LoopInfo.h revision c9b1e25493b393013b28e5d457f2fb2845a4dd9f
1//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  A natural loop
12// has exactly one entry-point, which is called the header. Note that natural
13// loops may actually be several loops that share the same header node.
14//
15// This analysis calculates the nesting structure of loops in a function.  For
16// each natural loop identified, this analysis identifies natural loops
17// contained entirely within the loop and the basic blocks the make up the loop.
18//
19// It can calculate on the fly various bits of information, for example:
20//
21//  * whether there is a preheader for the loop
22//  * the number of back edges to the header
23//  * whether or not a particular block branches out of the loop
24//  * the successor blocks of the loop
25//  * the loop depth
26//  * etc...
27//
28//===----------------------------------------------------------------------===//
29
30#ifndef LLVM_ANALYSIS_LOOP_INFO_H
31#define LLVM_ANALYSIS_LOOP_INFO_H
32
33#include "llvm/Pass.h"
34#include "llvm/ADT/DenseMap.h"
35#include "llvm/ADT/DenseSet.h"
36#include "llvm/ADT/DepthFirstIterator.h"
37#include "llvm/ADT/GraphTraits.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/STLExtras.h"
40#include "llvm/Analysis/Dominators.h"
41#include "llvm/Support/CFG.h"
42#include "llvm/Support/raw_ostream.h"
43#include <algorithm>
44#include <map>
45
46namespace llvm {
47
48template<typename T>
49inline void RemoveFromVector(std::vector<T*> &V, T *N) {
50  typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
51  assert(I != V.end() && "N is not in this list!");
52  V.erase(I);
53}
54
55class DominatorTree;
56class LoopInfo;
57class Loop;
58class PHINode;
59template<class N, class M> class LoopInfoBase;
60template<class N, class M> class LoopBase;
61
62//===----------------------------------------------------------------------===//
63/// LoopBase class - Instances of this class are used to represent loops that
64/// are detected in the flow graph
65///
66template<class BlockT, class LoopT>
67class LoopBase {
68  LoopT *ParentLoop;
69  // SubLoops - Loops contained entirely within this one.
70  std::vector<LoopT *> SubLoops;
71
72  // Blocks - The list of blocks in this loop.  First entry is the header node.
73  std::vector<BlockT*> Blocks;
74
75  // DO NOT IMPLEMENT
76  LoopBase(const LoopBase<BlockT, LoopT> &);
77  // DO NOT IMPLEMENT
78  const LoopBase<BlockT, LoopT>&operator=(const LoopBase<BlockT, LoopT> &);
79public:
80  /// Loop ctor - This creates an empty loop.
81  LoopBase() : ParentLoop(0) {}
82  ~LoopBase() {
83    for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
84      delete SubLoops[i];
85  }
86
87  /// getLoopDepth - Return the nesting level of this loop.  An outer-most
88  /// loop has depth 1, for consistency with loop depth values used for basic
89  /// blocks, where depth 0 is used for blocks not inside any loops.
90  unsigned getLoopDepth() const {
91    unsigned D = 1;
92    for (const LoopT *CurLoop = ParentLoop; CurLoop;
93         CurLoop = CurLoop->ParentLoop)
94      ++D;
95    return D;
96  }
97  BlockT *getHeader() const { return Blocks.front(); }
98  LoopT *getParentLoop() const { return ParentLoop; }
99
100  /// setParentLoop is a raw interface for bypassing addChildLoop.
101  void setParentLoop(LoopT *L) { ParentLoop = L; }
102
103  /// contains - Return true if the specified loop is contained within in
104  /// this loop.
105  ///
106  bool contains(const LoopT *L) const {
107    if (L == this) return true;
108    if (L == 0)    return false;
109    return contains(L->getParentLoop());
110  }
111
112  /// contains - Return true if the specified basic block is in this loop.
113  ///
114  bool contains(const BlockT *BB) const {
115    return std::find(block_begin(), block_end(), BB) != block_end();
116  }
117
118  /// contains - Return true if the specified instruction is in this loop.
119  ///
120  template<class InstT>
121  bool contains(const InstT *Inst) const {
122    return contains(Inst->getParent());
123  }
124
125  /// iterator/begin/end - Return the loops contained entirely within this loop.
