LoopInfoImpl.h revision 674be02d525d4e24bc6943ed9274958c580bcfbc
1//===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the generic implementation of LoopInfo used for both Loops and
11// MachineLoops.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
16#define LLVM_ANALYSIS_LOOPINFOIMPL_H
17
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/Analysis/LoopInfo.h"
20
21namespace llvm {
22
23//===----------------------------------------------------------------------===//
24// APIs for simple analysis of the loop. See header notes.
25
26/// getExitingBlocks - Return all blocks inside the loop that have successors
27/// outside of the loop.  These are the blocks _inside of the current loop_
28/// which branch out.  The returned list is always unique.
29///
30template<class BlockT, class LoopT>
31void LoopBase<BlockT, LoopT>::
32getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
33  // Sort the blocks vector so that we can use binary search to do quick
34  // lookups.
35  SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
36  std::sort(LoopBBs.begin(), LoopBBs.end());
37
38  typedef GraphTraits<BlockT*> BlockTraits;
39  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
40    for (typename BlockTraits::ChildIteratorType I =
41           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
42         I != E; ++I)
43      if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
44        // Not in current loop? It must be an exit block.
45        ExitingBlocks.push_back(*BI);
46        break;
47      }
48}
49
50/// getExitingBlock - If getExitingBlocks would return exactly one block,
51/// return that block. Otherwise return null.
52template<class BlockT, class LoopT>
53BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
54  SmallVector<BlockT*, 8> ExitingBlocks;
55  getExitingBlocks(ExitingBlocks);
56  if (ExitingBlocks.size() == 1)
57    return ExitingBlocks[0];
58  return 0;
59}
60
61/// getExitBlocks - Return all of the successor blocks of this loop.  These
62/// are the blocks _outside of the current loop_ which are branched to.
63///
64template<class BlockT, class LoopT>
65void LoopBase<BlockT, LoopT>::
66getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
67  // Sort the blocks vector so that we can use binary search to do quick
68  // lookups.
69  SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
70  std::sort(LoopBBs.begin(), LoopBBs.end());
71
72  typedef GraphTraits<BlockT*> BlockTraits;
73  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
74    for (typename BlockTraits::ChildIteratorType I =
75           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
76         I != E; ++I)
77      if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
78        // Not in current loop? It must be an exit block.
79        ExitBlocks.push_back(*I);
80}
81
82/// getExitBlock - If getExitBlocks would return exactly one block,
83/// return that block. Otherwise return null.
84template<class BlockT, class LoopT>
85BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
86  SmallVector<BlockT*, 8> ExitBlocks;
87  getExitBlocks(ExitBlocks);
88  if (ExitBlocks.size() == 1)
89    return ExitBlocks[0];
90  return 0;
91}
92
93/// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
94template<class BlockT, class LoopT>
95void LoopBase<BlockT, LoopT>::
96getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const {
97  // Sort the blocks vector so that we can use binary search to do quick
98  // lookups.
99  SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
100  array_pod_sort(LoopBBs.begin(), LoopBBs.end());
101
102  typedef GraphTraits<BlockT*> BlockTraits;
103  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
104    for (typename BlockTraits::ChildIteratorType I =
105           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
106         I != E; ++I)
107      if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
108        // Not in current loop? It must be an exit block.
109        ExitEdges.push_back(Edge(*BI, *I));
110}
111
112/// getLoopPreheader - If there is a preheader for this loop, return it.  A
113/// loop has a preheader if there is only one edge to the header of the loop
114/// from outside of the loop.  If this is the case, the block branching to the
115/// header of the loop is the preheader node.
116///
117/// This method returns null if there is no preheader for the loop.
118///
119template<class BlockT, class LoopT>
120BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
121  // Keep track of nodes outside the loop branching to the header...
122  BlockT *Out = getLoopPredecessor();
123  if (!Out) return 0;
124
125  // Make sure there is only one exit out of the preheader.
126  typedef GraphTraits<BlockT*> BlockTraits;
127  typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
128  ++SI;
129  if (SI != BlockTraits::child_end(Out))
130    return 0;  // Multiple exits from the block, must not be a preheader.
131
132  // The predecessor has exactly one successor, so it is a preheader.
