LoopInfo.h revision f17e9511f15a0e007ff47d0789d1a52502e8c1fb
1//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  A natural loop
12// has exactly one entry-point, which is called the header. Note that natural
13// loops may actually be several loops that share the same header node.
14//
15// This analysis calculates the nesting structure of loops in a function.  For
16// each natural loop identified, this analysis identifies natural loops
17// contained entirely within the loop and the basic blocks the make up the loop.
18//
19// It can calculate on the fly various bits of information, for example:
20//
21//  * whether there is a preheader for the loop
22//  * the number of back edges to the header
23//  * whether or not a particular block branches out of the loop
24//  * the successor blocks of the loop
25//  * the loop depth
26//  * the trip count
27//  * etc...
28//
29//===----------------------------------------------------------------------===//
30
31#ifndef LLVM_ANALYSIS_LOOP_INFO_H
32#define LLVM_ANALYSIS_LOOP_INFO_H
33
34#include "llvm/Pass.h"
35#include "llvm/ADT/DepthFirstIterator.h"
36#include "llvm/ADT/GraphTraits.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/Analysis/Dominators.h"
39#include "llvm/Support/CFG.h"
40#include "llvm/Support/raw_ostream.h"
41#include <algorithm>
42
43namespace llvm {
44
45template<typename T>
46static void RemoveFromVector(std::vector<T*> &V, T *N) {
47  typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
48  assert(I != V.end() && "N is not in this list!");
49  V.erase(I);
50}
51
52class DominatorTree;
53class LoopInfo;
54class Loop;
55template<class N, class M> class LoopInfoBase;
56template<class N, class M> class LoopBase;
57
58//===----------------------------------------------------------------------===//
59/// LoopBase class - Instances of this class are used to represent loops that
60/// are detected in the flow graph
61///
62template<class BlockT, class LoopT>
63class LoopBase {
64  LoopT *ParentLoop;
65  // SubLoops - Loops contained entirely within this one.
66  std::vector<LoopT *> SubLoops;
67
68  // Blocks - The list of blocks in this loop.  First entry is the header node.
69  std::vector<BlockT*> Blocks;
70
71  // DO NOT IMPLEMENT
72  LoopBase(const LoopBase<BlockT, LoopT> &);
73  // DO NOT IMPLEMENT
74  const LoopBase<BlockT, LoopT>&operator=(const LoopBase<BlockT, LoopT> &);
75public:
76  /// Loop ctor - This creates an empty loop.
77  LoopBase() : ParentLoop(0) {}
78  ~LoopBase() {
79    for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
80      delete SubLoops[i];
81  }
82
83  /// getLoopDepth - Return the nesting level of this loop.  An outer-most
84  /// loop has depth 1, for consistency with loop depth values used for basic
85  /// blocks, where depth 0 is used for blocks not inside any loops.
86  unsigned getLoopDepth() const {
87    unsigned D = 1;
88    for (const LoopT *CurLoop = ParentLoop; CurLoop;
89         CurLoop = CurLoop->ParentLoop)
90      ++D;
91    return D;
92  }
93  BlockT *getHeader() const { return Blocks.front(); }
94  LoopT *getParentLoop() const { return ParentLoop; }
95
96  /// contains - Return true if the specified basic block is in this loop
97  ///
98  bool contains(const BlockT *BB) const {
99    return std::find(block_begin(), block_end(), BB) != block_end();
100  }
101
102  /// iterator/begin/end - Return the loops contained entirely within this loop.
103  ///
104  const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
105  typedef typename std::vector<LoopT *>::const_iterator iterator;
106  iterator begin() const { return SubLoops.begin(); }
107  iterator end() const { return SubLoops.end(); }
108  bool empty() const { return SubLoops.empty(); }
109
110  /// getBlocks - Get a list of the basic blocks which make up this loop.
111  ///
112  const std::vector<BlockT*> &getBlocks() const { return Blocks; }
113  typedef typename std::vector<BlockT*>::const_iterator block_iterator;
114  block_iterator block_begin() const { return Blocks.begin(); }
115  block_iterator block_end() const { return Blocks.end(); }
116
117  /// isLoopExiting - True if terminator in the block can branch to another block
118  /// that is outside of the current loop.
119  ///
120  bool isLoopExiting(const BlockT *BB) const {
121    typedef GraphTraits<BlockT*> BlockTraits;
122    for (typename BlockTraits::ChildIteratorType SI =
123         BlockTraits::child_begin(const_cast<BlockT*>(BB)),
124         SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
125      if (!contains(*SI))
126        return true;
127    }
128    return false;
129  }
130
131  /// getNumBackEdges - Calculate the number of back edges to the loop header
132  ///
133  unsigned getNumBackEdges() const {
134    unsigned NumBackEdges = 0;
135    BlockT *H = getHeader();
136
137    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
138    for (typename InvBlockTraits::ChildIteratorType I =
139         InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
140         E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
141      if (contains(*I))
142        ++NumBackEdges;
143
144    return NumBackEdges;
145  }
146
147  //===--------------------------------------------------------------------===//
148  // APIs for simple analysis of the loop.
