LoopInfo.h revision 937738649386b8188524d0cd61943214a5b93cf6
1//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  Note that natural
12// loops may actually be several loops that share the same header node.
13//
14// This analysis calculates the nesting structure of loops in a function.  For
15// each natural loop identified, this analysis identifies natural loops
16// contained entirely within the loop and the basic blocks the make up the loop.
17//
18// It can calculate on the fly various bits of information, for example:
19//
20//  * whether there is a preheader for the loop
21//  * the number of back edges to the header
22//  * whether or not a particular block branches out of the loop
23//  * the successor blocks of the loop
24//  * the loop depth
25//  * the trip count
26//  * etc...
27//
28//===----------------------------------------------------------------------===//
29
30#ifndef LLVM_ANALYSIS_LOOP_INFO_H
31#define LLVM_ANALYSIS_LOOP_INFO_H
32
33#include "llvm/Pass.h"
34#include "llvm/ADT/DepthFirstIterator.h"
35#include "llvm/ADT/GraphTraits.h"
36#include "llvm/ADT/SmallVector.h"
37#include "llvm/Analysis/Dominators.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/Streams.h"
40#include <algorithm>
41#include <ostream>
42
43namespace llvm {
44
45template<typename T>
46static void RemoveFromVector(std::vector<T*> &V, T *N) {
47  typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
48  assert(I != V.end() && "N is not in this list!");
49  V.erase(I);
50}
51
52class DominatorTree;
53class LoopInfo;
54class Loop;
55template<class N, class M> class LoopInfoBase;
56template<class N, class M> class LoopBase;
57
58//===----------------------------------------------------------------------===//
59/// LoopBase class - Instances of this class are used to represent loops that
60/// are detected in the flow graph
61///
62template<class BlockT, class LoopT>
63class LoopBase {
64  LoopT *ParentLoop;
65  // SubLoops - Loops contained entirely within this one.
66  std::vector<LoopT *> SubLoops;
67
68  // Blocks - The list of blocks in this loop.  First entry is the header node.
69  std::vector<BlockT*> Blocks;
70
71  // DO NOT IMPLEMENT
72  LoopBase(const LoopBase<BlockT, LoopT> &);
73  // DO NOT IMPLEMENT
74  const LoopBase<BlockT, LoopT>&operator=(const LoopBase<BlockT, LoopT> &);
75public:
76  /// Loop ctor - This creates an empty loop.
77  LoopBase() : ParentLoop(0) {}
78  ~LoopBase() {
79    for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
80      delete SubLoops[i];
81  }
82
83  /// getLoopDepth - Return the nesting level of this loop.  An outer-most
84  /// loop has depth 1, for consistency with loop depth values used for basic
85  /// blocks, where depth 0 is used for blocks not inside any loops.
86  unsigned getLoopDepth() const {
87    unsigned D = 1;
88    for (const LoopT *CurLoop = ParentLoop; CurLoop;
89         CurLoop = CurLoop->ParentLoop)
90      ++D;
91    return D;
92  }
93  BlockT *getHeader() const { return Blocks.front(); }
94  LoopT *getParentLoop() const { return ParentLoop; }
95
96  /// contains - Return true if the specified basic block is in this loop
97  ///
98  bool contains(const BlockT *BB) const {
99    return std::find(block_begin(), block_end(), BB) != block_end();
100  }
101
102  /// iterator/begin/end - Return the loops contained entirely within this loop.
103  ///
104  const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
105  typedef typename std::vector<LoopT *>::const_iterator iterator;
106  iterator begin() const { return SubLoops.begin(); }
107  iterator end() const { return SubLoops.end(); }
108  bool empty() const { return SubLoops.empty(); }
109
110  /// getBlocks - Get a list of the basic blocks which make up this loop.
111  ///
112  const std::vector<BlockT*> &getBlocks() const { return Blocks; }
113  typedef typename std::vector<BlockT*>::const_iterator block_iterator;
114  block_iterator block_begin() const { return Blocks.begin(); }
115  block_iterator block_end() const { return Blocks.end(); }
116
117  /// isLoopExit - True if terminator in the block can branch to another block
118  /// that is outside of the current loop.
119  ///
120  bool isLoopExit(const BlockT *BB) const {
121    typedef GraphTraits<BlockT*> BlockTraits;
122    for (typename BlockTraits::ChildIteratorType SI =
123         BlockTraits::child_begin(const_cast<BlockT*>(BB)),
124         SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
125      if (!contains(*SI))
126        return true;
127    }
128    return false;
129  }
130
131  /// getNumBackEdges - Calculate the number of back edges to the loop header
132  ///
133  unsigned getNumBackEdges() const {
134    unsigned NumBackEdges = 0;
135    BlockT *H = getHeader();
136
137    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
138    for (typename InvBlockTraits::ChildIteratorType I =
139         InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
140         E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
141      if (contains(*I))
142        ++NumBackEdges;
143
144    return NumBackEdges;
145  }
146
147  //===--------------------------------------------------------------------===//
148  // APIs for simple analysis of the loop.
