LoopInfo.h revision b14bc1f6f82c7f650226f39ed0256d8189eb2a1b
1//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  A natural loop
12// has exactly one entry-point, which is called the header. Note that natural
13// loops may actually be several loops that share the same header node.
14//
15// This analysis calculates the nesting structure of loops in a function.  For
16// each natural loop identified, this analysis identifies natural loops
17// contained entirely within the loop and the basic blocks the make up the loop.
18//
19// It can calculate on the fly various bits of information, for example:
20//
21//  * whether there is a preheader for the loop
22//  * the number of back edges to the header
23//  * whether or not a particular block branches out of the loop
24//  * the successor blocks of the loop
25//  * the loop depth
26//  * the trip count
27//  * etc...
28//
29//===----------------------------------------------------------------------===//
30
31#ifndef LLVM_ANALYSIS_LOOP_INFO_H
32#define LLVM_ANALYSIS_LOOP_INFO_H
33
34#include "llvm/Pass.h"
35#include "llvm/ADT/DepthFirstIterator.h"
36#include "llvm/ADT/GraphTraits.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/Analysis/Dominators.h"
39#include "llvm/Support/CFG.h"
40#include "llvm/Support/raw_ostream.h"
41#include <algorithm>
42
43namespace llvm {
44
45template<typename T>
46static void RemoveFromVector(std::vector<T*> &V, T *N) {
47  typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
48  assert(I != V.end() && "N is not in this list!");
49  V.erase(I);
50}
51
52class DominatorTree;
53class LoopInfo;
54class Loop;
55template<class N, class M> class LoopInfoBase;
56template<class N, class M> class LoopBase;
57
58//===----------------------------------------------------------------------===//
59/// LoopBase class - Instances of this class are used to represent loops that
60/// are detected in the flow graph
61///
62template<class BlockT, class LoopT>
63class LoopBase {
64  LoopT *ParentLoop;
65  // SubLoops - Loops contained entirely within this one.
66  std::vector<LoopT *> SubLoops;
67
68  // Blocks - The list of blocks in this loop.  First entry is the header node.
69  std::vector<BlockT*> Blocks;
70
71  // DO NOT IMPLEMENT
72  LoopBase(const LoopBase<BlockT, LoopT> &);
73  // DO NOT IMPLEMENT
74  const LoopBase<BlockT, LoopT>&operator=(const LoopBase<BlockT, LoopT> &);
75public:
76  /// Loop ctor - This creates an empty loop.
77  LoopBase() : ParentLoop(0) {}
78  ~LoopBase() {
79    for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
80      delete SubLoops[i];
81  }
82
83  /// getLoopDepth - Return the nesting level of this loop.  An outer-most
84  /// loop has depth 1, for consistency with loop depth values used for basic
85  /// blocks, where depth 0 is used for blocks not inside any loops.
86  unsigned getLoopDepth() const {
87    unsigned D = 1;
88    for (const LoopT *CurLoop = ParentLoop; CurLoop;
89         CurLoop = CurLoop->ParentLoop)
90      ++D;
91    return D;
92  }
93  BlockT *getHeader() const { return Blocks.front(); }
94  LoopT *getParentLoop() const { return ParentLoop; }
95
96  /// contains - Return true if the specified loop is contained within in
97  /// this loop.
98  ///
99  bool contains(const LoopT *L) const {
100    if (L == this) return true;
101    if (L == 0)    return false;
102    return contains(L->getParentLoop());
103  }
104
105  /// contains - Return true if the specified basic block is in this loop.
106  ///
107  bool contains(const BlockT *BB) const {
108    return std::find(block_begin(), block_end(), BB) != block_end();
109  }
110
111  /// contains - Return true if the specified instruction is in this loop.
112  ///
113  template<class InstT>
114  bool contains(const InstT *Inst) const {
115    return contains(Inst->getParent());
116  }
117
118  /// iterator/begin/end - Return the loops contained entirely within this loop.
119  ///
120  const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
121  typedef typename std::vector<LoopT *>::const_iterator iterator;
122  iterator begin() const { return SubLoops.begin(); }
123  iterator end() const { return SubLoops.end(); }
124  bool empty() const { return SubLoops.empty(); }
125
126  /// getBlocks - Get a list of the basic blocks which make up this loop.
127  ///
128  const std::vector<BlockT*> &getBlocks() const { return Blocks; }
129  typedef typename std::vector<BlockT*>::const_iterator block_iterator;
130  block_iterator block_begin() const { return Blocks.begin(); }
131  block_iterator block_end() const { return Blocks.end(); }
132
133  /// isLoopExiting - True if terminator in the block can branch to another
134  /// block that is outside of the current loop.