149  //
150  // Note that all of these methods can fail on general loops (ie, there may not
151  // be a preheader, etc).  For best success, the loop simplification and
152  // induction variable canonicalization pass should be used to normalize loops
153  // for easy analysis.  These methods assume canonical loops.
154
155  /// getExitingBlocks - Return all blocks inside the loop that have successors
156  /// outside of the loop.  These are the blocks _inside of the current loop_
157  /// which branch out.  The returned list is always unique.
158  ///
159  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
160    // Sort the blocks vector so that we can use binary search to do quick
161    // lookups.
162    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
163    std::sort(LoopBBs.begin(), LoopBBs.end());
164
165    typedef GraphTraits<BlockT*> BlockTraits;
166    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
167      for (typename BlockTraits::ChildIteratorType I =
168          BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
169          I != E; ++I)
170        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
171          // Not in current loop? It must be an exit block.
172          ExitingBlocks.push_back(*BI);
173          break;
174        }
175  }
176
177  /// getExitingBlock - If getExitingBlocks would return exactly one block,
178  /// return that block. Otherwise return null.
179  BlockT *getExitingBlock() const {
180    SmallVector<BlockT*, 8> ExitingBlocks;
181    getExitingBlocks(ExitingBlocks);
182    if (ExitingBlocks.size() == 1)
183      return ExitingBlocks[0];
184    return 0;
185  }
186
187  /// getExitBlocks - Return all of the successor blocks of this loop.  These
188  /// are the blocks _outside of the current loop_ which are branched to.
189  ///
190  void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
191    // Sort the blocks vector so that we can use binary search to do quick
192    // lookups.
193    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
194    std::sort(LoopBBs.begin(), LoopBBs.end());
195
196    typedef GraphTraits<BlockT*> BlockTraits;
197    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
198      for (typename BlockTraits::ChildIteratorType I =
199           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
200           I != E; ++I)
201        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
202          // Not in current loop? It must be an exit block.
203          ExitBlocks.push_back(*I);
204  }
205
206  /// getExitBlock - If getExitBlocks would return exactly one block,
207  /// return that block. Otherwise return null.
208  BlockT *getExitBlock() const {
209    SmallVector<BlockT*, 8> ExitBlocks;
210    getExitBlocks(ExitBlocks);
211    if (ExitBlocks.size() == 1)
212      return ExitBlocks[0];
213    return 0;
214  }
215
216  /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
217  typedef std::pair<const BlockT*,const BlockT*> Edge;
218  void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const {
219    // Sort the blocks vector so that we can use binary search to do quick
220    // lookups.
221    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
222    std::sort(LoopBBs.begin(), LoopBBs.end());
223
224    typedef GraphTraits<BlockT*> BlockTraits;
225    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
226      for (typename BlockTraits::ChildIteratorType I =
227           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
228           I != E; ++I)
229        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
230          // Not in current loop? It must be an exit block.
231          ExitEdges.push_back(std::make_pair(*BI, *I));
232  }
233
234  /// getLoopPreheader - If there is a preheader for this loop, return it.  A
235  /// loop has a preheader if there is only one edge to the header of the loop
236  /// from outside of the loop.  If this is the case, the block branching to the
237  /// header of the loop is the preheader node.
238  ///
239  /// This method returns null if there is no preheader for the loop.
240  ///
241  BlockT *getLoopPreheader() const {
242    // Keep track of nodes outside the loop branching to the header...
243    BlockT *Out = 0;
244
245    // Loop over the predecessors of the header node...
246    BlockT *Header = getHeader();
247    typedef GraphTraits<BlockT*> BlockTraits;
248    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
249    for (typename InvBlockTraits::ChildIteratorType PI =
250         InvBlockTraits::child_begin(Header),
251         PE = InvBlockTraits::child_end(Header); PI != PE; ++PI)
252      if (!contains(*PI)) {     // If the block is not in the loop...
253        if (Out && Out != *PI)
254          return 0;             // Multiple predecessors outside the loop
255        Out = *PI;
256      }
257
258    // Make sure there is only one exit out of the preheader.
259    assert(Out && "Header of loop has no predecessors from outside loop?");
260    typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
261    ++SI;
262    if (SI != BlockTraits::child_end(Out))
263      return 0;  // Multiple exits from the block, must not be a preheader.
264
265    // If there is exactly one preheader, return it.  If there was zero, then
266    // Out is still null.
267    return Out;
268  }
269
270  /// getLoopLatch - If there is a single latch block for this loop, return it.