149  //
150  // Note that all of these methods can fail on general loops (ie, there may not
151  // be a preheader, etc).  For best success, the loop simplification and
152  // induction variable canonicalization pass should be used to normalize loops
153  // for easy analysis.  These methods assume canonical loops.
154
155  /// getExitingBlocks - Return all blocks inside the loop that have successors
156  /// outside of the loop.  These are the blocks _inside of the current loop_
157  /// which branch out.  The returned list is always unique.
158  ///
159  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
160    // Sort the blocks vector so that we can use binary search to do quick
161    // lookups.
162    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
163    std::sort(LoopBBs.begin(), LoopBBs.end());
164
165    typedef GraphTraits<BlockT*> BlockTraits;
166    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
167      for (typename BlockTraits::ChildIteratorType I =
168          BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
169          I != E; ++I)
170        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
171          // Not in current loop? It must be an exit block.
172          ExitingBlocks.push_back(*BI);
173          break;
174        }
175  }
176
177  /// getExitingBlock - If getExitingBlocks would return exactly one block,
178  /// return that block. Otherwise return null.
179  BlockT *getExitingBlock() const {
180    SmallVector<BlockT*, 8> ExitingBlocks;
181    getExitingBlocks(ExitingBlocks);
182    if (ExitingBlocks.size() == 1)
183      return ExitingBlocks[0];
184    return 0;
185  }
186
187  /// getExitBlocks - Return all of the successor blocks of this loop.  These
188  /// are the blocks _outside of the current loop_ which are branched to.
189  ///
190  void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
191    // Sort the blocks vector so that we can use binary search to do quick
192    // lookups.
193    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
194    std::sort(LoopBBs.begin(), LoopBBs.end());
195
196    typedef GraphTraits<BlockT*> BlockTraits;
197    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
198      for (typename BlockTraits::ChildIteratorType I =
199           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
200           I != E; ++I)
201        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
202          // Not in current loop? It must be an exit block.
203          ExitBlocks.push_back(*I);
204  }
205
206  /// getExitBlock - If getExitBlocks would return exactly one block,
207  /// return that block. Otherwise return null.
208  BlockT *getExitBlock() const {
209    SmallVector<BlockT*, 8> ExitBlocks;
210    getExitBlocks(ExitBlocks);
211    if (ExitBlocks.size() == 1)
212      return ExitBlocks[0];
213    return 0;
214  }
215
216  /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
217  /// These are the blocks _outside of the current loop_ which are branched to.
218  /// This assumes that loop is in canonical form.
219  ///
220  void getUniqueExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
221    // Sort the blocks vector so that we can use binary search to do quick
222    // lookups.
223    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
224    std::sort(LoopBBs.begin(), LoopBBs.end());
225
226    std::vector<BlockT*> switchExitBlocks;
227
228    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
229
230      BlockT *current = *BI;
231      switchExitBlocks.clear();
232
233      typedef GraphTraits<BlockT*> BlockTraits;
234      typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
235      for (typename BlockTraits::ChildIteratorType I =
236           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
237           I != E; ++I) {
238        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
239      // If block is inside the loop then it is not a exit block.
240          continue;
241
242        typename InvBlockTraits::ChildIteratorType PI =
243                                                InvBlockTraits::child_begin(*I);
244        BlockT *firstPred = *PI;
245
246        // If current basic block is this exit block's first predecessor
247        // then only insert exit block in to the output ExitBlocks vector.
248        // This ensures that same exit block is not inserted twice into
249        // ExitBlocks vector.
250        if (current != firstPred)
251          continue;
252
253        // If a terminator has more then two successors, for example SwitchInst,
254        // then it is possible that there are multiple edges from current block
255        // to one exit block.
256        if (std::distance(BlockTraits::child_begin(current),
257                          BlockTraits::child_end(current)) <= 2) {
258          ExitBlocks.push_back(*I);
259          continue;
260        }
261
262        // In case of multiple edges from current block to exit block, collect
263        // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
264        // duplicate edges.
265        if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
266            == switchExitBlocks.end()) {
267          switchExitBlocks.push_back(*I);
268          ExitBlocks.push_back(*I);
269        }
270      }
271    }
272  }
273
274  /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
275  /// block, return that block. Otherwise return null.
