LoopInfoImpl.h revision 887f9c5ec15582aec34aa6c28955d01e4e9961e2
1//===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the generic implementation of LoopInfo used for both Loops and
11// MachineLoops.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
16#define LLVM_ANALYSIS_LOOPINFOIMPL_H
17
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/Analysis/LoopInfo.h"
21
22namespace llvm {
23
24//===----------------------------------------------------------------------===//
25// APIs for simple analysis of the loop. See header notes.
26
27/// getExitingBlocks - Return all blocks inside the loop that have successors
28/// outside of the loop.  These are the blocks _inside of the current loop_
29/// which branch out.  The returned list is always unique.
30///
31template<class BlockT, class LoopT>
32void LoopBase<BlockT, LoopT>::
33getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
34  typedef GraphTraits<BlockT*> BlockTraits;
35  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
36    for (typename BlockTraits::ChildIteratorType I =
37           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
38         I != E; ++I)
39      if (!contains(*I)) {
40        // Not in current loop? It must be an exit block.
41        ExitingBlocks.push_back(*BI);
42        break;
43      }
44}
45
46/// getExitingBlock - If getExitingBlocks would return exactly one block,
47/// return that block. Otherwise return null.
48template<class BlockT, class LoopT>
49BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
50  SmallVector<BlockT*, 8> ExitingBlocks;
51  getExitingBlocks(ExitingBlocks);
52  if (ExitingBlocks.size() == 1)
53    return ExitingBlocks[0];
54  return 0;
55}
56
57/// getExitBlocks - Return all of the successor blocks of this loop.  These
58/// are the blocks _outside of the current loop_ which are branched to.
59///
60template<class BlockT, class LoopT>
61void LoopBase<BlockT, LoopT>::
62getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
63  typedef GraphTraits<BlockT*> BlockTraits;
64  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
65    for (typename BlockTraits::ChildIteratorType I =
66           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
67         I != E; ++I)
68      if (!contains(*I))
69        // Not in current loop? It must be an exit block.
70        ExitBlocks.push_back(*I);
71}
72
73/// getExitBlock - If getExitBlocks would return exactly one block,
74/// return that block. Otherwise return null.
75template<class BlockT, class LoopT>
76BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
77  SmallVector<BlockT*, 8> ExitBlocks;
78  getExitBlocks(ExitBlocks);
79  if (ExitBlocks.size() == 1)
80    return ExitBlocks[0];
81  return 0;
82}
83
84/// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
85template<class BlockT, class LoopT>
86void LoopBase<BlockT, LoopT>::
87getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const {
88  typedef GraphTraits<BlockT*> BlockTraits;
89  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
90    for (typename BlockTraits::ChildIteratorType I =
91           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
92         I != E; ++I)
93      if (!contains(*I))
94        // Not in current loop? It must be an exit block.
95        ExitEdges.push_back(Edge(*BI, *I));
96}
97
98/// getLoopPreheader - If there is a preheader for this loop, return it.  A
99/// loop has a preheader if there is only one edge to the header of the loop
100/// from outside of the loop.  If this is the case, the block branching to the
101/// header of the loop is the preheader node.
102///
103/// This method returns null if there is no preheader for the loop.
104///
105template<class BlockT, class LoopT>
106BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
107  // Keep track of nodes outside the loop branching to the header...
108  BlockT *Out = getLoopPredecessor();
109  if (!Out) return 0;
110
111  // Make sure there is only one exit out of the preheader.
112  typedef GraphTraits<BlockT*> BlockTraits;
113  typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
114  ++SI;
115  if (SI != BlockTraits::child_end(Out))
116    return 0;  // Multiple exits from the block, must not be a preheader.
117
118  // The predecessor has exactly one successor, so it is a preheader.
119  return Out;
120}
121
122/// getLoopPredecessor - If the given loop's header has exactly one unique
123/// predecessor outside the loop, return it. Otherwise return null.
124/// This is less strict that the loop "preheader" concept, which requires
125/// the predecessor to have exactly one successor.
