
781         E = L->Blocks.end(); I != E; ++I)
782      if (LoopT *NewLoop = ConsiderForLoop(*I, DT)) {
783        L->SubLoops.push_back(NewLoop);
784        NewLoop->ParentLoop = L;
785      }
786
787    // Add the basic blocks that comprise this loop to the BBMap so that this
788    // loop can be found for them.
789    //
790    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
791           E = L->Blocks.end(); I != E; ++I)
792      BBMap.insert(std::make_pair(*I, L));
793
794    // Now that we have a list of all of the child loops of this loop, check to
795    // see if any of them should actually be nested inside of each other.  We
796    // can accidentally pull loops our of their parents, so we must make sure to
797    // organize the loop nests correctly now.
798    {
799      std::map<BlockT *, LoopT *> ContainingLoops;
800      for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
801        LoopT *Child = L->SubLoops[i];
802        assert(Child->getParentLoop() == L && "Not proper child loop?");
803
804        if (LoopT *ContainingLoop = ContainingLoops[Child->getHeader()]) {
805          // If there is already a loop which contains this loop, move this loop
806          // into the containing loop.
807          MoveSiblingLoopInto(Child, ContainingLoop);
808          --i;  // The loop got removed from the SubLoops list.
809        } else {
810          // This is currently considered to be a top-level loop.  Check to see
811          // if any of the contained blocks are loop headers for subloops we
812          // have already processed.
813          for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
814            LoopT *&BlockLoop = ContainingLoops[Child->Blocks[b]];
815            if (BlockLoop == 0) {   // Child block not processed yet...
816              BlockLoop = Child;
817            } else if (BlockLoop != Child) {
818              LoopT *SubLoop = BlockLoop;
819              // Reparent all of the blocks which used to belong to BlockLoops
820              for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j)
821                ContainingLoops[SubLoop->Blocks[j]] = Child;
822
823              // There is already a loop which contains this block, that means
824              // that we should reparent the loop which the block is currently
825              // considered to belong to to be a child of this loop.
826              MoveSiblingLoopInto(SubLoop, Child);
827              --i;  // We just shrunk the SubLoops list.
828            }
829          }
830        }
831      }
832    }
833
834    return L;
835  }
836
837  /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
838  /// of the NewParent Loop, instead of being a sibling of it.
839  void MoveSiblingLoopInto(LoopT *NewChild,
840                           LoopT *NewParent) {
841    LoopT *OldParent = NewChild->getParentLoop();
842    assert(OldParent && OldParent == NewParent->getParentLoop() &&
843           NewChild != NewParent && "Not sibling loops!");
844
845    // Remove NewChild from being a child of OldParent
846    typename std::vector<LoopT *>::iterator I =
847      std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
848                NewChild);
849    assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
850    OldParent->SubLoops.erase(I);   // Remove from parent's subloops list
851    NewChild->ParentLoop = 0;
852
853    InsertLoopInto(NewChild, NewParent);
854  }
855
856  /// InsertLoopInto - This inserts loop L into the specified parent loop.  If
857  /// the parent loop contains a loop which should contain L, the loop gets
858  /// inserted into L instead.
859  void InsertLoopInto(LoopT *L, LoopT *Parent) {
860    BlockT *LHeader = L->getHeader();
861    assert(Parent->contains(LHeader) &&
862           "This loop should not be inserted here!");
863
864    // Check to see if it belongs in a child loop...
865    for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
866         i != e; ++i)
867      if (Parent->SubLoops[i]->contains(LHeader)) {
868        InsertLoopInto(L, Parent->SubLoops[i]);
869        return;
870      }
871
872    // If not, insert it here!
873    Parent->SubLoops.push_back(L);
874    L->ParentLoop = Parent;
875  }
876
877  // Debugging
878
879  void print(raw_ostream &OS) const {
880    for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
881      TopLevelLoops[i]->print(OS);
882  #if 0
883    for (std::map<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
884           E = BBMap.end(); I != E; ++I)
885      OS << "BB '" << I->first->getName() << "' level = "
886         << I->second->getLoopDepth() << "\n";
887  #endif
888  }
889};
890
891class LoopInfo : public FunctionPass {
892  LoopInfoBase<BasicBlock, Loop> LI;
893  friend class LoopBase<BasicBlock, Loop>;
894
895  void operator=(const LoopInfo &); // do not implement
896  LoopInfo(const LoopInfo &);       // do not implement
897public:
898  static char ID; // Pass identification, replacement for typeid
899
900  LoopInfo() : FunctionPass(&ID) {}
901
902  LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
903
904  /// iterator/begin/end - The interface to the top-level loops in the current
905  /// function.