276  BlockT *getUniqueExitBlock() const {
277    SmallVector<BlockT*, 8> UniqueExitBlocks;
278    getUniqueExitBlocks(UniqueExitBlocks);
279    if (UniqueExitBlocks.size() == 1)
280      return UniqueExitBlocks[0];
281    return 0;
282  }
283
284  /// getLoopPreheader - If there is a preheader for this loop, return it.  A
285  /// loop has a preheader if there is only one edge to the header of the loop
286  /// from outside of the loop.  If this is the case, the block branching to the
287  /// header of the loop is the preheader node.
288  ///
289  /// This method returns null if there is no preheader for the loop.
290  ///
291  BlockT *getLoopPreheader() const {
292    // Keep track of nodes outside the loop branching to the header...
293    BlockT *Out = 0;
294
295    // Loop over the predecessors of the header node...
296    BlockT *Header = getHeader();
297    typedef GraphTraits<BlockT*> BlockTraits;
298    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
299    for (typename InvBlockTraits::ChildIteratorType PI =
300         InvBlockTraits::child_begin(Header),
301         PE = InvBlockTraits::child_end(Header); PI != PE; ++PI)
302      if (!contains(*PI)) {     // If the block is not in the loop...
303        if (Out && Out != *PI)
304          return 0;             // Multiple predecessors outside the loop
305        Out = *PI;
306      }
307
308    // Make sure there is only one exit out of the preheader.
309    assert(Out && "Header of loop has no predecessors from outside loop?");
310    typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
311    ++SI;
312    if (SI != BlockTraits::child_end(Out))
313      return 0;  // Multiple exits from the block, must not be a preheader.
314
315    // If there is exactly one preheader, return it.  If there was zero, then
316    // Out is still null.
317    return Out;
318  }
319
320  /// getLoopLatch - If there is a single latch block for this loop, return it.
321  /// A latch block is a block that contains a branch back to the header.
322  /// A loop header in normal form has two edges into it: one from a preheader
323  /// and one from a latch block.
324  BlockT *getLoopLatch() const {
325    BlockT *Header = getHeader();
326    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
327    typename InvBlockTraits::ChildIteratorType PI =
328                                            InvBlockTraits::child_begin(Header);
329    typename InvBlockTraits::ChildIteratorType PE =
330                                              InvBlockTraits::child_end(Header);
331    if (PI == PE) return 0;  // no preds?
332
333    BlockT *Latch = 0;
334    if (contains(*PI))
335      Latch = *PI;
336    ++PI;
337    if (PI == PE) return 0;  // only one pred?
338
339    if (contains(*PI)) {
340      if (Latch) return 0;  // multiple backedges
341      Latch = *PI;
342    }
343    ++PI;
344    if (PI != PE) return 0;  // more than two preds
345
346    return Latch;
347  }
348
349  //===--------------------------------------------------------------------===//
350  // APIs for updating loop information after changing the CFG
351  //
352
353  /// addBasicBlockToLoop - This method is used by other analyses to update loop
354  /// information.  NewBB is set to be a new member of the current loop.
355  /// Because of this, it is added as a member of all parent loops, and is added
356  /// to the specified LoopInfo object as being in the current basic block.  It
357  /// is not valid to replace the loop header with this method.
358  ///
359  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
360
361  /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
362  /// the OldChild entry in our children list with NewChild, and updates the
363  /// parent pointer of OldChild to be null and the NewChild to be this loop.
364  /// This updates the loop depth of the new child.
365  void replaceChildLoopWith(LoopT *OldChild,
366                            LoopT *NewChild) {
367    assert(OldChild->ParentLoop == this && "This loop is already broken!");
368    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
369    typename std::vector<LoopT *>::iterator I =
370                          std::find(SubLoops.begin(), SubLoops.end(), OldChild);
371    assert(I != SubLoops.end() && "OldChild not in loop!");
372    *I = NewChild;
373    OldChild->ParentLoop = 0;
374    NewChild->ParentLoop = static_cast<LoopT *>(this);
375  }
376
377  /// addChildLoop - Add the specified loop to be a child of this loop.  This
378  /// updates the loop depth of the new child.
379  ///
380  void addChildLoop(LoopT *NewChild) {
381    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
382    NewChild->ParentLoop = static_cast<LoopT *>(this);
383    SubLoops.push_back(NewChild);
384  }
385
386  /// removeChildLoop - This removes the specified child from being a subloop of
387  /// this loop.  The loop is not deleted, as it will presumably be inserted
388  /// into another loop.
389  LoopT *removeChildLoop(iterator I) {
390    assert(I != SubLoops.end() && "Cannot remove end iterator!");
391    LoopT *Child = *I;
392    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
393    SubLoops.erase(SubLoops.begin()+(I-begin()));
394    Child->ParentLoop = 0;
395    return Child;
396  }
397
398  /// addBlockEntry - This adds a basic block directly to the basic block list.