271  /// A latch block is a block that contains a branch back to the header.
272  /// A loop header in normal form has two edges into it: one from a preheader
273  /// and one from a latch block.
274  BlockT *getLoopLatch() const {
275    BlockT *Header = getHeader();
276    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
277    typename InvBlockTraits::ChildIteratorType PI =
278                                            InvBlockTraits::child_begin(Header);
279    typename InvBlockTraits::ChildIteratorType PE =
280                                              InvBlockTraits::child_end(Header);
281    if (PI == PE) return 0;  // no preds?
282
283    BlockT *Latch = 0;
284    if (contains(*PI))
285      Latch = *PI;
286    ++PI;
287    if (PI == PE) return 0;  // only one pred?
288
289    if (contains(*PI)) {
290      if (Latch) return 0;  // multiple backedges
291      Latch = *PI;
292    }
293    ++PI;
294    if (PI != PE) return 0;  // more than two preds
295
296    return Latch;
297  }
298
299  //===--------------------------------------------------------------------===//
300  // APIs for updating loop information after changing the CFG
301  //
302
303  /// addBasicBlockToLoop - This method is used by other analyses to update loop
304  /// information.  NewBB is set to be a new member of the current loop.
305  /// Because of this, it is added as a member of all parent loops, and is added
306  /// to the specified LoopInfo object as being in the current basic block.  It
307  /// is not valid to replace the loop header with this method.
308  ///
309  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
310
311  /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
312  /// the OldChild entry in our children list with NewChild, and updates the
313  /// parent pointer of OldChild to be null and the NewChild to be this loop.
314  /// This updates the loop depth of the new child.
315  void replaceChildLoopWith(LoopT *OldChild,
316                            LoopT *NewChild) {
317    assert(OldChild->ParentLoop == this && "This loop is already broken!");
318    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
319    typename std::vector<LoopT *>::iterator I =
320                          std::find(SubLoops.begin(), SubLoops.end(), OldChild);
321    assert(I != SubLoops.end() && "OldChild not in loop!");
322    *I = NewChild;
323    OldChild->ParentLoop = 0;
324    NewChild->ParentLoop = static_cast<LoopT *>(this);
325  }
326
327  /// addChildLoop - Add the specified loop to be a child of this loop.  This
328  /// updates the loop depth of the new child.
329  ///
330  void addChildLoop(LoopT *NewChild) {
331    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
332    NewChild->ParentLoop = static_cast<LoopT *>(this);
333    SubLoops.push_back(NewChild);
334  }
335
336  /// removeChildLoop - This removes the specified child from being a subloop of
337  /// this loop.  The loop is not deleted, as it will presumably be inserted
338  /// into another loop.
339  LoopT *removeChildLoop(iterator I) {
340    assert(I != SubLoops.end() && "Cannot remove end iterator!");
341    LoopT *Child = *I;
342    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
343    SubLoops.erase(SubLoops.begin()+(I-begin()));
344    Child->ParentLoop = 0;
345    return Child;
346  }
347
348  /// addBlockEntry - This adds a basic block directly to the basic block list.
349  /// This should only be used by transformations that create new loops.  Other
350  /// transformations should use addBasicBlockToLoop.
351  void addBlockEntry(BlockT *BB) {
352    Blocks.push_back(BB);
353  }
354
355  /// moveToHeader - This method is used to move BB (which must be part of this
356  /// loop) to be the loop header of the loop (the block that dominates all
357  /// others).
358  void moveToHeader(BlockT *BB) {
359    if (Blocks[0] == BB) return;
360    for (unsigned i = 0; ; ++i) {
361      assert(i != Blocks.size() && "Loop does not contain BB!");
362      if (Blocks[i] == BB) {
363        Blocks[i] = Blocks[0];
364        Blocks[0] = BB;
365        return;
366      }
367    }
368  }
369
370  /// removeBlockFromLoop - This removes the specified basic block from the
371  /// current loop, updating the Blocks as appropriate.  This does not update
372  /// the mapping in the LoopInfo class.
373  void removeBlockFromLoop(BlockT *BB) {
374    RemoveFromVector(Blocks, BB);
375  }
376
377  /// verifyLoop - Verify loop structure
378  void verifyLoop() const {
379#ifndef NDEBUG
380    assert(!Blocks.empty() && "Loop header is missing");
381
382    // Sort the blocks vector so that we can use binary search to do quick
383    // lookups.
384    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
385    std::sort(LoopBBs.begin(), LoopBBs.end());
386
387    // Check the individual blocks.