126  ///
127  const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
128  std::vector<LoopT *> &getSubLoopsVector() { return SubLoops; }
129  typedef typename std::vector<LoopT *>::const_iterator iterator;
130  typedef typename std::vector<LoopT *>::const_reverse_iterator
131    reverse_iterator;
132  iterator begin() const { return SubLoops.begin(); }
133  iterator end() const { return SubLoops.end(); }
134  reverse_iterator rbegin() const { return SubLoops.rbegin(); }
135  reverse_iterator rend() const { return SubLoops.rend(); }
136  bool empty() const { return SubLoops.empty(); }
137
138  /// getBlocks - Get a list of the basic blocks which make up this loop.
139  ///
140  const std::vector<BlockT*> &getBlocks() const { return Blocks; }
141  std::vector<BlockT*> &getBlocksVector() { return Blocks; }
142  typedef typename std::vector<BlockT*>::const_iterator block_iterator;
143  block_iterator block_begin() const { return Blocks.begin(); }
144  block_iterator block_end() const { return Blocks.end(); }
145
146  /// getNumBlocks - Get the number of blocks in this loop in constant time.
147  unsigned getNumBlocks() const {
148    return Blocks.size();
149  }
150
151  /// isLoopExiting - True if terminator in the block can branch to another
152  /// block that is outside of the current loop.
153  ///
154  bool isLoopExiting(const BlockT *BB) const {
155    typedef GraphTraits<BlockT*> BlockTraits;
156    for (typename BlockTraits::ChildIteratorType SI =
157         BlockTraits::child_begin(const_cast<BlockT*>(BB)),
158         SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
159      if (!contains(*SI))
160        return true;
161    }
162    return false;
163  }
164
165  /// getNumBackEdges - Calculate the number of back edges to the loop header
166  ///
167  unsigned getNumBackEdges() const {
168    unsigned NumBackEdges = 0;
169    BlockT *H = getHeader();
170
171    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
172    for (typename InvBlockTraits::ChildIteratorType I =
173         InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
174         E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
175      if (contains(*I))
176        ++NumBackEdges;
177
178    return NumBackEdges;
179  }
180
181  //===--------------------------------------------------------------------===//
182  // APIs for simple analysis of the loop.
183  //
184  // Note that all of these methods can fail on general loops (ie, there may not
185  // be a preheader, etc).  For best success, the loop simplification and
186  // induction variable canonicalization pass should be used to normalize loops
187  // for easy analysis.  These methods assume canonical loops.
188
189  /// getExitingBlocks - Return all blocks inside the loop that have successors
190  /// outside of the loop.  These are the blocks _inside of the current loop_
191  /// which branch out.  The returned list is always unique.
192  ///
193  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
194
195  /// getExitingBlock - If getExitingBlocks would return exactly one block,
196  /// return that block. Otherwise return null.
197  BlockT *getExitingBlock() const;
198
199  /// getExitBlocks - Return all of the successor blocks of this loop.  These
200  /// are the blocks _outside of the current loop_ which are branched to.
201  ///
202  void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const;
203
204  /// getExitBlock - If getExitBlocks would return exactly one block,
205  /// return that block. Otherwise return null.
206  BlockT *getExitBlock() const;
207
208  /// Edge type.
209  typedef std::pair<const BlockT*, const BlockT*> Edge;
210
211  /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
212  void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
213
214  /// getLoopPreheader - If there is a preheader for this loop, return it.  A
215  /// loop has a preheader if there is only one edge to the header of the loop
216  /// from outside of the loop.  If this is the case, the block branching to the
217  /// header of the loop is the preheader node.
218  ///
219  /// This method returns null if there is no preheader for the loop.
220  ///
221  BlockT *getLoopPreheader() const;
222
223  /// getLoopPredecessor - If the given loop's header has exactly one unique
224  /// predecessor outside the loop, return it. Otherwise return null.
225  /// This is less strict that the loop "preheader" concept, which requires
226  /// the predecessor to have exactly one successor.
227  ///
228  BlockT *getLoopPredecessor() const;
229
230  /// getLoopLatch - If there is a single latch block for this loop, return it.
231  /// A latch block is a block that contains a branch back to the header.