135  ///
136  bool isLoopExiting(const BlockT *BB) const {
137    typedef GraphTraits<BlockT*> BlockTraits;
138    for (typename BlockTraits::ChildIteratorType SI =
139         BlockTraits::child_begin(const_cast<BlockT*>(BB)),
140         SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
141      if (!contains(*SI))
142        return true;
143    }
144    return false;
145  }
146
147  /// getNumBackEdges - Calculate the number of back edges to the loop header
148  ///
149  unsigned getNumBackEdges() const {
150    unsigned NumBackEdges = 0;
151    BlockT *H = getHeader();
152
153    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
154    for (typename InvBlockTraits::ChildIteratorType I =
155         InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
156         E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
157      if (contains(*I))
158        ++NumBackEdges;
159
160    return NumBackEdges;
161  }
162
163  //===--------------------------------------------------------------------===//
164  // APIs for simple analysis of the loop.
165  //
166  // Note that all of these methods can fail on general loops (ie, there may not
167  // be a preheader, etc).  For best success, the loop simplification and
168  // induction variable canonicalization pass should be used to normalize loops
169  // for easy analysis.  These methods assume canonical loops.
170
171  /// getExitingBlocks - Return all blocks inside the loop that have successors
172  /// outside of the loop.  These are the blocks _inside of the current loop_
173  /// which branch out.  The returned list is always unique.
174  ///
175  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
176    // Sort the blocks vector so that we can use binary search to do quick
177    // lookups.
178    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
179    std::sort(LoopBBs.begin(), LoopBBs.end());
180
181    typedef GraphTraits<BlockT*> BlockTraits;
182    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
183      for (typename BlockTraits::ChildIteratorType I =
184          BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
185          I != E; ++I)
186        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
187          // Not in current loop? It must be an exit block.
188          ExitingBlocks.push_back(*BI);
189          break;
190        }
191  }
192
193  /// getExitingBlock - If getExitingBlocks would return exactly one block,
194  /// return that block. Otherwise return null.
195  BlockT *getExitingBlock() const {
196    SmallVector<BlockT*, 8> ExitingBlocks;
197    getExitingBlocks(ExitingBlocks);
198    if (ExitingBlocks.size() == 1)
199      return ExitingBlocks[0];
200    return 0;
201  }
202
203  /// getExitBlocks - Return all of the successor blocks of this loop.  These
204  /// are the blocks _outside of the current loop_ which are branched to.
205  ///
206  void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
207    // Sort the blocks vector so that we can use binary search to do quick
208    // lookups.
209    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
210    std::sort(LoopBBs.begin(), LoopBBs.end());
211
212    typedef GraphTraits<BlockT*> BlockTraits;
213    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
214      for (typename BlockTraits::ChildIteratorType I =
215           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
216           I != E; ++I)
217        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
218          // Not in current loop? It must be an exit block.
219          ExitBlocks.push_back(*I);
220  }
221
222  /// getExitBlock - If getExitBlocks would return exactly one block,
223  /// return that block. Otherwise return null.
224  BlockT *getExitBlock() const {
225    SmallVector<BlockT*, 8> ExitBlocks;
226    getExitBlocks(ExitBlocks);
227    if (ExitBlocks.size() == 1)
228      return ExitBlocks[0];
229    return 0;
230  }
231
232  /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
233  typedef std::pair<const BlockT*,const BlockT*> Edge;
234  void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const {
235    // Sort the blocks vector so that we can use binary search to do quick
236    // lookups.
237    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
238    std::sort(LoopBBs.begin(), LoopBBs.end());
239
240    typedef GraphTraits<BlockT*> BlockTraits;
241    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
242      for (typename BlockTraits::ChildIteratorType I =
243           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
244           I != E; ++I)
245        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
246          // Not in current loop? It must be an exit block.
247          ExitEdges.push_back(std::make_pair(*BI, *I));
248  }
249
250  /// getLoopPreheader - If there is a preheader for this loop, return it.  A
251  /// loop has a preheader if there is only one edge to the header of the loop
252  /// from outside of the loop.  If this is the case, the block branching to the
253  /// header of the loop is the preheader node.
254  ///
255  /// This method returns null if there is no preheader for the loop.
256  ///
257  BlockT *getLoopPreheader() const {
258    // Keep track of nodes outside the loop branching to the header...
259    BlockT *Out = 0;
260
261    // Loop over the predecessors of the header node...
262    BlockT *Header = getHeader();
263    typedef GraphTraits<BlockT*> BlockTraits;
264    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
265    for (typename InvBlockTraits::ChildIteratorType PI =
266         InvBlockTraits::child_begin(Header),
267         PE = InvBlockTraits::child_end(Header); PI != PE; ++PI)
268      if (!contains(*PI)) {     // If the block is not in the loop...
269        if (Out && Out != *PI)
270          return 0;             // Multiple predecessors outside the loop
271        Out = *PI;
272      }
273
274    // Make sure there is only one exit out of the preheader.
