LoopInfoImpl.h revision 4fa57932c7b13ec42c563e33a2e40fd04194b64e
1//===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the generic implementation of LoopInfo used for both Loops and
11// MachineLoops.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
16#define LLVM_ANALYSIS_LOOPINFOIMPL_H
17
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/Analysis/LoopInfo.h"
21
22namespace llvm {
23
24//===----------------------------------------------------------------------===//
25// APIs for simple analysis of the loop. See header notes.
26
27/// getExitingBlocks - Return all blocks inside the loop that have successors
28/// outside of the loop.  These are the blocks _inside of the current loop_
29/// which branch out.  The returned list is always unique.
30///
31template<class BlockT, class LoopT>
32void LoopBase<BlockT, LoopT>::
33getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
34  // Sort the blocks vector so that we can use binary search to do quick
35  // lookups.
36  SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
37  std::sort(LoopBBs.begin(), LoopBBs.end());
38
39  typedef GraphTraits<BlockT*> BlockTraits;
40  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
41    for (typename BlockTraits::ChildIteratorType I =
42           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
43         I != E; ++I)
44      if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
45        // Not in current loop? It must be an exit block.
46        ExitingBlocks.push_back(*BI);
47        break;
48      }
49}
50
51/// getExitingBlock - If getExitingBlocks would return exactly one block,
52/// return that block. Otherwise return null.
53template<class BlockT, class LoopT>
54BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
55  SmallVector<BlockT*, 8> ExitingBlocks;
56  getExitingBlocks(ExitingBlocks);
57  if (ExitingBlocks.size() == 1)
58    return ExitingBlocks[0];
59  return 0;
60}
61
62/// getExitBlocks - Return all of the successor blocks of this loop.  These
63/// are the blocks _outside of the current loop_ which are branched to.
64///
65template<class BlockT, class LoopT>
66void LoopBase<BlockT, LoopT>::
67getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
68  // Sort the blocks vector so that we can use binary search to do quick
69  // lookups.
70  SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
71  std::sort(LoopBBs.begin(), LoopBBs.end());
72
73  typedef GraphTraits<BlockT*> BlockTraits;
74  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
75    for (typename BlockTraits::ChildIteratorType I =
76           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
77         I != E; ++I)
78      if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
79        // Not in current loop? It must be an exit block.
80        ExitBlocks.push_back(*I);
81}
82
83/// getExitBlock - If getExitBlocks would return exactly one block,
84/// return that block. Otherwise return null.
85template<class BlockT, class LoopT>
86BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
87  SmallVector<BlockT*, 8> ExitBlocks;
88  getExitBlocks(ExitBlocks);
89  if (ExitBlocks.size() == 1)
90    return ExitBlocks[0];
91  return 0;
92}
93
94/// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
95template<class BlockT, class LoopT>
96void LoopBase<BlockT, LoopT>::
97getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const {
98  // Sort the blocks vector so that we can use binary search to do quick
99  // lookups.
100  SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
101  array_pod_sort(LoopBBs.begin(), LoopBBs.end());
102
103  typedef GraphTraits<BlockT*> BlockTraits;
104  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
105    for (typename BlockTraits::ChildIteratorType I =
106           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
107         I != E; ++I)
108      if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
109        // Not in current loop? It must be an exit block.
110        ExitEdges.push_back(Edge(*BI, *I));
111}
112
113/// getLoopPreheader - If there is a preheader for this loop, return it.  A
114/// loop has a preheader if there is only one edge to the header of the loop
115/// from outside of the loop.  If this is the case, the block branching to the
116/// header of the loop is the preheader node.
117///
118/// This method returns null if there is no preheader for the loop.
119///
120template<class BlockT, class LoopT>
121BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
122  // Keep track of nodes outside the loop branching to the header...
123  BlockT *Out = getLoopPredecessor();
124  if (!Out) return 0;
125
126  // Make sure there is only one exit out of the preheader.
127  typedef GraphTraits<BlockT*> BlockTraits;
128  typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
129  ++SI;
130  if (SI != BlockTraits::child_end(Out))
131    return 0;  // Multiple exits from the block, must not be a preheader.
132
133  // The predecessor has exactly one successor, so it is a preheader.