232  BlockT *getLoopLatch() const;
233
234  //===--------------------------------------------------------------------===//
235  // APIs for updating loop information after changing the CFG
236  //
237
238  /// addBasicBlockToLoop - This method is used by other analyses to update loop
239  /// information.  NewBB is set to be a new member of the current loop.
240  /// Because of this, it is added as a member of all parent loops, and is added
241  /// to the specified LoopInfo object as being in the current basic block.  It
242  /// is not valid to replace the loop header with this method.
243  ///
244  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
245
246  /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
247  /// the OldChild entry in our children list with NewChild, and updates the
248  /// parent pointer of OldChild to be null and the NewChild to be this loop.
249  /// This updates the loop depth of the new child.
250  void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
251
252  /// addChildLoop - Add the specified loop to be a child of this loop.  This
253  /// updates the loop depth of the new child.
254  ///
255  void addChildLoop(LoopT *NewChild) {
256    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
257    NewChild->ParentLoop = static_cast<LoopT *>(this);
258    SubLoops.push_back(NewChild);
259  }
260
261  /// removeChildLoop - This removes the specified child from being a subloop of
262  /// this loop.  The loop is not deleted, as it will presumably be inserted
263  /// into another loop.
264  LoopT *removeChildLoop(iterator I) {
265    assert(I != SubLoops.end() && "Cannot remove end iterator!");
266    LoopT *Child = *I;
267    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
268    SubLoops.erase(SubLoops.begin()+(I-begin()));
269    Child->ParentLoop = 0;
270    return Child;
271  }
272
273  /// addBlockEntry - This adds a basic block directly to the basic block list.
274  /// This should only be used by transformations that create new loops.  Other
275  /// transformations should use addBasicBlockToLoop.
276  void addBlockEntry(BlockT *BB) {
277    Blocks.push_back(BB);
278  }
279
280  /// moveToHeader - This method is used to move BB (which must be part of this
281  /// loop) to be the loop header of the loop (the block that dominates all
282  /// others).
283  void moveToHeader(BlockT *BB) {
284    if (Blocks[0] == BB) return;
285    for (unsigned i = 0; ; ++i) {
286      assert(i != Blocks.size() && "Loop does not contain BB!");
287      if (Blocks[i] == BB) {
288        Blocks[i] = Blocks[0];
289        Blocks[0] = BB;
290        return;
291      }
292    }
293  }
294
295  /// removeBlockFromLoop - This removes the specified basic block from the
296  /// current loop, updating the Blocks as appropriate.  This does not update
297  /// the mapping in the LoopInfo class.
298  void removeBlockFromLoop(BlockT *BB) {
299    RemoveFromVector(Blocks, BB);
300  }
301
302  /// verifyLoop - Verify loop structure
303  void verifyLoop() const;
304
305  /// verifyLoop - Verify loop structure of this loop and all nested loops.
306  void verifyLoopNest(DenseSet<const LoopT*> *Loops) const;
307
308  void print(raw_ostream &OS, unsigned Depth = 0) const;
309
310protected:
311  friend class LoopInfoBase<BlockT, LoopT>;
312  explicit LoopBase(BlockT *BB) : ParentLoop(0) {
313    Blocks.push_back(BB);
314  }
315};
316
317template<class BlockT, class LoopT>
318raw_ostream& operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
319  Loop.print(OS);
320  return OS;
321}
322
323// Implementation in LoopInfoImpl.h
324#ifdef __GNUC__
325__extension__ extern template class LoopBase<BasicBlock, Loop>;
326#endif
327
328class Loop : public LoopBase<BasicBlock, Loop> {
329public:
330  Loop() {}
331
332  /// isLoopInvariant - Return true if the specified value is loop invariant
333  ///
334  bool isLoopInvariant(Value *V) const;
335
336  /// hasLoopInvariantOperands - Return true if all the operands of the
337  /// specified instruction are loop invariant.
338  bool hasLoopInvariantOperands(Instruction *I) const;
339
340  /// makeLoopInvariant - If the given value is an instruction inside of the
341  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
342  /// Return true if the value after any hoisting is loop invariant. This
343  /// function can be used as a slightly more aggressive replacement for
344  /// isLoopInvariant.
345  ///
346  /// If InsertPt is specified, it is the point to hoist instructions to.
347  /// If null, the terminator of the loop preheader is used.