275    assert(Out && "Header of loop has no predecessors from outside loop?");
276    typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
277    ++SI;
278    if (SI != BlockTraits::child_end(Out))
279      return 0;  // Multiple exits from the block, must not be a preheader.
280
281    // If there is exactly one preheader, return it.  If there was zero, then
282    // Out is still null.
283    return Out;
284  }
285
286  /// getLoopLatch - If there is a single latch block for this loop, return it.
287  /// A latch block is a block that contains a branch back to the header.
288  BlockT *getLoopLatch() const {
289    BlockT *Header = getHeader();
290    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
291    typename InvBlockTraits::ChildIteratorType PI =
292                                            InvBlockTraits::child_begin(Header);
293    typename InvBlockTraits::ChildIteratorType PE =
294                                              InvBlockTraits::child_end(Header);
295    BlockT *Latch = 0;
296    for (; PI != PE; ++PI)
297      if (contains(*PI)) {
298        if (Latch) return 0;
299        Latch = *PI;
300      }
301
302    return Latch;
303  }
304
305  //===--------------------------------------------------------------------===//
306  // APIs for updating loop information after changing the CFG
307  //
308
309  /// addBasicBlockToLoop - This method is used by other analyses to update loop
310  /// information.  NewBB is set to be a new member of the current loop.
311  /// Because of this, it is added as a member of all parent loops, and is added
312  /// to the specified LoopInfo object as being in the current basic block.  It
313  /// is not valid to replace the loop header with this method.
314  ///
315  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
316
317  /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
318  /// the OldChild entry in our children list with NewChild, and updates the
319  /// parent pointer of OldChild to be null and the NewChild to be this loop.
320  /// This updates the loop depth of the new child.
321  void replaceChildLoopWith(LoopT *OldChild,
322                            LoopT *NewChild) {
323    assert(OldChild->ParentLoop == this && "This loop is already broken!");
324    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
325    typename std::vector<LoopT *>::iterator I =
326                          std::find(SubLoops.begin(), SubLoops.end(), OldChild);
327    assert(I != SubLoops.end() && "OldChild not in loop!");
328    *I = NewChild;
329    OldChild->ParentLoop = 0;
330    NewChild->ParentLoop = static_cast<LoopT *>(this);
331  }
332
333  /// addChildLoop - Add the specified loop to be a child of this loop.  This
334  /// updates the loop depth of the new child.
335  ///
336  void addChildLoop(LoopT *NewChild) {
337    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
338    NewChild->ParentLoop = static_cast<LoopT *>(this);
339    SubLoops.push_back(NewChild);
340  }
341
342  /// removeChildLoop - This removes the specified child from being a subloop of
343  /// this loop.  The loop is not deleted, as it will presumably be inserted
344  /// into another loop.
345  LoopT *removeChildLoop(iterator I) {
346    assert(I != SubLoops.end() && "Cannot remove end iterator!");
347    LoopT *Child = *I;
348    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
349    SubLoops.erase(SubLoops.begin()+(I-begin()));
350    Child->ParentLoop = 0;
351    return Child;
352  }
353
354  /// addBlockEntry - This adds a basic block directly to the basic block list.
355  /// This should only be used by transformations that create new loops.  Other
356  /// transformations should use addBasicBlockToLoop.
357  void addBlockEntry(BlockT *BB) {
358    Blocks.push_back(BB);
359  }
360
361  /// moveToHeader - This method is used to move BB (which must be part of this
362  /// loop) to be the loop header of the loop (the block that dominates all
363  /// others).
364  void moveToHeader(BlockT *BB) {
365    if (Blocks[0] == BB) return;
366    for (unsigned i = 0; ; ++i) {
367      assert(i != Blocks.size() && "Loop does not contain BB!");
368      if (Blocks[i] == BB) {
369        Blocks[i] = Blocks[0];
370        Blocks[0] = BB;
371        return;
372      }
373    }
374  }
375
376  /// removeBlockFromLoop - This removes the specified basic block from the
377  /// current loop, updating the Blocks as appropriate.  This does not update
378  /// the mapping in the LoopInfo class.
379  void removeBlockFromLoop(BlockT *BB) {
380    RemoveFromVector(Blocks, BB);
381  }
382
383  /// verifyLoop - Verify loop structure
384  void verifyLoop() const {
385#ifndef NDEBUG
386    assert(!Blocks.empty() && "Loop header is missing");
387
388    // Sort the blocks vector so that we can use binary search to do quick
389    // lookups.
390    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
391    std::sort(LoopBBs.begin(), LoopBBs.end());
392
393    // Check the individual blocks.