399  /// This should only be used by transformations that create new loops.  Other
400  /// transformations should use addBasicBlockToLoop.
401  void addBlockEntry(BlockT *BB) {
402    Blocks.push_back(BB);
403  }
404
405  /// moveToHeader - This method is used to move BB (which must be part of this
406  /// loop) to be the loop header of the loop (the block that dominates all
407  /// others).
408  void moveToHeader(BlockT *BB) {
409    if (Blocks[0] == BB) return;
410    for (unsigned i = 0; ; ++i) {
411      assert(i != Blocks.size() && "Loop does not contain BB!");
412      if (Blocks[i] == BB) {
413        Blocks[i] = Blocks[0];
414        Blocks[0] = BB;
415        return;
416      }
417    }
418  }
419
420  /// removeBlockFromLoop - This removes the specified basic block from the
421  /// current loop, updating the Blocks as appropriate.  This does not update
422  /// the mapping in the LoopInfo class.
423  void removeBlockFromLoop(BlockT *BB) {
424    RemoveFromVector(Blocks, BB);
425  }
426
427  /// verifyLoop - Verify loop structure
428  void verifyLoop() const {
429#ifndef NDEBUG
430    assert (getHeader() && "Loop header is missing");
431    assert (getLoopPreheader() && "Loop preheader is missing");
432    assert (getLoopLatch() && "Loop latch is missing");
433    for (iterator I = SubLoops.begin(), E = SubLoops.end(); I != E; ++I)
434      (*I)->verifyLoop();
435#endif
436  }
437
438  void print(std::ostream &OS, unsigned Depth = 0) const {
439    OS << std::string(Depth*2, ' ') << "Loop at depth " << getLoopDepth()
440       << " containing: ";
441
442    for (unsigned i = 0; i < getBlocks().size(); ++i) {
443      if (i) OS << ",";
444      BlockT *BB = getBlocks()[i];
445      WriteAsOperand(OS, BB, false);
446      if (BB == getHeader())    OS << "<header>";
447      if (BB == getLoopLatch()) OS << "<latch>";
448      if (isLoopExit(BB))       OS << "<exit>";
449    }
450    OS << "\n";
451
452    for (iterator I = begin(), E = end(); I != E; ++I)
453      (*I)->print(OS, Depth+2);
454  }
455
456  void print(std::ostream *O, unsigned Depth = 0) const {
457    if (O) print(*O, Depth);
458  }
459
460  void dump() const {
461    print(cerr);
462  }
463
464protected:
465  friend class LoopInfoBase<BlockT, LoopT>;
466  explicit LoopBase(BlockT *BB) : ParentLoop(0) {
467    Blocks.push_back(BB);
468  }
469};
470
471class Loop : public LoopBase<BasicBlock, Loop> {
472public:
473  Loop() {}
474
475  /// isLoopInvariant - Return true if the specified value is loop invariant
476  ///
477  bool isLoopInvariant(Value *V) const;
478
479  /// isLoopInvariant - Return true if the specified instruction is
480  /// loop-invariant.
481  ///
482  bool isLoopInvariant(Instruction *I) const;
483
484  /// makeLoopInvariant - If the given value is an instruction inside of the
485  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
486  /// Return true if the value after any hoisting is loop invariant. This
487  /// function can be used as a slightly more aggressive replacement for
488  /// isLoopInvariant.
489  ///
490  /// If InsertPt is specified, it is the point to hoist instructions to.
491  /// If null, the terminator of the loop preheader is used.
492  ///
493  bool makeLoopInvariant(Value *V, bool &Changed,
494                         Instruction *InsertPt = 0) const;
495
496  /// makeLoopInvariant - If the given instruction is inside of the
497  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
498  /// Return true if the instruction after any hoisting is loop invariant. This
499  /// function can be used as a slightly more aggressive replacement for
500  /// isLoopInvariant.
501  ///
502  /// If InsertPt is specified, it is the point to hoist instructions to.
503  /// If null, the terminator of the loop preheader is used.
504  ///
505  bool makeLoopInvariant(Instruction *I, bool &Changed,
506                         Instruction *InsertPt = 0) const;
507
508  /// getCanonicalInductionVariable - Check to see if the loop has a canonical
509  /// induction variable: an integer recurrence that starts at 0 and increments
510  /// by one each time through the loop.  If so, return the phi node that
511  /// corresponds to it.
512  ///
513  /// The IndVarSimplify pass transforms loops to have a canonical induction
514  /// variable.