348  ///
349  bool makeLoopInvariant(Value *V, bool &Changed,
350                         Instruction *InsertPt = 0) const;
351
352  /// makeLoopInvariant - If the given instruction is inside of the
353  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
354  /// Return true if the instruction after any hoisting is loop invariant. This
355  /// function can be used as a slightly more aggressive replacement for
356  /// isLoopInvariant.
357  ///
358  /// If InsertPt is specified, it is the point to hoist instructions to.
359  /// If null, the terminator of the loop preheader is used.
360  ///
361  bool makeLoopInvariant(Instruction *I, bool &Changed,
362                         Instruction *InsertPt = 0) const;
363
364  /// getCanonicalInductionVariable - Check to see if the loop has a canonical
365  /// induction variable: an integer recurrence that starts at 0 and increments
366  /// by one each time through the loop.  If so, return the phi node that
367  /// corresponds to it.
368  ///
369  /// The IndVarSimplify pass transforms loops to have a canonical induction
370  /// variable.
371  ///
372  PHINode *getCanonicalInductionVariable() const;
373
374  /// isLCSSAForm - Return true if the Loop is in LCSSA form
375  bool isLCSSAForm(DominatorTree &DT) const;
376
377  /// isLoopSimplifyForm - Return true if the Loop is in the form that
378  /// the LoopSimplify form transforms loops to, which is sometimes called
379  /// normal form.
380  bool isLoopSimplifyForm() const;
381
382  /// isSafeToClone - Return true if the loop body is safe to clone in practice.
383  bool isSafeToClone() const;
384
385  /// hasDedicatedExits - Return true if no exit block for the loop
386  /// has a predecessor that is outside the loop.
387  bool hasDedicatedExits() const;
388
389  /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
390  /// These are the blocks _outside of the current loop_ which are branched to.
391  /// This assumes that loop exits are in canonical form.
392  ///
393  void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
394
395  /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
396  /// block, return that block. Otherwise return null.
397  BasicBlock *getUniqueExitBlock() const;
398
399  void dump() const;
400
401private:
402  friend class LoopInfoBase<BasicBlock, Loop>;
403  explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
404};
405
406//===----------------------------------------------------------------------===//
407/// LoopInfo - This class builds and contains all of the top level loop
408/// structures in the specified function.
409///
410
411template<class BlockT, class LoopT>
412class LoopInfoBase {
413  // BBMap - Mapping of basic blocks to the inner most loop they occur in
414  DenseMap<BlockT *, LoopT *> BBMap;
415  std::vector<LoopT *> TopLevelLoops;
416  friend class LoopBase<BlockT, LoopT>;
417  friend class LoopInfo;
418
419  void operator=(const LoopInfoBase &); // do not implement
420  LoopInfoBase(const LoopInfo &);       // do not implement
421public:
422  LoopInfoBase() { }
423  ~LoopInfoBase() { releaseMemory(); }
424
425  void releaseMemory() {
426    for (typename std::vector<LoopT *>::iterator I =
427         TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
428      delete *I;   // Delete all of the loops...
429
430    BBMap.clear();                           // Reset internal state of analysis
431    TopLevelLoops.clear();
432  }
433
434  /// iterator/begin/end - The interface to the top-level loops in the current
435  /// function.
436  ///
437  typedef typename std::vector<LoopT *>::const_iterator iterator;
438  typedef typename std::vector<LoopT *>::const_reverse_iterator
439    reverse_iterator;
440  iterator begin() const { return TopLevelLoops.begin(); }
441  iterator end() const { return TopLevelLoops.end(); }
442  reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); }
443  reverse_iterator rend() const { return TopLevelLoops.rend(); }
444  bool empty() const { return TopLevelLoops.empty(); }
445
446  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
447  /// block is in no loop (for example the entry node), null is returned.
448  ///
449  LoopT *getLoopFor(const BlockT *BB) const {
450    return BBMap.lookup(const_cast<BlockT*>(BB));
451  }
452
453  /// operator[] - same as getLoopFor...
454  ///
455  const LoopT *operator[](const BlockT *BB) const {
456    return getLoopFor(BB);
457  }
458
459  /// getLoopDepth - Return the loop nesting level of the specified block.  A
460  /// depth of 0 means the block is not inside any loop.