906  ///
907  typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
908  inline iterator begin() const { return LI.begin(); }
909  inline iterator end() const { return LI.end(); }
910  bool empty() const { return LI.empty(); }
911
912  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
913  /// block is in no loop (for example the entry node), null is returned.
914  ///
915  inline Loop *getLoopFor(const BasicBlock *BB) const {
916    return LI.getLoopFor(BB);
917  }
918
919  /// operator[] - same as getLoopFor...
920  ///
921  inline const Loop *operator[](const BasicBlock *BB) const {
922    return LI.getLoopFor(BB);
923  }
924
925  /// getLoopDepth - Return the loop nesting level of the specified block.  A
926  /// depth of 0 means the block is not inside any loop.
927  ///
928  inline unsigned getLoopDepth(const BasicBlock *BB) const {
929    return LI.getLoopDepth(BB);
930  }
931
932  // isLoopHeader - True if the block is a loop header node
933  inline bool isLoopHeader(BasicBlock *BB) const {
934    return LI.isLoopHeader(BB);
935  }
936
937  /// runOnFunction - Calculate the natural loop information.
938  ///
939  virtual bool runOnFunction(Function &F);
940
941  virtual void verifyAnalysis() const;
942
943  virtual void releaseMemory() { LI.releaseMemory(); }
944
945  virtual void print(raw_ostream &O, const Module* M = 0) const;
946
947  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
948
949  /// removeLoop - This removes the specified top-level loop from this loop info
950  /// object.  The loop is not deleted, as it will presumably be inserted into
951  /// another loop.
952  inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
953
954  /// changeLoopFor - Change the top-level loop that contains BB to the
955  /// specified loop.  This should be used by transformations that restructure
956  /// the loop hierarchy tree.
957  inline void changeLoopFor(BasicBlock *BB, Loop *L) {
958    LI.changeLoopFor(BB, L);
959  }
960
961  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
962  /// list with the indicated loop.
963  inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
964    LI.changeTopLevelLoop(OldLoop, NewLoop);
965  }
966
967  /// addTopLevelLoop - This adds the specified loop to the collection of
968  /// top-level loops.
969  inline void addTopLevelLoop(Loop *New) {
970    LI.addTopLevelLoop(New);
971  }
972
973  /// removeBlock - This method completely removes BB from all data structures,
974  /// including all of the Loop objects it is nested in and our mapping from
975  /// BasicBlocks to loops.
976  void removeBlock(BasicBlock *BB) {
977    LI.removeBlock(BB);
978  }
979};
980
981
982// Allow clients to walk the list of nested loops...
983template <> struct GraphTraits<const Loop*> {
984  typedef const Loop NodeType;
985  typedef LoopInfo::iterator ChildIteratorType;
986
987  static NodeType *getEntryNode(const Loop *L) { return L; }
988  static inline ChildIteratorType child_begin(NodeType *N) {
989    return N->begin();
990  }
991  static inline ChildIteratorType child_end(NodeType *N) {
992    return N->end();
993  }
994};
995
996template <> struct GraphTraits<Loop*> {
997  typedef Loop NodeType;
998  typedef LoopInfo::iterator ChildIteratorType;
999
1000  static NodeType *getEntryNode(Loop *L) { return L; }
1001  static inline ChildIteratorType child_begin(NodeType *N) {
1002    return N->begin();
1003  }
1004  static inline ChildIteratorType child_end(NodeType *N) {
1005    return N->end();
1006  }
1007};
1008
1009template<class BlockT, class LoopT>
1010void
1011LoopBase<BlockT, LoopT>::addBasicBlockToLoop(BlockT *NewBB,
1012                                             LoopInfoBase<BlockT, LoopT> &LIB) {
1013  assert((Blocks.empty() || LIB[getHeader()] == this) &&
1014         "Incorrect LI specified for this loop!");
1015  assert(NewBB && "Cannot add a null basic block to the loop!");
1016  assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
1017
1018  LoopT *L = static_cast<LoopT *>(this);
1019
1020  // Add the loop mapping to the LoopInfo object...
1021  LIB.BBMap[NewBB] = L;
1022
1023  // Add the basic block to this loop and all parent loops...
1024  while (L) {
1025    L->Blocks.push_back(NewBB);
1026    L = L->getParentLoop();
1027  }
1028}
1029
1030} // End llvm namespace
1031
1032#endif
1033