515  ///
516  PHINode *getCanonicalInductionVariable() const;
517
518  /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
519  /// the canonical induction variable value for the "next" iteration of the
520  /// loop.  This always succeeds if getCanonicalInductionVariable succeeds.
521  ///
522  Instruction *getCanonicalInductionVariableIncrement() const;
523
524  /// getTripCount - Return a loop-invariant LLVM value indicating the number of
525  /// times the loop will be executed.  Note that this means that the backedge
526  /// of the loop executes N-1 times.  If the trip-count cannot be determined,
527  /// this returns null.
528  ///
529  /// The IndVarSimplify pass transforms loops to have a form that this
530  /// function easily understands.
531  ///
532  Value *getTripCount() const;
533
534  /// getSmallConstantTripCount - Returns the trip count of this loop as a
535  /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
536  /// of not constant. Will also return 0 if the trip count is very large
537  /// (>= 2^32)
538  unsigned getSmallConstantTripCount() const;
539
540  /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
541  /// trip count of this loop as a normal unsigned value, if possible. This
542  /// means that the actual trip count is always a multiple of the returned
543  /// value (don't forget the trip count could very well be zero as well!).
544  ///
545  /// Returns 1 if the trip count is unknown or not guaranteed to be the
546  /// multiple of a constant (which is also the case if the trip count is simply
547  /// constant, use getSmallConstantTripCount for that case), Will also return 1
548  /// if the trip count is very large (>= 2^32).
549  unsigned getSmallConstantTripMultiple() const;
550
551  /// isLCSSAForm - Return true if the Loop is in LCSSA form
552  bool isLCSSAForm() const;
553
554  /// isLoopSimplifyForm - Return true if the Loop is in the form that
555  /// the LoopSimplify form transforms loops to, which is sometimes called
556  /// normal form.
557  bool isLoopSimplifyForm() const;
558
559private:
560  friend class LoopInfoBase<BasicBlock, Loop>;
561  explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
562};
563
564//===----------------------------------------------------------------------===//
565/// LoopInfo - This class builds and contains all of the top level loop
566/// structures in the specified function.
567///
568
569template<class BlockT, class LoopT>
570class LoopInfoBase {
571  // BBMap - Mapping of basic blocks to the inner most loop they occur in
572  std::map<BlockT *, LoopT *> BBMap;
573  std::vector<LoopT *> TopLevelLoops;
574  friend class LoopBase<BlockT, LoopT>;
575
576  void operator=(const LoopInfoBase &); // do not implement
577  LoopInfoBase(const LoopInfo &);       // do not implement
578public:
579  LoopInfoBase() { }
580  ~LoopInfoBase() { releaseMemory(); }
581
582  void releaseMemory() {
583    for (typename std::vector<LoopT *>::iterator I =
584         TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
585      delete *I;   // Delete all of the loops...
586
587    BBMap.clear();                           // Reset internal state of analysis
588    TopLevelLoops.clear();
589  }
590
591  /// iterator/begin/end - The interface to the top-level loops in the current
592  /// function.
593  ///
594  typedef typename std::vector<LoopT *>::const_iterator iterator;
595  iterator begin() const { return TopLevelLoops.begin(); }
596  iterator end() const { return TopLevelLoops.end(); }
597  bool empty() const { return TopLevelLoops.empty(); }
598
599  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
600  /// block is in no loop (for example the entry node), null is returned.
601  ///
602  LoopT *getLoopFor(const BlockT *BB) const {
603    typename std::map<BlockT *, LoopT *>::const_iterator I=
604      BBMap.find(const_cast<BlockT*>(BB));
605    return I != BBMap.end() ? I->second : 0;
606  }
607
608  /// operator[] - same as getLoopFor...
609  ///
610  const LoopT *operator[](const BlockT *BB) const {
611    return getLoopFor(BB);
612  }
613
614  /// getLoopDepth - Return the loop nesting level of the specified block.  A
615  /// depth of 0 means the block is not inside any loop.
616  ///
617  unsigned getLoopDepth(const BlockT *BB) const {
618    const LoopT *L = getLoopFor(BB);
619    return L ? L->getLoopDepth() : 0;
620  }
621
622  // isLoopHeader - True if the block is a loop header node
623  bool isLoopHeader(BlockT *BB) const {
624    const LoopT *L = getLoopFor(BB);
625    return L && L->getHeader() == BB;
626  }
627
628  /// removeLoop - This removes the specified top-level loop from this loop info
629  /// object.  The loop is not deleted, as it will presumably be inserted into
630  /// another loop.