461  ///
462  unsigned getLoopDepth(const BlockT *BB) const {
463    const LoopT *L = getLoopFor(BB);
464    return L ? L->getLoopDepth() : 0;
465  }
466
467  // isLoopHeader - True if the block is a loop header node
468  bool isLoopHeader(BlockT *BB) const {
469    const LoopT *L = getLoopFor(BB);
470    return L && L->getHeader() == BB;
471  }
472
473  /// removeLoop - This removes the specified top-level loop from this loop info
474  /// object.  The loop is not deleted, as it will presumably be inserted into
475  /// another loop.
476  LoopT *removeLoop(iterator I) {
477    assert(I != end() && "Cannot remove end iterator!");
478    LoopT *L = *I;
479    assert(L->getParentLoop() == 0 && "Not a top-level loop!");
480    TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
481    return L;
482  }
483
484  /// changeLoopFor - Change the top-level loop that contains BB to the
485  /// specified loop.  This should be used by transformations that restructure
486  /// the loop hierarchy tree.
487  void changeLoopFor(BlockT *BB, LoopT *L) {
488    if (!L) {
489      BBMap.erase(BB);
490      return;
491    }
492    BBMap[BB] = L;
493  }
494
495  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
496  /// list with the indicated loop.
497  void changeTopLevelLoop(LoopT *OldLoop,
498                          LoopT *NewLoop) {
499    typename std::vector<LoopT *>::iterator I =
500                 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
501    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
502    *I = NewLoop;
503    assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
504           "Loops already embedded into a subloop!");
505  }
506
507  /// addTopLevelLoop - This adds the specified loop to the collection of
508  /// top-level loops.
509  void addTopLevelLoop(LoopT *New) {
510    assert(New->getParentLoop() == 0 && "Loop already in subloop!");
511    TopLevelLoops.push_back(New);
512  }
513
514  /// removeBlock - This method completely removes BB from all data structures,
515  /// including all of the Loop objects it is nested in and our mapping from
516  /// BasicBlocks to loops.
517  void removeBlock(BlockT *BB) {
518    typename DenseMap<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
519    if (I != BBMap.end()) {
520      for (LoopT *L = I->second; L; L = L->getParentLoop())
521        L->removeBlockFromLoop(BB);
522
523      BBMap.erase(I);
524    }
525  }
526
527  // Internals
528
529  static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
530                                      const LoopT *ParentLoop) {
531    if (SubLoop == 0) return true;
532    if (SubLoop == ParentLoop) return false;
533    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
534  }
535
536  /// Create the loop forest using a stable algorithm.
537  void Analyze(DominatorTreeBase<BlockT> &DomTree);
538
539  // Debugging
540
541  void print(raw_ostream &OS) const;
542};
543
544// Implementation in LoopInfoImpl.h
545#ifdef __GNUC__
546__extension__ extern template class LoopInfoBase<BasicBlock, Loop>;
547#endif
548
549class LoopInfo : public FunctionPass {
550  LoopInfoBase<BasicBlock, Loop> LI;
551  friend class LoopBase<BasicBlock, Loop>;
552
553  void operator=(const LoopInfo &); // do not implement
554  LoopInfo(const LoopInfo &);       // do not implement
555public:
556  static char ID; // Pass identification, replacement for typeid
557
558  LoopInfo() : FunctionPass(ID) {
559    initializeLoopInfoPass(*PassRegistry::getPassRegistry());
560  }
561
562  LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
563
564  /// iterator/begin/end - The interface to the top-level loops in the current
565  /// function.
566  ///
567  typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
568  typedef LoopInfoBase<BasicBlock, Loop>::reverse_iterator reverse_iterator;
569  inline iterator begin() const { return LI.begin(); }
570  inline iterator end() const { return LI.end(); }
571  inline reverse_iterator rbegin() const { return LI.rbegin(); }
572  inline reverse_iterator rend() const { return LI.rend(); }
573  bool empty() const { return LI.empty(); }
574
575  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
576  /// block is in no loop (for example the entry node), null is returned.
577  ///
578  inline Loop *getLoopFor(const BasicBlock *BB) const {
579    return LI.getLoopFor(BB);
580  }
581
582  /// operator[] - same as getLoopFor...