394    for (block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
395      BlockT *BB = *I;
396      bool HasInsideLoopSuccs = false;
397      bool HasInsideLoopPreds = false;
398      SmallVector<BlockT *, 2> OutsideLoopPreds;
399
400      typedef GraphTraits<BlockT*> BlockTraits;
401      for (typename BlockTraits::ChildIteratorType SI =
402           BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
403           SI != SE; ++SI)
404        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *SI)) {
405          HasInsideLoopSuccs = true;
406          break;
407        }
408      typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
409      for (typename InvBlockTraits::ChildIteratorType PI =
410           InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
411           PI != PE; ++PI) {
412        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *PI))
413          HasInsideLoopPreds = true;
414        else
415          OutsideLoopPreds.push_back(*PI);
416      }
417
418      if (BB == getHeader()) {
419        assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
420      } else if (!OutsideLoopPreds.empty()) {
421        // A non-header loop shouldn't be reachable from outside the loop,
422        // though it is permitted if the predecessor is not itself actually
423        // reachable.
424        BlockT *EntryBB = BB->getParent()->begin();
425        for (df_iterator<BlockT *> NI = df_begin(EntryBB),
426             NE = df_end(EntryBB); NI != NE; ++NI)
427          for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
428            assert(*NI != OutsideLoopPreds[i] &&
429                   "Loop has multiple entry points!");
430      }
431      assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
432      assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
433      assert(BB != getHeader()->getParent()->begin() &&
434             "Loop contains function entry block!");
435    }
436
437    // Check the subloops.
438    for (iterator I = begin(), E = end(); I != E; ++I)
439      // Each block in each subloop should be contained within this loop.
440      for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
441           BI != BE; ++BI) {
442        assert(std::binary_search(LoopBBs.begin(), LoopBBs.end(), *BI) &&
443               "Loop does not contain all the blocks of a subloop!");
444      }
445
446    // Check the parent loop pointer.
447    if (ParentLoop) {
448      assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
449               ParentLoop->end() &&
450             "Loop is not a subloop of its parent!");
451    }
452#endif
453  }
454
455  /// verifyLoop - Verify loop structure of this loop and all nested loops.
456  void verifyLoopNest() const {
457    // Verify this loop.
458    verifyLoop();
459    // Verify the subloops.
460    for (iterator I = begin(), E = end(); I != E; ++I)
461      (*I)->verifyLoopNest();
462  }
463
464  void print(raw_ostream &OS, unsigned Depth = 0) const {
465    OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
466       << " containing: ";
467
468    for (unsigned i = 0; i < getBlocks().size(); ++i) {
469      if (i) OS << ",";
470      BlockT *BB = getBlocks()[i];
471      WriteAsOperand(OS, BB, false);
472      if (BB == getHeader())    OS << "<header>";
473      if (BB == getLoopLatch()) OS << "<latch>";
474      if (isLoopExiting(BB))    OS << "<exiting>";
475    }
476    OS << "\n";
477
478    for (iterator I = begin(), E = end(); I != E; ++I)
479      (*I)->print(OS, Depth+2);
480  }
481
482protected:
483  friend class LoopInfoBase<BlockT, LoopT>;
484  explicit LoopBase(BlockT *BB) : ParentLoop(0) {
485    Blocks.push_back(BB);
486  }
487};
488
489class Loop : public LoopBase<BasicBlock, Loop> {
490public:
491  Loop() {}
492
493  /// isLoopInvariant - Return true if the specified value is loop invariant
494  ///
495  bool isLoopInvariant(Value *V) const;
496
497  /// isLoopInvariant - Return true if the specified instruction is
498  /// loop-invariant.
499  ///
500  bool isLoopInvariant(Instruction *I) const;
501
502  /// makeLoopInvariant - If the given value is an instruction inside of the
503  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
504  /// Return true if the value after any hoisting is loop invariant. This
505  /// function can be used as a slightly more aggressive replacement for
506  /// isLoopInvariant.
507  ///
508  /// If InsertPt is specified, it is the point to hoist instructions to.
509  /// If null, the terminator of the loop preheader is used.
510  ///
511  bool makeLoopInvariant(Value *V, bool &Changed,
512                         Instruction *InsertPt = 0) const;
513
514  /// makeLoopInvariant - If the given instruction is inside of the
515  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
516  /// Return true if the instruction after any hoisting is loop invariant. This
517  /// function can be used as a slightly more aggressive replacement for
518  /// isLoopInvariant.
519  ///
520  /// If InsertPt is specified, it is the point to hoist instructions to.
521  /// If null, the terminator of the loop preheader is used.
522  ///
523  bool makeLoopInvariant(Instruction *I, bool &Changed,
524                         Instruction *InsertPt = 0) const;
525
526  /// getCanonicalInductionVariable - Check to see if the loop has a canonical
527  /// induction variable: an integer recurrence that starts at 0 and increments
528  /// by one each time through the loop.  If so, return the phi node that
529  /// corresponds to it.