134  return Out;
135}
136
137/// getLoopPredecessor - If the given loop's header has exactly one unique
138/// predecessor outside the loop, return it. Otherwise return null.
139/// This is less strict that the loop "preheader" concept, which requires
140/// the predecessor to have exactly one successor.
141///
142template<class BlockT, class LoopT>
143BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
144  // Keep track of nodes outside the loop branching to the header...
145  BlockT *Out = 0;
146
147  // Loop over the predecessors of the header node...
148  BlockT *Header = getHeader();
149  typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
150  for (typename InvBlockTraits::ChildIteratorType PI =
151         InvBlockTraits::child_begin(Header),
152         PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
153    typename InvBlockTraits::NodeType *N = *PI;
154    if (!contains(N)) {     // If the block is not in the loop...
155      if (Out && Out != N)
156        return 0;             // Multiple predecessors outside the loop
157      Out = N;
158    }
159  }
160
161  // Make sure there is only one exit out of the preheader.
162  assert(Out && "Header of loop has no predecessors from outside loop?");
163  return Out;
164}
165
166/// getLoopLatch - If there is a single latch block for this loop, return it.
167/// A latch block is a block that contains a branch back to the header.
168template<class BlockT, class LoopT>
169BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
170  BlockT *Header = getHeader();
171  typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
172  typename InvBlockTraits::ChildIteratorType PI =
173    InvBlockTraits::child_begin(Header);
174  typename InvBlockTraits::ChildIteratorType PE =
175    InvBlockTraits::child_end(Header);
176  BlockT *Latch = 0;
177  for (; PI != PE; ++PI) {
178    typename InvBlockTraits::NodeType *N = *PI;
179    if (contains(N)) {
180      if (Latch) return 0;
181      Latch = N;
182    }
183  }
184
185  return Latch;
186}
187
188//===----------------------------------------------------------------------===//
189// APIs for updating loop information after changing the CFG
190//
191
192/// addBasicBlockToLoop - This method is used by other analyses to update loop
193/// information.  NewBB is set to be a new member of the current loop.
194/// Because of this, it is added as a member of all parent loops, and is added
195/// to the specified LoopInfo object as being in the current basic block.  It
196/// is not valid to replace the loop header with this method.
197///
198template<class BlockT, class LoopT>
199void LoopBase<BlockT, LoopT>::
200addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
201  assert((Blocks.empty() || LIB[getHeader()] == this) &&
202         "Incorrect LI specified for this loop!");
203  assert(NewBB && "Cannot add a null basic block to the loop!");
204  assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
205
206  LoopT *L = static_cast<LoopT *>(this);
207
208  // Add the loop mapping to the LoopInfo object...
209  LIB.BBMap[NewBB] = L;
210
211  // Add the basic block to this loop and all parent loops...
212  while (L) {
213    L->Blocks.push_back(NewBB);
214    L = L->getParentLoop();
215  }
216}
217
218/// replaceChildLoopWith - This is used when splitting loops up.  It replaces
219/// the OldChild entry in our children list with NewChild, and updates the
220/// parent pointer of OldChild to be null and the NewChild to be this loop.
221/// This updates the loop depth of the new child.
222template<class BlockT, class LoopT>
223void LoopBase<BlockT, LoopT>::
224replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild) {
225  assert(OldChild->ParentLoop == this && "This loop is already broken!");
226  assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
227  typename std::vector<LoopT *>::iterator I =
228    std::find(SubLoops.begin(), SubLoops.end(), OldChild);
229  assert(I != SubLoops.end() && "OldChild not in loop!");
230  *I = NewChild;
231  OldChild->ParentLoop = 0;
232  NewChild->ParentLoop = static_cast<LoopT *>(this);
233}
234
235/// verifyLoop - Verify loop structure
236template<class BlockT, class LoopT>
237void LoopBase<BlockT, LoopT>::verifyLoop() const {
238#ifndef NDEBUG
239  assert(!Blocks.empty() && "Loop header is missing");
240
241  // Setup for using a depth-first iterator to visit every block in the loop.