583  ///
584  inline const Loop *operator[](const BasicBlock *BB) const {
585    return LI.getLoopFor(BB);
586  }
587
588  /// getLoopDepth - Return the loop nesting level of the specified block.  A
589  /// depth of 0 means the block is not inside any loop.
590  ///
591  inline unsigned getLoopDepth(const BasicBlock *BB) const {
592    return LI.getLoopDepth(BB);
593  }
594
595  // isLoopHeader - True if the block is a loop header node
596  inline bool isLoopHeader(BasicBlock *BB) const {
597    return LI.isLoopHeader(BB);
598  }
599
600  /// runOnFunction - Calculate the natural loop information.
601  ///
602  virtual bool runOnFunction(Function &F);
603
604  virtual void verifyAnalysis() const;
605
606  virtual void releaseMemory() { LI.releaseMemory(); }
607
608  virtual void print(raw_ostream &O, const Module* M = 0) const;
609
610  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
611
612  /// removeLoop - This removes the specified top-level loop from this loop info
613  /// object.  The loop is not deleted, as it will presumably be inserted into
614  /// another loop.
615  inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
616
617  /// changeLoopFor - Change the top-level loop that contains BB to the
618  /// specified loop.  This should be used by transformations that restructure
619  /// the loop hierarchy tree.
620  inline void changeLoopFor(BasicBlock *BB, Loop *L) {
621    LI.changeLoopFor(BB, L);
622  }
623
624  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
625  /// list with the indicated loop.
626  inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
627    LI.changeTopLevelLoop(OldLoop, NewLoop);
628  }
629
630  /// addTopLevelLoop - This adds the specified loop to the collection of
631  /// top-level loops.
632  inline void addTopLevelLoop(Loop *New) {
633    LI.addTopLevelLoop(New);
634  }
635
636  /// removeBlock - This method completely removes BB from all data structures,
637  /// including all of the Loop objects it is nested in and our mapping from
638  /// BasicBlocks to loops.
639  void removeBlock(BasicBlock *BB) {
640    LI.removeBlock(BB);
641  }
642
643  /// updateUnloop - Update LoopInfo after removing the last backedge from a
644  /// loop--now the "unloop". This updates the loop forest and parent loops for
645  /// each block so that Unloop is no longer referenced, but the caller must
646  /// actually delete the Unloop object.
647  void updateUnloop(Loop *Unloop);
648
649  /// replacementPreservesLCSSAForm - Returns true if replacing From with To
650  /// everywhere is guaranteed to preserve LCSSA form.
651  bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
652    // Preserving LCSSA form is only problematic if the replacing value is an
653    // instruction.
654    Instruction *I = dyn_cast<Instruction>(To);
655    if (!I) return true;
656    // If both instructions are defined in the same basic block then replacement
657    // cannot break LCSSA form.
658    if (I->getParent() == From->getParent())
659      return true;
660    // If the instruction is not defined in a loop then it can safely replace
661    // anything.
662    Loop *ToLoop = getLoopFor(I->getParent());
663    if (!ToLoop) return true;
664    // If the replacing instruction is defined in the same loop as the original
665    // instruction, or in a loop that contains it as an inner loop, then using
666    // it as a replacement will not break LCSSA form.
667    return ToLoop->contains(getLoopFor(From->getParent()));
668  }
669};
670
671
672// Allow clients to walk the list of nested loops...
673template <> struct GraphTraits<const Loop*> {
674  typedef const Loop NodeType;
675  typedef LoopInfo::iterator ChildIteratorType;
676
677  static NodeType *getEntryNode(const Loop *L) { return L; }
678  static inline ChildIteratorType child_begin(NodeType *N) {
679    return N->begin();
680  }
681  static inline ChildIteratorType child_end(NodeType *N) {
682    return N->end();
683  }
684};
685
686template <> struct GraphTraits<Loop*> {
687  typedef Loop NodeType;
688  typedef LoopInfo::iterator ChildIteratorType;
689
690  static NodeType *getEntryNode(Loop *L) { return L; }
691  static inline ChildIteratorType child_begin(NodeType *N) {
692    return N->begin();
693  }
694  static inline ChildIteratorType child_end(NodeType *N) {
695    return N->end();
696  }
697};
698
699} // End llvm namespace
700
701#endif
702