388    for (block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
389      BlockT *BB = *I;
390      bool HasInsideLoopSuccs = false;
391      bool HasInsideLoopPreds = false;
392      SmallVector<BlockT *, 2> OutsideLoopPreds;
393
394      typedef GraphTraits<BlockT*> BlockTraits;
395      for (typename BlockTraits::ChildIteratorType SI =
396           BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
397           SI != SE; ++SI)
398        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *SI)) {
399          HasInsideLoopSuccs = true;
400          break;
401        }
402      typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
403      for (typename InvBlockTraits::ChildIteratorType PI =
404           InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
405           PI != PE; ++PI) {
406        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *PI))
407          HasInsideLoopPreds = true;
408        else
409          OutsideLoopPreds.push_back(*PI);
410      }
411
412      if (BB == getHeader()) {
413        assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
414      } else if (!OutsideLoopPreds.empty()) {
415        // A non-header loop shouldn't be reachable from outside the loop,
416        // though it is permitted if the predecessor is not itself actually
417        // reachable.
418        BlockT *EntryBB = BB->getParent()->begin();
419        for (df_iterator<BlockT *> NI = df_begin(EntryBB),
420             NE = df_end(EntryBB); NI != NE; ++NI)
421          for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
422            assert(*NI != OutsideLoopPreds[i] &&
423                   "Loop has multiple entry points!");
424      }
425      assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
426      assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
427      assert(BB != getHeader()->getParent()->begin() &&
428             "Loop contains function entry block!");
429    }
430
431    // Check the subloops.
432    for (iterator I = begin(), E = end(); I != E; ++I)
433      // Each block in each subloop should be contained within this loop.
434      for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
435           BI != BE; ++BI) {
436        assert(std::binary_search(LoopBBs.begin(), LoopBBs.end(), *BI) &&
437               "Loop does not contain all the blocks of a subloop!");
438      }
439
440    // Check the parent loop pointer.
441    if (ParentLoop) {
442      assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
443               ParentLoop->end() &&
444             "Loop is not a subloop of its parent!");
445    }
446#endif
447  }
448
449  /// verifyLoop - Verify loop structure of this loop and all nested loops.
450  void verifyLoopNest() const {
451    // Verify this loop.
452    verifyLoop();
453    // Verify the subloops.
454    for (iterator I = begin(), E = end(); I != E; ++I)
455      (*I)->verifyLoopNest();
456  }
457
458  void print(raw_ostream &OS, unsigned Depth = 0) const {
459    OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
460       << " containing: ";
461
462    for (unsigned i = 0; i < getBlocks().size(); ++i) {
463      if (i) OS << ",";
464      BlockT *BB = getBlocks()[i];
465      WriteAsOperand(OS, BB, false);
466      if (BB == getHeader())    OS << "<header>";
467      if (BB == getLoopLatch()) OS << "<latch>";
468      if (isLoopExiting(BB))    OS << "<exiting>";
469    }
470    OS << "\n";
471
472    for (iterator I = begin(), E = end(); I != E; ++I)
473      (*I)->print(OS, Depth+2);
474  }
475
476  void dump() const {
477    print(errs());
478  }
479
480protected:
481  friend class LoopInfoBase<BlockT, LoopT>;
482  explicit LoopBase(BlockT *BB) : ParentLoop(0) {
483    Blocks.push_back(BB);
484  }
485};
486
487class Loop : public LoopBase<BasicBlock, Loop> {
488public:
489  Loop() {}
490
491  /// isLoopInvariant - Return true if the specified value is loop invariant
492  ///
493  bool isLoopInvariant(Value *V) const;
494
495  /// isLoopInvariant - Return true if the specified instruction is
496  /// loop-invariant.
497  ///
498  bool isLoopInvariant(Instruction *I) const;
499
500  /// makeLoopInvariant - If the given value is an instruction inside of the
501  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
502  /// Return true if the value after any hoisting is loop invariant. This
503  /// function can be used as a slightly more aggressive replacement for
504  /// isLoopInvariant.
505  ///
506  /// If InsertPt is specified, it is the point to hoist instructions to.
507  /// If null, the terminator of the loop preheader is used.
508  ///
509  bool makeLoopInvariant(Value *V, bool &Changed,
510                         Instruction *InsertPt = 0) const;
511
512  /// makeLoopInvariant - If the given instruction is inside of the
513  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
514  /// Return true if the instruction after any hoisting is loop invariant. This
515  /// function can be used as a slightly more aggressive replacement for
516  /// isLoopInvariant.
517  ///
518  /// If InsertPt is specified, it is the point to hoist instructions to.
519  /// If null, the terminator of the loop preheader is used.
520  ///
521  bool makeLoopInvariant(Instruction *I, bool &Changed,
522                         Instruction *InsertPt = 0) const;
523
524  /// getCanonicalInductionVariable - Check to see if the loop has a canonical
525  /// induction variable: an integer recurrence that starts at 0 and increments
526  /// by one each time through the loop.  If so, return the phi node that
527  /// corresponds to it.