530  ///
531  /// The IndVarSimplify pass transforms loops to have a canonical induction
532  /// variable.
533  ///
534  PHINode *getCanonicalInductionVariable() const;
535
536  /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
537  /// the canonical induction variable value for the "next" iteration of the
538  /// loop.  This always succeeds if getCanonicalInductionVariable succeeds.
539  ///
540  Instruction *getCanonicalInductionVariableIncrement() const;
541
542  /// getTripCount - Return a loop-invariant LLVM value indicating the number of
543  /// times the loop will be executed.  Note that this means that the backedge
544  /// of the loop executes N-1 times.  If the trip-count cannot be determined,
545  /// this returns null.
546  ///
547  /// The IndVarSimplify pass transforms loops to have a form that this
548  /// function easily understands.
549  ///
550  Value *getTripCount() const;
551
552  /// getSmallConstantTripCount - Returns the trip count of this loop as a
553  /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
554  /// of not constant. Will also return 0 if the trip count is very large
555  /// (>= 2^32)
556  ///
557  /// The IndVarSimplify pass transforms loops to have a form that this
558  /// function easily understands.
559  ///
560  unsigned getSmallConstantTripCount() const;
561
562  /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
563  /// trip count of this loop as a normal unsigned value, if possible. This
564  /// means that the actual trip count is always a multiple of the returned
565  /// value (don't forget the trip count could very well be zero as well!).
566  ///
567  /// Returns 1 if the trip count is unknown or not guaranteed to be the
568  /// multiple of a constant (which is also the case if the trip count is simply
569  /// constant, use getSmallConstantTripCount for that case), Will also return 1
570  /// if the trip count is very large (>= 2^32).
571  unsigned getSmallConstantTripMultiple() const;
572
573  /// isLCSSAForm - Return true if the Loop is in LCSSA form
574  bool isLCSSAForm() const;
575
576  /// isLoopSimplifyForm - Return true if the Loop is in the form that
577  /// the LoopSimplify form transforms loops to, which is sometimes called
578  /// normal form.
579  bool isLoopSimplifyForm() const;
580
581  /// hasDedicatedExits - Return true if no exit block for the loop
582  /// has a predecessor that is outside the loop.
583  bool hasDedicatedExits() const;
584
585  /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
586  /// These are the blocks _outside of the current loop_ which are branched to.
587  /// This assumes that loop exits are in canonical form.
588  ///
589  void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
590
591  /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
592  /// block, return that block. Otherwise return null.
593  BasicBlock *getUniqueExitBlock() const;
594
595  void dump() const;
596
597private:
598  friend class LoopInfoBase<BasicBlock, Loop>;
599  explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
600};
601
602//===----------------------------------------------------------------------===//
603/// LoopInfo - This class builds and contains all of the top level loop
604/// structures in the specified function.
605///
606
607template<class BlockT, class LoopT>
608class LoopInfoBase {
609  // BBMap - Mapping of basic blocks to the inner most loop they occur in
610  std::map<BlockT *, LoopT *> BBMap;
611  std::vector<LoopT *> TopLevelLoops;
612  friend class LoopBase<BlockT, LoopT>;
613
614  void operator=(const LoopInfoBase &); // do not implement
615  LoopInfoBase(const LoopInfo &);       // do not implement
616public:
617  LoopInfoBase() { }
618  ~LoopInfoBase() { releaseMemory(); }
619
620  void releaseMemory() {
621    for (typename std::vector<LoopT *>::iterator I =
622         TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
623      delete *I;   // Delete all of the loops...
624
625    BBMap.clear();                           // Reset internal state of analysis
626    TopLevelLoops.clear();
627  }
628
629  /// iterator/begin/end - The interface to the top-level loops in the current
630  /// function.
631  ///
632  typedef typename std::vector<LoopT *>::const_iterator iterator;
633  iterator begin() const { return TopLevelLoops.begin(); }
634  iterator end() const { return TopLevelLoops.end(); }
635  bool empty() const { return TopLevelLoops.empty(); }
636
637  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
638  /// block is in no loop (for example the entry node), null is returned.
639  ///
640  LoopT *getLoopFor(const BlockT *BB) const {
641    typename std::map<BlockT *, LoopT *>::const_iterator I=
642      BBMap.find(const_cast<BlockT*>(BB));
643    return I != BBMap.end() ? I->second : 0;
644  }
645
646  /// operator[] - same as getLoopFor...
647  ///
648  const LoopT *operator[](const BlockT *BB) const {
649    return getLoopFor(BB);
650  }
651
652  /// getLoopDepth - Return the loop nesting level of the specified block.  A
653  /// depth of 0 means the block is not inside any loop.