133  return Out;
134}
135
136/// getLoopPredecessor - If the given loop's header has exactly one unique
137/// predecessor outside the loop, return it. Otherwise return null.
138/// This is less strict that the loop "preheader" concept, which requires
139/// the predecessor to have exactly one successor.
140///
141template<class BlockT, class LoopT>
142BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
143  // Keep track of nodes outside the loop branching to the header...
144  BlockT *Out = 0;
145
146  // Loop over the predecessors of the header node...
147  BlockT *Header = getHeader();
148  typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
149  for (typename InvBlockTraits::ChildIteratorType PI =
150         InvBlockTraits::child_begin(Header),
151         PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
152    typename InvBlockTraits::NodeType *N = *PI;
153    if (!contains(N)) {     // If the block is not in the loop...
154      if (Out && Out != N)
155        return 0;             // Multiple predecessors outside the loop
156      Out = N;
157    }
158  }
159
160  // Make sure there is only one exit out of the preheader.
161  assert(Out && "Header of loop has no predecessors from outside loop?");
162  return Out;
163}
164
165/// getLoopLatch - If there is a single latch block for this loop, return it.
166/// A latch block is a block that contains a branch back to the header.
167template<class BlockT, class LoopT>
168BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
169  BlockT *Header = getHeader();
170  typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
171  typename InvBlockTraits::ChildIteratorType PI =
172    InvBlockTraits::child_begin(Header);
173  typename InvBlockTraits::ChildIteratorType PE =
174    InvBlockTraits::child_end(Header);
175  BlockT *Latch = 0;
176  for (; PI != PE; ++PI) {
177    typename InvBlockTraits::NodeType *N = *PI;
178    if (contains(N)) {
179      if (Latch) return 0;
180      Latch = N;
181    }
182  }
183
184  return Latch;
185}
186
187//===----------------------------------------------------------------------===//
188// APIs for updating loop information after changing the CFG
189//
190
191/// addBasicBlockToLoop - This method is used by other analyses to update loop
192/// information.  NewBB is set to be a new member of the current loop.
193/// Because of this, it is added as a member of all parent loops, and is added
194/// to the specified LoopInfo object as being in the current basic block.  It
195/// is not valid to replace the loop header with this method.
196///
197template<class BlockT, class LoopT>
198void LoopBase<BlockT, LoopT>::
199addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
200  assert((Blocks.empty() || LIB[getHeader()] == this) &&
201         "Incorrect LI specified for this loop!");
202  assert(NewBB && "Cannot add a null basic block to the loop!");
203  assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
204
205  LoopT *L = static_cast<LoopT *>(this);
206
207  // Add the loop mapping to the LoopInfo object...
208  LIB.BBMap[NewBB] = L;
209
210  // Add the basic block to this loop and all parent loops...
211  while (L) {
212    L->Blocks.push_back(NewBB);
213    L = L->getParentLoop();
214  }
215}
216
217/// replaceChildLoopWith - This is used when splitting loops up.  It replaces
218/// the OldChild entry in our children list with NewChild, and updates the
219/// parent pointer of OldChild to be null and the NewChild to be this loop.
220/// This updates the loop depth of the new child.
221template<class BlockT, class LoopT>
222void LoopBase<BlockT, LoopT>::
223replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild) {
224  assert(OldChild->ParentLoop == this && "This loop is already broken!");
225  assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
226  typename std::vector<LoopT *>::iterator I =
227    std::find(SubLoops.begin(), SubLoops.end(), OldChild);
228  assert(I != SubLoops.end() && "OldChild not in loop!");
229  *I = NewChild;
230  OldChild->ParentLoop = 0;
231  NewChild->ParentLoop = static_cast<LoopT *>(this);
232}
233
234/// verifyLoop - Verify loop structure
235template<class BlockT, class LoopT>
236void LoopBase<BlockT, LoopT>::verifyLoop() const {
237#ifndef NDEBUG
238  assert(!Blocks.empty() && "Loop header is missing");
239
240  // Setup for using a depth-first iterator to visit every block in the loop.