528  ///
529  /// The IndVarSimplify pass transforms loops to have a canonical induction
530  /// variable.
531  ///
532  PHINode *getCanonicalInductionVariable() const;
533
534  /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
535  /// the canonical induction variable value for the "next" iteration of the
536  /// loop.  This always succeeds if getCanonicalInductionVariable succeeds.
537  ///
538  Instruction *getCanonicalInductionVariableIncrement() const;
539
540  /// getTripCount - Return a loop-invariant LLVM value indicating the number of
541  /// times the loop will be executed.  Note that this means that the backedge
542  /// of the loop executes N-1 times.  If the trip-count cannot be determined,
543  /// this returns null.
544  ///
545  /// The IndVarSimplify pass transforms loops to have a form that this
546  /// function easily understands.
547  ///
548  Value *getTripCount() const;
549
550  /// getSmallConstantTripCount - Returns the trip count of this loop as a
551  /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
552  /// of not constant. Will also return 0 if the trip count is very large
553  /// (>= 2^32)
554  unsigned getSmallConstantTripCount() const;
555
556  /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
557  /// trip count of this loop as a normal unsigned value, if possible. This
558  /// means that the actual trip count is always a multiple of the returned
559  /// value (don't forget the trip count could very well be zero as well!).
560  ///
561  /// Returns 1 if the trip count is unknown or not guaranteed to be the
562  /// multiple of a constant (which is also the case if the trip count is simply
563  /// constant, use getSmallConstantTripCount for that case), Will also return 1
564  /// if the trip count is very large (>= 2^32).
565  unsigned getSmallConstantTripMultiple() const;
566
567  /// isLCSSAForm - Return true if the Loop is in LCSSA form
568  bool isLCSSAForm() const;
569
570  /// isLoopSimplifyForm - Return true if the Loop is in the form that
571  /// the LoopSimplify form transforms loops to, which is sometimes called
572  /// normal form.
573  bool isLoopSimplifyForm() const;
574
575  /// hasDedicatedExits - Return true if no exit block for the loop
576  /// has a predecessor that is outside the loop.
577  bool hasDedicatedExits() const;
578
579  /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
580  /// These are the blocks _outside of the current loop_ which are branched to.
581  /// This assumes that loop is in canonical form.
582  ///
583  void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
584
585  /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
586  /// block, return that block. Otherwise return null.
587  BasicBlock *getUniqueExitBlock() const;
588
589private:
590  friend class LoopInfoBase<BasicBlock, Loop>;
591  explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
592};
593
594//===----------------------------------------------------------------------===//
595/// LoopInfo - This class builds and contains all of the top level loop
596/// structures in the specified function.
597///
598
599template<class BlockT, class LoopT>
600class LoopInfoBase {
601  // BBMap - Mapping of basic blocks to the inner most loop they occur in
602  std::map<BlockT *, LoopT *> BBMap;
603  std::vector<LoopT *> TopLevelLoops;
604  friend class LoopBase<BlockT, LoopT>;
605
606  void operator=(const LoopInfoBase &); // do not implement
607  LoopInfoBase(const LoopInfo &);       // do not implement
608public:
609  LoopInfoBase() { }
610  ~LoopInfoBase() { releaseMemory(); }
611
612  void releaseMemory() {
613    for (typename std::vector<LoopT *>::iterator I =
614         TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
615      delete *I;   // Delete all of the loops...
616
617    BBMap.clear();                           // Reset internal state of analysis
618    TopLevelLoops.clear();
619  }
620
621  /// iterator/begin/end - The interface to the top-level loops in the current
622  /// function.
623  ///
624  typedef typename std::vector<LoopT *>::const_iterator iterator;
625  iterator begin() const { return TopLevelLoops.begin(); }
626  iterator end() const { return TopLevelLoops.end(); }
627  bool empty() const { return TopLevelLoops.empty(); }
628
629  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
630  /// block is in no loop (for example the entry node), null is returned.
631  ///
632  LoopT *getLoopFor(const BlockT *BB) const {
633    typename std::map<BlockT *, LoopT *>::const_iterator I=
634      BBMap.find(const_cast<BlockT*>(BB));
635    return I != BBMap.end() ? I->second : 0;
636  }
637
638  /// operator[] - same as getLoopFor...
639  ///
640  const LoopT *operator[](const BlockT *BB) const {
641    return getLoopFor(BB);
642  }
643
644  /// getLoopDepth - Return the loop nesting level of the specified block.  A
645  /// depth of 0 means the block is not inside any loop.