654  ///
655  unsigned getLoopDepth(const BlockT *BB) const {
656    const LoopT *L = getLoopFor(BB);
657    return L ? L->getLoopDepth() : 0;
658  }
659
660  // isLoopHeader - True if the block is a loop header node
661  bool isLoopHeader(BlockT *BB) const {
662    const LoopT *L = getLoopFor(BB);
663    return L && L->getHeader() == BB;
664  }
665
666  /// removeLoop - This removes the specified top-level loop from this loop info
667  /// object.  The loop is not deleted, as it will presumably be inserted into
668  /// another loop.
669  LoopT *removeLoop(iterator I) {
670    assert(I != end() && "Cannot remove end iterator!");
671    LoopT *L = *I;
672    assert(L->getParentLoop() == 0 && "Not a top-level loop!");
673    TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
674    return L;
675  }
676
677  /// changeLoopFor - Change the top-level loop that contains BB to the
678  /// specified loop.  This should be used by transformations that restructure
679  /// the loop hierarchy tree.
680  void changeLoopFor(BlockT *BB, LoopT *L) {
681    LoopT *&OldLoop = BBMap[BB];
682    assert(OldLoop && "Block not in a loop yet!");
683    OldLoop = L;
684  }
685
686  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
687  /// list with the indicated loop.
688  void changeTopLevelLoop(LoopT *OldLoop,
689                          LoopT *NewLoop) {
690    typename std::vector<LoopT *>::iterator I =
691                 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
692    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
693    *I = NewLoop;
694    assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
695           "Loops already embedded into a subloop!");
696  }
697
698  /// addTopLevelLoop - This adds the specified loop to the collection of
699  /// top-level loops.
700  void addTopLevelLoop(LoopT *New) {
701    assert(New->getParentLoop() == 0 && "Loop already in subloop!");
702    TopLevelLoops.push_back(New);
703  }
704
705  /// removeBlock - This method completely removes BB from all data structures,
706  /// including all of the Loop objects it is nested in and our mapping from
707  /// BasicBlocks to loops.
708  void removeBlock(BlockT *BB) {
709    typename std::map<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
710    if (I != BBMap.end()) {
711      for (LoopT *L = I->second; L; L = L->getParentLoop())
712        L->removeBlockFromLoop(BB);
713
714      BBMap.erase(I);
715    }
716  }
717
718  // Internals
719
720  static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
721                                      const LoopT *ParentLoop) {
722    if (SubLoop == 0) return true;
723    if (SubLoop == ParentLoop) return false;
724    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
725  }
726
727  void Calculate(DominatorTreeBase<BlockT> &DT) {
728    BlockT *RootNode = DT.getRootNode()->getBlock();
729
730    for (df_iterator<BlockT*> NI = df_begin(RootNode),
731           NE = df_end(RootNode); NI != NE; ++NI)
732      if (LoopT *L = ConsiderForLoop(*NI, DT))
733        TopLevelLoops.push_back(L);
734  }
735
736  LoopT *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
737    if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node?
738
739    std::vector<BlockT *> TodoStack;
740
741    // Scan the predecessors of BB, checking to see if BB dominates any of
742    // them.  This identifies backedges which target this node...
743    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
744    for (typename InvBlockTraits::ChildIteratorType I =
745         InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
746         I != E; ++I)
747      if (DT.dominates(BB, *I))   // If BB dominates its predecessor...
748        TodoStack.push_back(*I);
749
750    if (TodoStack.empty()) return 0;  // No backedges to this block...
751
752    // Create a new loop to represent this basic block...
753    LoopT *L = new LoopT(BB);
754    BBMap[BB] = L;
755
756    BlockT *EntryBlock = BB->getParent()->begin();
757
758    while (!TodoStack.empty()) {  // Process all the nodes in the loop
759      BlockT *X = TodoStack.back();
760      TodoStack.pop_back();
761
762      if (!L->contains(X) &&         // As of yet unprocessed??
763          DT.dominates(EntryBlock, X)) {   // X is reachable from entry block?
764        // Check to see if this block already belongs to a loop.  If this occurs
765        // then we have a case where a loop that is supposed to be a child of
766        // the current loop was processed before the current loop.  When this
767        // occurs, this child loop gets added to a part of the current loop,
768        // making it a sibling to the current loop.  We have to reparent this
769        // loop.
770        if (LoopT *SubLoop =
771            const_cast<LoopT *>(getLoopFor(X)))
772          if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
773            // Remove the subloop from its current parent...
774            assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
775            LoopT *SLP = SubLoop->ParentLoop;  // SubLoopParent
776            typename std::vector<LoopT *>::iterator I =
777              std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
778            assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
779            SLP->SubLoops.erase(I);   // Remove from parent...
780
781            // Add the subloop to THIS loop...