241  SmallVector<BlockT*, 8> ExitBBs;
242  getExitBlocks(ExitBBs);
243  llvm::SmallPtrSet<BlockT*, 8> VisitSet;
244  VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
245  df_ext_iterator<BlockT*, llvm::SmallPtrSet<BlockT*, 8> >
246    BI = df_ext_begin(getHeader(), VisitSet),
247    BE = df_ext_end(getHeader(), VisitSet);
248
249  // Keep track of the number of BBs visited.
250  unsigned NumVisited = 0;
251
252  // Sort the blocks vector so that we can use binary search to do quick
253  // lookups.
254  SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
255  std::sort(LoopBBs.begin(), LoopBBs.end());
256
257  // Check the individual blocks.
258  for ( ; BI != BE; ++BI) {
259    BlockT *BB = *BI;
260    bool HasInsideLoopSuccs = false;
261    bool HasInsideLoopPreds = false;
262    SmallVector<BlockT *, 2> OutsideLoopPreds;
263
264    typedef GraphTraits<BlockT*> BlockTraits;
265    for (typename BlockTraits::ChildIteratorType SI =
266           BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
267         SI != SE; ++SI)
268      if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *SI)) {
269        HasInsideLoopSuccs = true;
270        break;
271      }
272    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
273    for (typename InvBlockTraits::ChildIteratorType PI =
274           InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
275         PI != PE; ++PI) {
276      BlockT *N = *PI;
277      if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), N))
278        HasInsideLoopPreds = true;
279      else
280        OutsideLoopPreds.push_back(N);
281    }
282
283    if (BB == getHeader()) {
284        assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
285    } else if (!OutsideLoopPreds.empty()) {
286      // A non-header loop shouldn't be reachable from outside the loop,
287      // though it is permitted if the predecessor is not itself actually
288      // reachable.
289      BlockT *EntryBB = BB->getParent()->begin();
290        for (df_iterator<BlockT *> NI = df_begin(EntryBB),
291               NE = df_end(EntryBB); NI != NE; ++NI)
292          for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
293            assert(*NI != OutsideLoopPreds[i] &&
294                   "Loop has multiple entry points!");
295    }
296    assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
297    assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
298    assert(BB != getHeader()->getParent()->begin() &&
299           "Loop contains function entry block!");
300
301    NumVisited++;
302  }
303
304  assert(NumVisited == getNumBlocks() && "Unreachable block in loop");
305
306  // Check the subloops.
307  for (iterator I = begin(), E = end(); I != E; ++I)
308    // Each block in each subloop should be contained within this loop.
309    for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
310         BI != BE; ++BI) {
311        assert(std::binary_search(LoopBBs.begin(), LoopBBs.end(), *BI) &&
312               "Loop does not contain all the blocks of a subloop!");
313    }
314
315  // Check the parent loop pointer.
316  if (ParentLoop) {
317    assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
318           ParentLoop->end() &&
319           "Loop is not a subloop of its parent!");
320  }
321#endif
322}
323
324/// verifyLoop - Verify loop structure of this loop and all nested loops.
325template<class BlockT, class LoopT>
326void LoopBase<BlockT, LoopT>::verifyLoopNest(
327  DenseSet<const LoopT*> *Loops) const {
328  Loops->insert(static_cast<const LoopT *>(this));
329  // Verify this loop.
330  verifyLoop();
331  // Verify the subloops.
332  for (iterator I = begin(), E = end(); I != E; ++I)
333    (*I)->verifyLoopNest(Loops);
334}
335
336template<class BlockT, class LoopT>
337void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth) const {
338  OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
339       << " containing: ";
340
341  for (unsigned i = 0; i < getBlocks().size(); ++i) {
342    if (i) OS << ",";
343    BlockT *BB = getBlocks()[i];
344    WriteAsOperand(OS, BB, false);
345    if (BB == getHeader())    OS << "<header>";
346    if (BB == getLoopLatch()) OS << "<latch>";
347    if (isLoopExiting(BB))    OS << "<exiting>";
348  }
349  OS << "\n";
350
351  for (iterator I = begin(), E = end(); I != E; ++I)
352    (*I)->print(OS, Depth+2);
353}
354
355//===----------------------------------------------------------------------===//
356/// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
357/// result does / not depend on use list (block predecessor) order.