646  ///
647  unsigned getLoopDepth(const BlockT *BB) const {
648    const LoopT *L = getLoopFor(BB);
649    return L ? L->getLoopDepth() : 0;
650  }
651
652  // isLoopHeader - True if the block is a loop header node
653  bool isLoopHeader(BlockT *BB) const {
654    const LoopT *L = getLoopFor(BB);
655    return L && L->getHeader() == BB;
656  }
657
658  /// removeLoop - This removes the specified top-level loop from this loop info
659  /// object.  The loop is not deleted, as it will presumably be inserted into
660  /// another loop.
661  LoopT *removeLoop(iterator I) {
662    assert(I != end() && "Cannot remove end iterator!");
663    LoopT *L = *I;
664    assert(L->getParentLoop() == 0 && "Not a top-level loop!");
665    TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
666    return L;
667  }
668
669  /// changeLoopFor - Change the top-level loop that contains BB to the
670  /// specified loop.  This should be used by transformations that restructure
671  /// the loop hierarchy tree.
672  void changeLoopFor(BlockT *BB, LoopT *L) {
673    LoopT *&OldLoop = BBMap[BB];
674    assert(OldLoop && "Block not in a loop yet!");
675    OldLoop = L;
676  }
677
678  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
679  /// list with the indicated loop.
680  void changeTopLevelLoop(LoopT *OldLoop,
681                          LoopT *NewLoop) {
682    typename std::vector<LoopT *>::iterator I =
683                 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
684    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
685    *I = NewLoop;
686    assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
687           "Loops already embedded into a subloop!");
688  }
689
690  /// addTopLevelLoop - This adds the specified loop to the collection of
691  /// top-level loops.
692  void addTopLevelLoop(LoopT *New) {
693    assert(New->getParentLoop() == 0 && "Loop already in subloop!");
694    TopLevelLoops.push_back(New);
695  }
696
697  /// removeBlock - This method completely removes BB from all data structures,
698  /// including all of the Loop objects it is nested in and our mapping from
699  /// BasicBlocks to loops.
700  void removeBlock(BlockT *BB) {
701    typename std::map<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
702    if (I != BBMap.end()) {
703      for (LoopT *L = I->second; L; L = L->getParentLoop())
704        L->removeBlockFromLoop(BB);
705
706      BBMap.erase(I);
707    }
708  }
709
710  // Internals
711
712  static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
713                                      const LoopT *ParentLoop) {
714    if (SubLoop == 0) return true;
715    if (SubLoop == ParentLoop) return false;
716    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
717  }
718
719  void Calculate(DominatorTreeBase<BlockT> &DT) {
720    BlockT *RootNode = DT.getRootNode()->getBlock();
721
722    for (df_iterator<BlockT*> NI = df_begin(RootNode),
723           NE = df_end(RootNode); NI != NE; ++NI)
724      if (LoopT *L = ConsiderForLoop(*NI, DT))
725        TopLevelLoops.push_back(L);
726  }
727
728  LoopT *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
729    if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node?
730
731    std::vector<BlockT *> TodoStack;
732
733    // Scan the predecessors of BB, checking to see if BB dominates any of
734    // them.  This identifies backedges which target this node...
735    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
736    for (typename InvBlockTraits::ChildIteratorType I =
737         InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
738         I != E; ++I)
739      if (DT.dominates(BB, *I))   // If BB dominates its predecessor...
740        TodoStack.push_back(*I);
741
742    if (TodoStack.empty()) return 0;  // No backedges to this block...
743
744    // Create a new loop to represent this basic block...
745    LoopT *L = new LoopT(BB);
746    BBMap[BB] = L;
747
748    BlockT *EntryBlock = BB->getParent()->begin();
749
750    while (!TodoStack.empty()) {  // Process all the nodes in the loop
751      BlockT *X = TodoStack.back();
752      TodoStack.pop_back();
753
754      if (!L->contains(X) &&         // As of yet unprocessed??
755          DT.dominates(EntryBlock, X)) {   // X is reachable from entry block?
756        // Check to see if this block already belongs to a loop.  If this occurs
757        // then we have a case where a loop that is supposed to be a child of
758        // the current loop was processed before the current loop.  When this
759        // occurs, this child loop gets added to a part of the current loop,
760        // making it a sibling to the current loop.  We have to reparent this
761        // loop.
762        if (LoopT *SubLoop =
763            const_cast<LoopT *>(getLoopFor(X)))
764          if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
765            // Remove the subloop from its current parent...
766            assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
767            LoopT *SLP = SubLoop->ParentLoop;  // SubLoopParent
768            typename std::vector<LoopT *>::iterator I =
769              std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
770            assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
771            SLP->SubLoops.erase(I);   // Remove from parent...
772
773            // Add the subloop to THIS loop...
774            SubLoop->ParentLoop = L;
775            L->SubLoops.push_back(SubLoop);
776          }
777
778        // Normal case, add the block to our loop...
779        L->Blocks.push_back(X);
780
781        typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
782
783        // Add all of the predecessors of X to the end of the work stack...