242  SmallVector<BlockT*, 8> ExitBBs;
243  getExitBlocks(ExitBBs);
244  llvm::SmallPtrSet<BlockT*, 8> VisitSet;
245  VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
246  df_ext_iterator<BlockT*, llvm::SmallPtrSet<BlockT*, 8> >
247    BI = df_ext_begin(getHeader(), VisitSet),
248    BE = df_ext_end(getHeader(), VisitSet);
249
250  // Keep track of the number of BBs visited.
251  unsigned NumVisited = 0;
252
253  // Sort the blocks vector so that we can use binary search to do quick
254  // lookups.
255  SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
256  std::sort(LoopBBs.begin(), LoopBBs.end());
257
258  // Check the individual blocks.
259  for ( ; BI != BE; ++BI) {
260    BlockT *BB = *BI;
261    bool HasInsideLoopSuccs = false;
262    bool HasInsideLoopPreds = false;
263    SmallVector<BlockT *, 2> OutsideLoopPreds;
264
265    typedef GraphTraits<BlockT*> BlockTraits;
266    for (typename BlockTraits::ChildIteratorType SI =
267           BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
268         SI != SE; ++SI)
269      if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *SI)) {
270        HasInsideLoopSuccs = true;
271        break;
272      }
273    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
274    for (typename InvBlockTraits::ChildIteratorType PI =
275           InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
276         PI != PE; ++PI) {
277      BlockT *N = *PI;
278      if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), N))
279        HasInsideLoopPreds = true;
280      else
281        OutsideLoopPreds.push_back(N);
282    }
283
284    if (BB == getHeader()) {
285        assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
286    } else if (!OutsideLoopPreds.empty()) {
287      // A non-header loop shouldn't be reachable from outside the loop,
288      // though it is permitted if the predecessor is not itself actually
289      // reachable.
290      BlockT *EntryBB = BB->getParent()->begin();
291        for (df_iterator<BlockT *> NI = df_begin(EntryBB),
292               NE = df_end(EntryBB); NI != NE; ++NI)
293          for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
294            assert(*NI != OutsideLoopPreds[i] &&
295                   "Loop has multiple entry points!");
296    }
297    assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
298    assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
299    assert(BB != getHeader()->getParent()->begin() &&
300           "Loop contains function entry block!");
301
302    NumVisited++;
303  }
304
305  assert(NumVisited == getNumBlocks() && "Unreachable block in loop");
306
307  // Check the subloops.
308  for (iterator I = begin(), E = end(); I != E; ++I)
309    // Each block in each subloop should be contained within this loop.
310    for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
311         BI != BE; ++BI) {
312        assert(std::binary_search(LoopBBs.begin(), LoopBBs.end(), *BI) &&
313               "Loop does not contain all the blocks of a subloop!");
314    }
315
316  // Check the parent loop pointer.
317  if (ParentLoop) {
318    assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
319           ParentLoop->end() &&
320           "Loop is not a subloop of its parent!");
321  }
322#endif
323}
324
325/// verifyLoop - Verify loop structure of this loop and all nested loops.
326template<class BlockT, class LoopT>
327void LoopBase<BlockT, LoopT>::verifyLoopNest(
328  DenseSet<const LoopT*> *Loops) const {
329  Loops->insert(static_cast<const LoopT *>(this));
330  // Verify this loop.
331  verifyLoop();
332  // Verify the subloops.
333  for (iterator I = begin(), E = end(); I != E; ++I)
334    (*I)->verifyLoopNest(Loops);
335}
336
337template<class BlockT, class LoopT>
338void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth) const {
339  OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
340       << " containing: ";
341
342  for (unsigned i = 0; i < getBlocks().size(); ++i) {
343    if (i) OS << ",";
344    BlockT *BB = getBlocks()[i];
345    WriteAsOperand(OS, BB, false);
346    if (BB == getHeader())    OS << "<header>";
347    if (BB == getLoopLatch()) OS << "<latch>";
348    if (isLoopExiting(BB))    OS << "<exiting>";
349  }
350  OS << "\n";
351
352  for (iterator I = begin(), E = end(); I != E; ++I)
353    (*I)->print(OS, Depth+2);
354}
355
356//===----------------------------------------------------------------------===//
357/// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
358/// result does / not depend on use list (block predecessor) order.