782            SubLoop->ParentLoop = L;
783            L->SubLoops.push_back(SubLoop);
784          }
785
786        // Normal case, add the block to our loop...
787        L->Blocks.push_back(X);
788
789        typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
790
791        // Add all of the predecessors of X to the end of the work stack...
792        TodoStack.insert(TodoStack.end(), InvBlockTraits::child_begin(X),
793                         InvBlockTraits::child_end(X));
794      }
795    }
796
797    // If there are any loops nested within this loop, create them now!
798    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
799         E = L->Blocks.end(); I != E; ++I)
800      if (LoopT *NewLoop = ConsiderForLoop(*I, DT)) {
801        L->SubLoops.push_back(NewLoop);
802        NewLoop->ParentLoop = L;
803      }
804
805    // Add the basic blocks that comprise this loop to the BBMap so that this
806    // loop can be found for them.
807    //
808    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
809           E = L->Blocks.end(); I != E; ++I)
810      BBMap.insert(std::make_pair(*I, L));
811
812    // Now that we have a list of all of the child loops of this loop, check to
813    // see if any of them should actually be nested inside of each other.  We
814    // can accidentally pull loops our of their parents, so we must make sure to
815    // organize the loop nests correctly now.
816    {
817      std::map<BlockT *, LoopT *> ContainingLoops;
818      for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
819        LoopT *Child = L->SubLoops[i];
820        assert(Child->getParentLoop() == L && "Not proper child loop?");
821
822        if (LoopT *ContainingLoop = ContainingLoops[Child->getHeader()]) {
823          // If there is already a loop which contains this loop, move this loop
824          // into the containing loop.
825          MoveSiblingLoopInto(Child, ContainingLoop);
826          --i;  // The loop got removed from the SubLoops list.
827        } else {
828          // This is currently considered to be a top-level loop.  Check to see
829          // if any of the contained blocks are loop headers for subloops we
830          // have already processed.
831          for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
832            LoopT *&BlockLoop = ContainingLoops[Child->Blocks[b]];
833            if (BlockLoop == 0) {   // Child block not processed yet...
834              BlockLoop = Child;
835            } else if (BlockLoop != Child) {
836              LoopT *SubLoop = BlockLoop;
837              // Reparent all of the blocks which used to belong to BlockLoops
838              for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j)
839                ContainingLoops[SubLoop->Blocks[j]] = Child;
840
841              // There is already a loop which contains this block, that means
842              // that we should reparent the loop which the block is currently
843              // considered to belong to to be a child of this loop.
844              MoveSiblingLoopInto(SubLoop, Child);
845              --i;  // We just shrunk the SubLoops list.
846            }
847          }
848        }
849      }
850    }
851
852    return L;
853  }
854
855  /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
856  /// of the NewParent Loop, instead of being a sibling of it.
857  void MoveSiblingLoopInto(LoopT *NewChild,
858                           LoopT *NewParent) {
859    LoopT *OldParent = NewChild->getParentLoop();
860    assert(OldParent && OldParent == NewParent->getParentLoop() &&
861           NewChild != NewParent && "Not sibling loops!");
862
863    // Remove NewChild from being a child of OldParent
864    typename std::vector<LoopT *>::iterator I =
865      std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
866                NewChild);
867    assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
868    OldParent->SubLoops.erase(I);   // Remove from parent's subloops list
869    NewChild->ParentLoop = 0;
870
871    InsertLoopInto(NewChild, NewParent);
872  }
873
874  /// InsertLoopInto - This inserts loop L into the specified parent loop.  If
875  /// the parent loop contains a loop which should contain L, the loop gets
876  /// inserted into L instead.
877  void InsertLoopInto(LoopT *L, LoopT *Parent) {
878    BlockT *LHeader = L->getHeader();
879    assert(Parent->contains(LHeader) &&
880           "This loop should not be inserted here!");
881
882    // Check to see if it belongs in a child loop...
883    for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
884         i != e; ++i)
885      if (Parent->SubLoops[i]->contains(LHeader)) {
886        InsertLoopInto(L, Parent->SubLoops[i]);
887        return;
888      }
889
890    // If not, insert it here!
891    Parent->SubLoops.push_back(L);
892    L->ParentLoop = Parent;
893  }
894
895  // Debugging
896
897  void print(raw_ostream &OS) const {
898    for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
899      TopLevelLoops[i]->print(OS);
900  #if 0
901    for (std::map<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
902           E = BBMap.end(); I != E; ++I)
903      OS << "BB '" << I->first->getName() << "' level = "
904         << I->second->getLoopDepth() << "\n";
905  #endif
906  }
907};
908
909class LoopInfo : public FunctionPass {
910  LoopInfoBase<BasicBlock, Loop> LI;
911  friend class LoopBase<BasicBlock, Loop>;
912
913  void operator=(const LoopInfo &); // do not implement
914  LoopInfo(const LoopInfo &);       // do not implement
915public:
916  static char ID; // Pass identification, replacement for typeid
917
918  LoopInfo() : FunctionPass(&ID) {}
919
920  LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
921
922  /// iterator/begin/end - The interface to the top-level loops in the current
923  /// function.