631  LoopT *removeLoop(iterator I) {
632    assert(I != end() && "Cannot remove end iterator!");
633    LoopT *L = *I;
634    assert(L->getParentLoop() == 0 && "Not a top-level loop!");
635    TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
636    return L;
637  }
638
639  /// changeLoopFor - Change the top-level loop that contains BB to the
640  /// specified loop.  This should be used by transformations that restructure
641  /// the loop hierarchy tree.
642  void changeLoopFor(BlockT *BB, LoopT *L) {
643    LoopT *&OldLoop = BBMap[BB];
644    assert(OldLoop && "Block not in a loop yet!");
645    OldLoop = L;
646  }
647
648  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
649  /// list with the indicated loop.
650  void changeTopLevelLoop(LoopT *OldLoop,
651                          LoopT *NewLoop) {
652    typename std::vector<LoopT *>::iterator I =
653                 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
654    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
655    *I = NewLoop;
656    assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
657           "Loops already embedded into a subloop!");
658  }
659
660  /// addTopLevelLoop - This adds the specified loop to the collection of
661  /// top-level loops.
662  void addTopLevelLoop(LoopT *New) {
663    assert(New->getParentLoop() == 0 && "Loop already in subloop!");
664    TopLevelLoops.push_back(New);
665  }
666
667  /// removeBlock - This method completely removes BB from all data structures,
668  /// including all of the Loop objects it is nested in and our mapping from
669  /// BasicBlocks to loops.
670  void removeBlock(BlockT *BB) {
671    typename std::map<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
672    if (I != BBMap.end()) {
673      for (LoopT *L = I->second; L; L = L->getParentLoop())
674        L->removeBlockFromLoop(BB);
675
676      BBMap.erase(I);
677    }
678  }
679
680  // Internals
681
682  static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
683                                      const LoopT *ParentLoop) {
684    if (SubLoop == 0) return true;
685    if (SubLoop == ParentLoop) return false;
686    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
687  }
688
689  void Calculate(DominatorTreeBase<BlockT> &DT) {
690    BlockT *RootNode = DT.getRootNode()->getBlock();
691
692    for (df_iterator<BlockT*> NI = df_begin(RootNode),
693           NE = df_end(RootNode); NI != NE; ++NI)
694      if (LoopT *L = ConsiderForLoop(*NI, DT))
695        TopLevelLoops.push_back(L);
696  }
697
698  LoopT *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
699    if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node?
700
701    std::vector<BlockT *> TodoStack;
702
703    // Scan the predecessors of BB, checking to see if BB dominates any of
704    // them.  This identifies backedges which target this node...
705    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
706    for (typename InvBlockTraits::ChildIteratorType I =
707         InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
708         I != E; ++I)
709      if (DT.dominates(BB, *I))   // If BB dominates it's predecessor...
710        TodoStack.push_back(*I);
711
712    if (TodoStack.empty()) return 0;  // No backedges to this block...
713
714    // Create a new loop to represent this basic block...
715    LoopT *L = new LoopT(BB);
716    BBMap[BB] = L;
717
718    BlockT *EntryBlock = BB->getParent()->begin();
719
720    while (!TodoStack.empty()) {  // Process all the nodes in the loop
721      BlockT *X = TodoStack.back();
722      TodoStack.pop_back();
723
724      if (!L->contains(X) &&         // As of yet unprocessed??
725          DT.dominates(EntryBlock, X)) {   // X is reachable from entry block?
726        // Check to see if this block already belongs to a loop.  If this occurs
727        // then we have a case where a loop that is supposed to be a child of
728        // the current loop was processed before the current loop.  When this
729        // occurs, this child loop gets added to a part of the current loop,
730        // making it a sibling to the current loop.  We have to reparent this
731        // loop.
732        if (LoopT *SubLoop =
733            const_cast<LoopT *>(getLoopFor(X)))
734          if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
735            // Remove the subloop from it's current parent...
736            assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
737            LoopT *SLP = SubLoop->ParentLoop;  // SubLoopParent
738            typename std::vector<LoopT *>::iterator I =
739              std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
740            assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
741            SLP->SubLoops.erase(I);   // Remove from parent...
742
743            // Add the subloop to THIS loop...
744            SubLoop->ParentLoop = L;
745            L->SubLoops.push_back(SubLoop);
746          }
747
748        // Normal case, add the block to our loop...
749        L->Blocks.push_back(X);
750
751        typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
752
753        // Add all of the predecessors of X to the end of the work stack...
754        TodoStack.insert(TodoStack.end(), InvBlockTraits::child_begin(X),
755                         InvBlockTraits::child_end(X));
756      }
757    }
758
759    // If there are any loops nested within this loop, create them now!