359///
360
361/// Discover a subloop with the specified backedges such that: All blocks within
362/// this loop are mapped to this loop or a subloop. And all subloops within this
363/// loop have their parent loop set to this loop or a subloop.
364template<class BlockT, class LoopT>
365static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT*> Backedges,
366                                  LoopInfoBase<BlockT, LoopT> *LI,
367                                  DominatorTreeBase<BlockT> &DomTree) {
368  typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
369
370  unsigned NumBlocks = 0;
371  unsigned NumSubloops = 0;
372
373  // Perform a backward CFG traversal using a worklist.
374  std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
375  while (!ReverseCFGWorklist.empty()) {
376    BlockT *PredBB = ReverseCFGWorklist.back();
377    ReverseCFGWorklist.pop_back();
378
379    LoopT *Subloop = LI->getLoopFor(PredBB);
380    if (!Subloop) {
381      if (!DomTree.isReachableFromEntry(PredBB))
382        continue;
383
384      // This is an undiscovered block. Map it to the current loop.
385      LI->changeLoopFor(PredBB, L);
386      ++NumBlocks;
387      if (PredBB == L->getHeader())
388          continue;
389      // Push all block predecessors on the worklist.
390      ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
391                                InvBlockTraits::child_begin(PredBB),
392                                InvBlockTraits::child_end(PredBB));
393    }
394    else {
395      // This is a discovered block. Find its outermost discovered loop.
396      while (LoopT *Parent = Subloop->getParentLoop())
397        Subloop = Parent;
398
399      // If it is already discovered to be a subloop of this loop, continue.
400      if (Subloop == L)
401        continue;
402
403      // Discover a subloop of this loop.
404      Subloop->setParentLoop(L);
405      ++NumSubloops;
406      NumBlocks += Subloop->getBlocks().capacity();
407      PredBB = Subloop->getHeader();
408      // Continue traversal along predecessors that are not loop-back edges from
409      // within this subloop tree itself. Note that a predecessor may directly
410      // reach another subloop that is not yet discovered to be a subloop of
411      // this loop, which we must traverse.
412      for (typename InvBlockTraits::ChildIteratorType PI =
413             InvBlockTraits::child_begin(PredBB),
414             PE = InvBlockTraits::child_end(PredBB); PI != PE; ++PI) {
415        if (LI->getLoopFor(*PI) != Subloop)
416          ReverseCFGWorklist.push_back(*PI);
417      }
418    }
419  }
420  L->getSubLoopsVector().reserve(NumSubloops);
421  L->getBlocksVector().reserve(NumBlocks);
422}
423
424namespace {
425/// Populate all loop data in a stable order during a single forward DFS.
426template<class BlockT, class LoopT>
427class PopulateLoopsDFS {
428  typedef GraphTraits<BlockT*> BlockTraits;
429  typedef typename BlockTraits::ChildIteratorType SuccIterTy;
430
431  LoopInfoBase<BlockT, LoopT> *LI;
432  DenseSet<const BlockT *> VisitedBlocks;
433  std::vector<std::pair<BlockT*, SuccIterTy> > DFSStack;
434
435public:
436  PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li):
437    LI(li) {}
438
439  void traverse(BlockT *EntryBlock);
440
441protected:
442  void insertIntoLoop(BlockT *Block);
443
444  BlockT *dfsSource() { return DFSStack.back().first; }
445  SuccIterTy &dfsSucc() { return DFSStack.back().second; }
446  SuccIterTy dfsSuccEnd() { return BlockTraits::child_end(dfsSource()); }
447
448  void pushBlock(BlockT *Block) {
449    DFSStack.push_back(std::make_pair(Block, BlockTraits::child_begin(Block)));
450  }
451};
452} // anonymous
453
454/// Top-level driver for the forward DFS within the loop.
455template<class BlockT, class LoopT>
456void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
457  pushBlock(EntryBlock);
458  VisitedBlocks.insert(EntryBlock);
459  while (!DFSStack.empty()) {
460    // Traverse the leftmost path as far as possible.
461    while (dfsSucc() != dfsSuccEnd()) {
462      BlockT *BB = *dfsSucc();
463      ++dfsSucc();
464      if (!VisitedBlocks.insert(BB).second)
465        continue;
466
467      // Push the next DFS successor onto the stack.