784        TodoStack.insert(TodoStack.end(), InvBlockTraits::child_begin(X),
785                         InvBlockTraits::child_end(X));
786      }
787    }
788
789    // If there are any loops nested within this loop, create them now!
790    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
791         E = L->Blocks.end(); I != E; ++I)
792      if (LoopT *NewLoop = ConsiderForLoop(*I, DT)) {
793        L->SubLoops.push_back(NewLoop);
794        NewLoop->ParentLoop = L;
795      }
796
797    // Add the basic blocks that comprise this loop to the BBMap so that this
798    // loop can be found for them.
799    //
800    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
801           E = L->Blocks.end(); I != E; ++I)
802      BBMap.insert(std::make_pair(*I, L));
803
804    // Now that we have a list of all of the child loops of this loop, check to
805    // see if any of them should actually be nested inside of each other.  We
806    // can accidentally pull loops our of their parents, so we must make sure to
807    // organize the loop nests correctly now.
808    {
809      std::map<BlockT *, LoopT *> ContainingLoops;
810      for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
811        LoopT *Child = L->SubLoops[i];
812        assert(Child->getParentLoop() == L && "Not proper child loop?");
813
814        if (LoopT *ContainingLoop = ContainingLoops[Child->getHeader()]) {
815          // If there is already a loop which contains this loop, move this loop
816          // into the containing loop.
817          MoveSiblingLoopInto(Child, ContainingLoop);
818          --i;  // The loop got removed from the SubLoops list.
819        } else {
820          // This is currently considered to be a top-level loop.  Check to see
821          // if any of the contained blocks are loop headers for subloops we
822          // have already processed.
823          for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
824            LoopT *&BlockLoop = ContainingLoops[Child->Blocks[b]];
825            if (BlockLoop == 0) {   // Child block not processed yet...
826              BlockLoop = Child;
827            } else if (BlockLoop != Child) {
828              LoopT *SubLoop = BlockLoop;
829              // Reparent all of the blocks which used to belong to BlockLoops
830              for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j)
831                ContainingLoops[SubLoop->Blocks[j]] = Child;
832
833              // There is already a loop which contains this block, that means
834              // that we should reparent the loop which the block is currently
835              // considered to belong to to be a child of this loop.
836              MoveSiblingLoopInto(SubLoop, Child);
837              --i;  // We just shrunk the SubLoops list.
838            }
839          }
840        }
841      }
842    }
843
844    return L;
845  }
846
847  /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
848  /// of the NewParent Loop, instead of being a sibling of it.
849  void MoveSiblingLoopInto(LoopT *NewChild,
850                           LoopT *NewParent) {
851    LoopT *OldParent = NewChild->getParentLoop();
852    assert(OldParent && OldParent == NewParent->getParentLoop() &&
853           NewChild != NewParent && "Not sibling loops!");
854
855    // Remove NewChild from being a child of OldParent
856    typename std::vector<LoopT *>::iterator I =
857      std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
858                NewChild);
859    assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
860    OldParent->SubLoops.erase(I);   // Remove from parent's subloops list
861    NewChild->ParentLoop = 0;
862
863    InsertLoopInto(NewChild, NewParent);
864  }
865
866  /// InsertLoopInto - This inserts loop L into the specified parent loop.  If
867  /// the parent loop contains a loop which should contain L, the loop gets
868  /// inserted into L instead.
869  void InsertLoopInto(LoopT *L, LoopT *Parent) {
870    BlockT *LHeader = L->getHeader();
871    assert(Parent->contains(LHeader) &&
872           "This loop should not be inserted here!");
873
874    // Check to see if it belongs in a child loop...
875    for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
876         i != e; ++i)
877      if (Parent->SubLoops[i]->contains(LHeader)) {
878        InsertLoopInto(L, Parent->SubLoops[i]);
879        return;
880      }
881
882    // If not, insert it here!
883    Parent->SubLoops.push_back(L);
884    L->ParentLoop = Parent;
885  }
886
887  // Debugging
888
889  void print(raw_ostream &OS) const {
890    for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
891      TopLevelLoops[i]->print(OS);
892  #if 0
893    for (std::map<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
894           E = BBMap.end(); I != E; ++I)
895      OS << "BB '" << I->first->getName() << "' level = "
896         << I->second->getLoopDepth() << "\n";
897  #endif
898  }
899};
900
901class LoopInfo : public FunctionPass {
902  LoopInfoBase<BasicBlock, Loop> LI;
903  friend class LoopBase<BasicBlock, Loop>;
904
905  void operator=(const LoopInfo &); // do not implement
906  LoopInfo(const LoopInfo &);       // do not implement
907public:
908  static char ID; // Pass identification, replacement for typeid
909
910  LoopInfo() : FunctionPass(&ID) {}
911
912  LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
913
914  /// iterator/begin/end - The interface to the top-level loops in the current
915  /// function.