924  ///
925  typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
926  inline iterator begin() const { return LI.begin(); }
927  inline iterator end() const { return LI.end(); }
928  bool empty() const { return LI.empty(); }
929
930  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
931  /// block is in no loop (for example the entry node), null is returned.
932  ///
933  inline Loop *getLoopFor(const BasicBlock *BB) const {
934    return LI.getLoopFor(BB);
935  }
936
937  /// operator[] - same as getLoopFor...
938  ///
939  inline const Loop *operator[](const BasicBlock *BB) const {
940    return LI.getLoopFor(BB);
941  }
942
943  /// getLoopDepth - Return the loop nesting level of the specified block.  A
944  /// depth of 0 means the block is not inside any loop.
945  ///
946  inline unsigned getLoopDepth(const BasicBlock *BB) const {
947    return LI.getLoopDepth(BB);
948  }
949
950  // isLoopHeader - True if the block is a loop header node
951  inline bool isLoopHeader(BasicBlock *BB) const {
952    return LI.isLoopHeader(BB);
953  }
954
955  /// runOnFunction - Calculate the natural loop information.
956  ///
957  virtual bool runOnFunction(Function &F);
958
959  virtual void verifyAnalysis() const;
960
961  virtual void releaseMemory() { LI.releaseMemory(); }
962
963  virtual void print(raw_ostream &O, const Module* M = 0) const;
964
965  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
966
967  /// removeLoop - This removes the specified top-level loop from this loop info
968  /// object.  The loop is not deleted, as it will presumably be inserted into
969  /// another loop.
970  inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
971
972  /// changeLoopFor - Change the top-level loop that contains BB to the
973  /// specified loop.  This should be used by transformations that restructure
974  /// the loop hierarchy tree.
975  inline void changeLoopFor(BasicBlock *BB, Loop *L) {
976    LI.changeLoopFor(BB, L);
977  }
978
979  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
980  /// list with the indicated loop.
981  inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
982    LI.changeTopLevelLoop(OldLoop, NewLoop);
983  }
984
985  /// addTopLevelLoop - This adds the specified loop to the collection of
986  /// top-level loops.
987  inline void addTopLevelLoop(Loop *New) {
988    LI.addTopLevelLoop(New);
989  }
990
991  /// removeBlock - This method completely removes BB from all data structures,
992  /// including all of the Loop objects it is nested in and our mapping from
993  /// BasicBlocks to loops.
994  void removeBlock(BasicBlock *BB) {
995    LI.removeBlock(BB);
996  }
997};
998
999
1000// Allow clients to walk the list of nested loops...
1001template <> struct GraphTraits<const Loop*> {
1002  typedef const Loop NodeType;
1003  typedef LoopInfo::iterator ChildIteratorType;
1004
1005  static NodeType *getEntryNode(const Loop *L) { return L; }
1006  static inline ChildIteratorType child_begin(NodeType *N) {
1007    return N->begin();
1008  }
1009  static inline ChildIteratorType child_end(NodeType *N) {
1010    return N->end();
1011  }
1012};
1013
1014template <> struct GraphTraits<Loop*> {
1015  typedef Loop NodeType;
1016  typedef LoopInfo::iterator ChildIteratorType;
1017
1018  static NodeType *getEntryNode(Loop *L) { return L; }
1019  static inline ChildIteratorType child_begin(NodeType *N) {
1020    return N->begin();
1021  }
1022  static inline ChildIteratorType child_end(NodeType *N) {
1023    return N->end();
1024  }
1025};
1026
1027template<class BlockT, class LoopT>
1028void
1029LoopBase<BlockT, LoopT>::addBasicBlockToLoop(BlockT *NewBB,
1030                                             LoopInfoBase<BlockT, LoopT> &LIB) {
1031  assert((Blocks.empty() || LIB[getHeader()] == this) &&
1032         "Incorrect LI specified for this loop!");
1033  assert(NewBB && "Cannot add a null basic block to the loop!");
1034  assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
1035
1036  LoopT *L = static_cast<LoopT *>(this);
1037
1038  // Add the loop mapping to the LoopInfo object...
1039  LIB.BBMap[NewBB] = L;
1040
1041  // Add the basic block to this loop and all parent loops...
1042  while (L) {
1043    L->Blocks.push_back(NewBB);
1044    L = L->getParentLoop();
1045  }
1046}
1047
1048} // End llvm namespace
1049
1050#endif
1051