760    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
761         E = L->Blocks.end(); I != E; ++I)
762      if (LoopT *NewLoop = ConsiderForLoop(*I, DT)) {
763        L->SubLoops.push_back(NewLoop);
764        NewLoop->ParentLoop = L;
765      }
766
767    // Add the basic blocks that comprise this loop to the BBMap so that this
768    // loop can be found for them.
769    //
770    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
771           E = L->Blocks.end(); I != E; ++I) {
772      typename std::map<BlockT*, LoopT *>::iterator BBMI = BBMap.find(*I);
773      if (BBMI == BBMap.end())                       // Not in map yet...
774        BBMap.insert(BBMI, std::make_pair(*I, L));   // Must be at this level
775    }
776
777    // Now that we have a list of all of the child loops of this loop, check to
778    // see if any of them should actually be nested inside of each other.  We
779    // can accidentally pull loops our of their parents, so we must make sure to
780    // organize the loop nests correctly now.
781    {
782      std::map<BlockT *, LoopT *> ContainingLoops;
783      for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
784        LoopT *Child = L->SubLoops[i];
785        assert(Child->getParentLoop() == L && "Not proper child loop?");
786
787        if (LoopT *ContainingLoop = ContainingLoops[Child->getHeader()]) {
788          // If there is already a loop which contains this loop, move this loop
789          // into the containing loop.
790          MoveSiblingLoopInto(Child, ContainingLoop);
791          --i;  // The loop got removed from the SubLoops list.
792        } else {
793          // This is currently considered to be a top-level loop.  Check to see
794          // if any of the contained blocks are loop headers for subloops we
795          // have already processed.
796          for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
797            LoopT *&BlockLoop = ContainingLoops[Child->Blocks[b]];
798            if (BlockLoop == 0) {   // Child block not processed yet...
799              BlockLoop = Child;
800            } else if (BlockLoop != Child) {
801              LoopT *SubLoop = BlockLoop;
802              // Reparent all of the blocks which used to belong to BlockLoops
803              for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j)
804                ContainingLoops[SubLoop->Blocks[j]] = Child;
805
806              // There is already a loop which contains this block, that means
807              // that we should reparent the loop which the block is currently
808              // considered to belong to to be a child of this loop.
809              MoveSiblingLoopInto(SubLoop, Child);
810              --i;  // We just shrunk the SubLoops list.
811            }
812          }
813        }
814      }
815    }
816
817    return L;
818  }
819
820  /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
821  /// of the NewParent Loop, instead of being a sibling of it.
822  void MoveSiblingLoopInto(LoopT *NewChild,
823                           LoopT *NewParent) {
824    LoopT *OldParent = NewChild->getParentLoop();
825    assert(OldParent && OldParent == NewParent->getParentLoop() &&
826           NewChild != NewParent && "Not sibling loops!");
827
828    // Remove NewChild from being a child of OldParent
829    typename std::vector<LoopT *>::iterator I =
830      std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
831                NewChild);
832    assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
833    OldParent->SubLoops.erase(I);   // Remove from parent's subloops list
834    NewChild->ParentLoop = 0;
835
836    InsertLoopInto(NewChild, NewParent);
837  }
838
839  /// InsertLoopInto - This inserts loop L into the specified parent loop.  If
840  /// the parent loop contains a loop which should contain L, the loop gets
841  /// inserted into L instead.
842  void InsertLoopInto(LoopT *L, LoopT *Parent) {
843    BlockT *LHeader = L->getHeader();
844    assert(Parent->contains(LHeader) &&
845           "This loop should not be inserted here!");
846
847    // Check to see if it belongs in a child loop...
848    for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
849         i != e; ++i)
850      if (Parent->SubLoops[i]->contains(LHeader)) {
851        InsertLoopInto(L, Parent->SubLoops[i]);
852        return;
853      }
854
855    // If not, insert it here!
856    Parent->SubLoops.push_back(L);
857    L->ParentLoop = Parent;
858  }
859
860  // Debugging
861
862  void print(std::ostream &OS, const Module* ) const {
863    for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
864      TopLevelLoops[i]->print(OS);
865  #if 0
866    for (std::map<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
867           E = BBMap.end(); I != E; ++I)
868      OS << "BB '" << I->first->getName() << "' level = "
869         << I->second->getLoopDepth() << "\n";
870  #endif
871  }
872};
873
874class LoopInfo : public FunctionPass {
875  LoopInfoBase<BasicBlock, Loop> LI;
876  friend class LoopBase<BasicBlock, Loop>;
877
878  void operator=(const LoopInfo &); // do not implement
879  LoopInfo(const LoopInfo &);       // do not implement
880public:
881  static char ID; // Pass identification, replacement for typeid
882
883  LoopInfo() : FunctionPass(&ID) {}
884
885  LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
886
887  /// iterator/begin/end - The interface to the top-level loops in the current
888  /// function.