358///
359
360/// Discover a subloop with the specified backedges such that: All blocks within
361/// this loop are mapped to this loop or a subloop. And all subloops within this
362/// loop have their parent loop set to this loop or a subloop.
363template<class BlockT, class LoopT>
364static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT*> Backedges,
365                                  LoopInfoBase<BlockT, LoopT> *LI,
366                                  DominatorTreeBase<BlockT> &DomTree) {
367  typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
368
369  unsigned NumBlocks = 0;
370  unsigned NumSubloops = 0;
371
372  // Perform a backward CFG traversal using a worklist.
373  std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
374  while (!ReverseCFGWorklist.empty()) {
375    BlockT *PredBB = ReverseCFGWorklist.back();
376    ReverseCFGWorklist.pop_back();
377
378    LoopT *Subloop = LI->getLoopFor(PredBB);
379    if (!Subloop) {
380      if (!DomTree.isReachableFromEntry(PredBB))
381        continue;
382
383      // This is an undiscovered block. Map it to the current loop.
384      LI->changeLoopFor(PredBB, L);
385      ++NumBlocks;
386      if (PredBB == L->getHeader())
387          continue;
388      // Push all block predecessors on the worklist.
389      ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
390                                InvBlockTraits::child_begin(PredBB),
391                                InvBlockTraits::child_end(PredBB));
392    }
393    else {
394      // This is a discovered block. Find its outermost discovered loop.
395      while (LoopT *Parent = Subloop->getParentLoop())
396        Subloop = Parent;
397
398      // If it is already discovered to be a subloop of this loop, continue.
399      if (Subloop == L)
400        continue;
401
402      // Discover a subloop of this loop.
403      Subloop->setParentLoop(L);
404      ++NumSubloops;
405      NumBlocks += Subloop->getBlocks().capacity();
406      PredBB = Subloop->getHeader();
407      // Continue traversal along predecessors that are not loop-back edges from
408      // within this subloop tree itself. Note that a predecessor may directly
409      // reach another subloop that is not yet discovered to be a subloop of
410      // this loop, which we must traverse.
411      for (typename InvBlockTraits::ChildIteratorType PI =
412             InvBlockTraits::child_begin(PredBB),
413             PE = InvBlockTraits::child_end(PredBB); PI != PE; ++PI) {
414        if (LI->getLoopFor(*PI) != Subloop)
415          ReverseCFGWorklist.push_back(*PI);
416      }
417    }
418  }
419  L->getSubLoopsVector().reserve(NumSubloops);
420  L->getBlocksVector().reserve(NumBlocks);
421}
422
423namespace {
424/// Populate all loop data in a stable order during a single forward DFS.
425template<class BlockT, class LoopT>
426class PopulateLoopsDFS {
427  typedef GraphTraits<BlockT*> BlockTraits;
428  typedef typename BlockTraits::ChildIteratorType SuccIterTy;
429
430  LoopInfoBase<BlockT, LoopT> *LI;
431  DenseSet<const BlockT *> VisitedBlocks;
432  std::vector<std::pair<BlockT*, SuccIterTy> > DFSStack;
433
434public:
435  PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li):
436    LI(li) {}
437
438  void traverse(BlockT *EntryBlock);
439
440protected:
441  void insertIntoLoop(BlockT *Block);
442
443  BlockT *dfsSource() { return DFSStack.back().first; }
444  SuccIterTy &dfsSucc() { return DFSStack.back().second; }
445  SuccIterTy dfsSuccEnd() { return BlockTraits::child_end(dfsSource()); }
446
447  void pushBlock(BlockT *Block) {
448    DFSStack.push_back(std::make_pair(Block, BlockTraits::child_begin(Block)));
449  }
450};
451} // anonymous
452
453/// Top-level driver for the forward DFS within the loop.
454template<class BlockT, class LoopT>
455void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
456  pushBlock(EntryBlock);
457  VisitedBlocks.insert(EntryBlock);
458  while (!DFSStack.empty()) {
459    // Traverse the leftmost path as far as possible.
460    while (dfsSucc() != dfsSuccEnd()) {
461      BlockT *BB = *dfsSucc();
462      ++dfsSucc();
463      if (!VisitedBlocks.insert(BB).second)
464        continue;
465
466      // Push the next DFS successor onto the stack.