916  ///
917  typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
918  inline iterator begin() const { return LI.begin(); }
919  inline iterator end() const { return LI.end(); }
920  bool empty() const { return LI.empty(); }
921
922  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
923  /// block is in no loop (for example the entry node), null is returned.
924  ///
925  inline Loop *getLoopFor(const BasicBlock *BB) const {
926    return LI.getLoopFor(BB);
927  }
928
929  /// operator[] - same as getLoopFor...
930  ///
931  inline const Loop *operator[](const BasicBlock *BB) const {
932    return LI.getLoopFor(BB);
933  }
934
935  /// getLoopDepth - Return the loop nesting level of the specified block.  A
936  /// depth of 0 means the block is not inside any loop.
937  ///
938  inline unsigned getLoopDepth(const BasicBlock *BB) const {
939    return LI.getLoopDepth(BB);
940  }
941
942  // isLoopHeader - True if the block is a loop header node
943  inline bool isLoopHeader(BasicBlock *BB) const {
944    return LI.isLoopHeader(BB);
945  }
946
947  /// runOnFunction - Calculate the natural loop information.
948  ///
949  virtual bool runOnFunction(Function &F);
950
951  virtual void verifyAnalysis() const;
952
953  virtual void releaseMemory() { LI.releaseMemory(); }
954
955  virtual void print(raw_ostream &O, const Module* M = 0) const;
956
957  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
958
959  /// removeLoop - This removes the specified top-level loop from this loop info
960  /// object.  The loop is not deleted, as it will presumably be inserted into
961  /// another loop.
962  inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
963
964  /// changeLoopFor - Change the top-level loop that contains BB to the
965  /// specified loop.  This should be used by transformations that restructure
966  /// the loop hierarchy tree.
967  inline void changeLoopFor(BasicBlock *BB, Loop *L) {
968    LI.changeLoopFor(BB, L);
969  }
970
971  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
972  /// list with the indicated loop.
973  inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
974    LI.changeTopLevelLoop(OldLoop, NewLoop);
975  }
976
977  /// addTopLevelLoop - This adds the specified loop to the collection of
978  /// top-level loops.
979  inline void addTopLevelLoop(Loop *New) {
980    LI.addTopLevelLoop(New);
981  }
982
983  /// removeBlock - This method completely removes BB from all data structures,
984  /// including all of the Loop objects it is nested in and our mapping from
985  /// BasicBlocks to loops.
986  void removeBlock(BasicBlock *BB) {
987    LI.removeBlock(BB);
988  }
989
990  static bool isNotAlreadyContainedIn(const Loop *SubLoop,
991                                      const Loop *ParentLoop) {
992    return
993      LoopInfoBase<BasicBlock, Loop>::isNotAlreadyContainedIn(SubLoop,
994                                                              ParentLoop);
995  }
996};
997
998
999// Allow clients to walk the list of nested loops...
1000template <> struct GraphTraits<const Loop*> {
1001  typedef const Loop NodeType;
1002  typedef LoopInfo::iterator ChildIteratorType;
1003
1004  static NodeType *getEntryNode(const Loop *L) { return L; }
1005  static inline ChildIteratorType child_begin(NodeType *N) {
1006    return N->begin();
1007  }
1008  static inline ChildIteratorType child_end(NodeType *N) {
1009    return N->end();
1010  }
1011};
1012
1013template <> struct GraphTraits<Loop*> {
1014  typedef Loop NodeType;
1015  typedef LoopInfo::iterator ChildIteratorType;
1016
1017  static NodeType *getEntryNode(Loop *L) { return L; }
1018  static inline ChildIteratorType child_begin(NodeType *N) {
1019    return N->begin();
1020  }
1021  static inline ChildIteratorType child_end(NodeType *N) {
1022    return N->end();
1023  }
1024};
1025
1026template<class BlockT, class LoopT>
1027void
1028LoopBase<BlockT, LoopT>::addBasicBlockToLoop(BlockT *NewBB,
1029                                             LoopInfoBase<BlockT, LoopT> &LIB) {
1030  assert((Blocks.empty() || LIB[getHeader()] == this) &&
1031         "Incorrect LI specified for this loop!");
1032  assert(NewBB && "Cannot add a null basic block to the loop!");
1033  assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
1034
1035  LoopT *L = static_cast<LoopT *>(this);
1036
1037  // Add the loop mapping to the LoopInfo object...
1038  LIB.BBMap[NewBB] = L;
1039
1040  // Add the basic block to this loop and all parent loops...
1041  while (L) {
1042    L->Blocks.push_back(NewBB);
1043    L = L->getParentLoop();
1044  }
1045}
1046
1047} // End llvm namespace
1048
1049#endif
1050