889  ///
890  typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
891  inline iterator begin() const { return LI.begin(); }
892  inline iterator end() const { return LI.end(); }
893  bool empty() const { return LI.empty(); }
894
895  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
896  /// block is in no loop (for example the entry node), null is returned.
897  ///
898  inline Loop *getLoopFor(const BasicBlock *BB) const {
899    return LI.getLoopFor(BB);
900  }
901
902  /// operator[] - same as getLoopFor...
903  ///
904  inline const Loop *operator[](const BasicBlock *BB) const {
905    return LI.getLoopFor(BB);
906  }
907
908  /// getLoopDepth - Return the loop nesting level of the specified block.  A
909  /// depth of 0 means the block is not inside any loop.
910  ///
911  inline unsigned getLoopDepth(const BasicBlock *BB) const {
912    return LI.getLoopDepth(BB);
913  }
914
915  // isLoopHeader - True if the block is a loop header node
916  inline bool isLoopHeader(BasicBlock *BB) const {
917    return LI.isLoopHeader(BB);
918  }
919
920  /// runOnFunction - Calculate the natural loop information.
921  ///
922  virtual bool runOnFunction(Function &F);
923
924  virtual void releaseMemory() { LI.releaseMemory(); }
925
926  virtual void print(std::ostream &O, const Module* M = 0) const {
927    LI.print(O, M);
928  }
929
930  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
931
932  /// removeLoop - This removes the specified top-level loop from this loop info
933  /// object.  The loop is not deleted, as it will presumably be inserted into
934  /// another loop.
935  inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
936
937  /// changeLoopFor - Change the top-level loop that contains BB to the
938  /// specified loop.  This should be used by transformations that restructure
939  /// the loop hierarchy tree.
940  inline void changeLoopFor(BasicBlock *BB, Loop *L) {
941    LI.changeLoopFor(BB, L);
942  }
943
944  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
945  /// list with the indicated loop.
946  inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
947    LI.changeTopLevelLoop(OldLoop, NewLoop);
948  }
949
950  /// addTopLevelLoop - This adds the specified loop to the collection of
951  /// top-level loops.
952  inline void addTopLevelLoop(Loop *New) {
953    LI.addTopLevelLoop(New);
954  }
955
956  /// removeBlock - This method completely removes BB from all data structures,
957  /// including all of the Loop objects it is nested in and our mapping from
958  /// BasicBlocks to loops.
959  void removeBlock(BasicBlock *BB) {
960    LI.removeBlock(BB);
961  }
962
963  static bool isNotAlreadyContainedIn(const Loop *SubLoop,
964                                      const Loop *ParentLoop) {
965    return
966      LoopInfoBase<BasicBlock, Loop>::isNotAlreadyContainedIn(SubLoop,
967                                                              ParentLoop);
968  }
969};
970
971
972// Allow clients to walk the list of nested loops...
973template <> struct GraphTraits<const Loop*> {
974  typedef const Loop NodeType;
975  typedef LoopInfo::iterator ChildIteratorType;
976
977  static NodeType *getEntryNode(const Loop *L) { return L; }
978  static inline ChildIteratorType child_begin(NodeType *N) {
979    return N->begin();
980  }
981  static inline ChildIteratorType child_end(NodeType *N) {
982    return N->end();
983  }
984};
985
986template <> struct GraphTraits<Loop*> {
987  typedef Loop NodeType;
988  typedef LoopInfo::iterator ChildIteratorType;
989
990  static NodeType *getEntryNode(Loop *L) { return L; }
991  static inline ChildIteratorType child_begin(NodeType *N) {
992    return N->begin();
993  }
994  static inline ChildIteratorType child_end(NodeType *N) {
995    return N->end();
996  }
997};
998
999template<class BlockT, class LoopT>
1000void
1001LoopBase<BlockT, LoopT>::addBasicBlockToLoop(BlockT *NewBB,
1002                                             LoopInfoBase<BlockT, LoopT> &LIB) {
1003  assert((Blocks.empty() || LIB[getHeader()] == this) &&
1004         "Incorrect LI specified for this loop!");
1005  assert(NewBB && "Cannot add a null basic block to the loop!");
1006  assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
1007
1008  LoopT *L = static_cast<LoopT *>(this);
1009
1010  // Add the loop mapping to the LoopInfo object...
1011  LIB.BBMap[NewBB] = L;
1012
1013  // Add the basic block to this loop and all parent loops...
1014  while (L) {
1015    L->Blocks.push_back(NewBB);
1016    L = L->getParentLoop();
1017  }
1018}
1019
1020} // End llvm namespace
1021
1022#endif
1023