467      pushBlock(BB);
468    }
469    // Visit the top of the stack in postorder and backtrack.
470    insertIntoLoop(dfsSource());
471    DFSStack.pop_back();
472  }
473}
474
475/// Add a single Block to its ancestor loops in PostOrder. If the block is a
476/// subloop header, add the subloop to its parent in PostOrder, then reverse the
477/// Block and Subloop vectors of the now complete subloop to achieve RPO.
478template<class BlockT, class LoopT>
479void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
480  LoopT *Subloop = LI->getLoopFor(Block);
481  if (Subloop && Block == Subloop->getHeader()) {
482    // We reach this point once per subloop after processing all the blocks in
483    // the subloop.
484    if (Subloop->getParentLoop())
485      Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
486    else
487      LI->addTopLevelLoop(Subloop);
488
489    // For convenience, Blocks and Subloops are inserted in postorder. Reverse
490    // the lists, except for the loop header, which is always at the beginning.
491    std::reverse(Subloop->getBlocksVector().begin()+1,
492                 Subloop->getBlocksVector().end());
493    std::reverse(Subloop->getSubLoopsVector().begin(),
494                 Subloop->getSubLoopsVector().end());
495
496    Subloop = Subloop->getParentLoop();
497  }
498  for (; Subloop; Subloop = Subloop->getParentLoop())
499    Subloop->getBlocksVector().push_back(Block);
500}
501
502/// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
503/// interleaved with backward CFG traversals within each subloop
504/// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
505/// this part of the algorithm is linear in the number of CFG edges. Subloop and
506/// Block vectors are then populated during a single forward CFG traversal
507/// (PopulateLoopDFS).
508///
509/// During the two CFG traversals each block is seen three times:
510/// 1) Discovered and mapped by a reverse CFG traversal.
511/// 2) Visited during a forward DFS CFG traversal.
512/// 3) Reverse-inserted in the loop in postorder following forward DFS.
513///
514/// The Block vectors are inclusive, so step 3 requires loop-depth number of
515/// insertions per block.
516template<class BlockT, class LoopT>
517void LoopInfoBase<BlockT, LoopT>::
518Analyze(DominatorTreeBase<BlockT> &DomTree) {
519
520  // Postorder traversal of the dominator tree.
521  DomTreeNodeBase<BlockT>* DomRoot = DomTree.getRootNode();
522  for (po_iterator<DomTreeNodeBase<BlockT>*> DomIter = po_begin(DomRoot),
523         DomEnd = po_end(DomRoot); DomIter != DomEnd; ++DomIter) {
524
525    BlockT *Header = DomIter->getBlock();
526    SmallVector<BlockT *, 4> Backedges;
527
528    // Check each predecessor of the potential loop header.
529    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
530    for (typename InvBlockTraits::ChildIteratorType PI =
531           InvBlockTraits::child_begin(Header),
532           PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
533
534      BlockT *Backedge = *PI;
535
536      // If Header dominates predBB, this is a new loop. Collect the backedges.
537      if (DomTree.dominates(Header, Backedge)
538          && DomTree.isReachableFromEntry(Backedge)) {
539        Backedges.push_back(Backedge);
540      }
541    }
542    // Perform a backward CFG traversal to discover and map blocks in this loop.
543    if (!Backedges.empty()) {
544      LoopT *L = new LoopT(Header);
545      discoverAndMapSubloop(L, ArrayRef<BlockT*>(Backedges), this, DomTree);
546    }
547  }
548  // Perform a single forward CFG traversal to populate block and subloop
549  // vectors for all loops.
550  PopulateLoopsDFS<BlockT, LoopT> DFS(this);
551  DFS.traverse(DomRoot->getBlock());
552}
553
554// Debugging
555template<class BlockT, class LoopT>
556void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
557  for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
558    TopLevelLoops[i]->print(OS);
559#if 0
560  for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
561         E = BBMap.end(); I != E; ++I)
562    OS << "BB '" << I->first->getName() << "' level = "
563       << I->second->getLoopDepth() << "\n";
564#endif
565}
566
567} // End llvm namespace
568
569#endif
570