468      pushBlock(BB);
469    }
470    // Visit the top of the stack in postorder and backtrack.
471    insertIntoLoop(dfsSource());
472    DFSStack.pop_back();
473  }
474}
475
476/// Add a single Block to its ancestor loops in PostOrder. If the block is a
477/// subloop header, add the subloop to its parent in PostOrder, then reverse the
478/// Block and Subloop vectors of the now complete subloop to achieve RPO.
479template<class BlockT, class LoopT>
480void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
481  LoopT *Subloop = LI->getLoopFor(Block);
482  if (Subloop && Block == Subloop->getHeader()) {
483    // We reach this point once per subloop after processing all the blocks in
484    // the subloop.
485    if (Subloop->getParentLoop())
486      Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
487    else
488      LI->addTopLevelLoop(Subloop);
489
490    // For convenience, Blocks and Subloops are inserted in postorder. Reverse
491    // the lists, except for the loop header, which is always at the beginning.
492    std::reverse(Subloop->getBlocksVector().begin()+1,
493                 Subloop->getBlocksVector().end());
494    std::reverse(Subloop->getSubLoopsVector().begin(),
495                 Subloop->getSubLoopsVector().end());
496
497    Subloop = Subloop->getParentLoop();
498  }
499  for (; Subloop; Subloop = Subloop->getParentLoop())
500    Subloop->getBlocksVector().push_back(Block);
501}
502
503/// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
504/// interleaved with backward CFG traversals within each subloop
505/// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
506/// this part of the algorithm is linear in the number of CFG edges. Subloop and
507/// Block vectors are then populated during a single forward CFG traversal
508/// (PopulateLoopDFS).
509///
510/// During the two CFG traversals each block is seen three times:
511/// 1) Discovered and mapped by a reverse CFG traversal.
512/// 2) Visited during a forward DFS CFG traversal.
513/// 3) Reverse-inserted in the loop in postorder following forward DFS.
514///
515/// The Block vectors are inclusive, so step 3 requires loop-depth number of
516/// insertions per block.
517template<class BlockT, class LoopT>
518void LoopInfoBase<BlockT, LoopT>::
519Analyze(DominatorTreeBase<BlockT> &DomTree) {
520
521  // Postorder traversal of the dominator tree.
522  DomTreeNodeBase<BlockT>* DomRoot = DomTree.getRootNode();
523  for (po_iterator<DomTreeNodeBase<BlockT>*> DomIter = po_begin(DomRoot),
524         DomEnd = po_end(DomRoot); DomIter != DomEnd; ++DomIter) {
525
526    BlockT *Header = DomIter->getBlock();
527    SmallVector<BlockT *, 4> Backedges;
528
529    // Check each predecessor of the potential loop header.
530    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
531    for (typename InvBlockTraits::ChildIteratorType PI =
532           InvBlockTraits::child_begin(Header),
533           PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
534
535      BlockT *Backedge = *PI;
536
537      // If Header dominates predBB, this is a new loop. Collect the backedges.
538      if (DomTree.dominates(Header, Backedge)
539          && DomTree.isReachableFromEntry(Backedge)) {
540        Backedges.push_back(Backedge);
541      }
542    }
543    // Perform a backward CFG traversal to discover and map blocks in this loop.
544    if (!Backedges.empty()) {
545      LoopT *L = new LoopT(Header);
546      discoverAndMapSubloop(L, ArrayRef<BlockT*>(Backedges), this, DomTree);
547    }
548  }
549  // Perform a single forward CFG traversal to populate block and subloop
550  // vectors for all loops.
551  PopulateLoopsDFS<BlockT, LoopT> DFS(this);
552  DFS.traverse(DomRoot->getBlock());
553}
554
555// Debugging
556template<class BlockT, class LoopT>
557void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
558  for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
559    TopLevelLoops[i]->print(OS);
560#if 0
561  for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
562         E = BBMap.end(); I != E; ++I)
563    OS << "BB '" << I->first->getName() << "' level = "
564       << I->second->getLoopDepth() << "\n";
565#endif
566}
567
568} // End llvm namespace
569
570#endif
571