126///
127template<class BlockT, class LoopT>
128BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
129  // Keep track of nodes outside the loop branching to the header...
130  BlockT *Out = 0;
131
132  // Loop over the predecessors of the header node...
133  BlockT *Header = getHeader();
134  typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
135  for (typename InvBlockTraits::ChildIteratorType PI =
136         InvBlockTraits::child_begin(Header),
137         PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
138    typename InvBlockTraits::NodeType *N = *PI;
139    if (!contains(N)) {     // If the block is not in the loop...
140      if (Out && Out != N)
141        return 0;             // Multiple predecessors outside the loop
142      Out = N;
143    }
144  }
145
146  // Make sure there is only one exit out of the preheader.
147  assert(Out && "Header of loop has no predecessors from outside loop?");
148  return Out;
149}
150
151/// getLoopLatch - If there is a single latch block for this loop, return it.
152/// A latch block is a block that contains a branch back to the header.
153template<class BlockT, class LoopT>
154BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
155  BlockT *Header = getHeader();
156  typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
157  typename InvBlockTraits::ChildIteratorType PI =
158    InvBlockTraits::child_begin(Header);
159  typename InvBlockTraits::ChildIteratorType PE =
160    InvBlockTraits::child_end(Header);
161  BlockT *Latch = 0;
162  for (; PI != PE; ++PI) {
163    typename InvBlockTraits::NodeType *N = *PI;
164    if (contains(N)) {
165      if (Latch) return 0;
166      Latch = N;
167    }
168  }
169
170  return Latch;
171}
172
173//===----------------------------------------------------------------------===//
174// APIs for updating loop information after changing the CFG
175//
176
177/// addBasicBlockToLoop - This method is used by other analyses to update loop
178/// information.  NewBB is set to be a new member of the current loop.
179/// Because of this, it is added as a member of all parent loops, and is added
180/// to the specified LoopInfo object as being in the current basic block.  It
181/// is not valid to replace the loop header with this method.
182///
183template<class BlockT, class LoopT>
184void LoopBase<BlockT, LoopT>::
185addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
186  assert((Blocks.empty() || LIB[getHeader()] == this) &&
187         "Incorrect LI specified for this loop!");
188  assert(NewBB && "Cannot add a null basic block to the loop!");
189  assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
190
191  LoopT *L = static_cast<LoopT *>(this);
192
193  // Add the loop mapping to the LoopInfo object...
194  LIB.BBMap[NewBB] = L;
195
196  // Add the basic block to this loop and all parent loops...
197  while (L) {
198    L->addBlockEntry(NewBB);
199    L = L->getParentLoop();
200  }
201}
202
203/// replaceChildLoopWith - This is used when splitting loops up.  It replaces
204/// the OldChild entry in our children list with NewChild, and updates the
205/// parent pointer of OldChild to be null and the NewChild to be this loop.
206/// This updates the loop depth of the new child.
207template<class BlockT, class LoopT>
208void LoopBase<BlockT, LoopT>::
209replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild) {
210  assert(OldChild->ParentLoop == this && "This loop is already broken!");
211  assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
212  typename std::vector<LoopT *>::iterator I =
213    std::find(SubLoops.begin(), SubLoops.end(), OldChild);
214  assert(I != SubLoops.end() && "OldChild not in loop!");
215  *I = NewChild;
216  OldChild->ParentLoop = 0;
217  NewChild->ParentLoop = static_cast<LoopT *>(this);
218}
219
220/// verifyLoop - Verify loop structure
221template<class BlockT, class LoopT>
222void LoopBase<BlockT, LoopT>::verifyLoop() const {
223#ifndef NDEBUG
224  assert(!Blocks.empty() && "Loop header is missing");
225
226  // Setup for using a depth-first iterator to visit every block in the loop.
227  SmallVector<BlockT*, 8> ExitBBs;
228  getExitBlocks(ExitBBs);
229  llvm::SmallPtrSet<BlockT*, 8> VisitSet;
230  VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
231  df_ext_iterator<BlockT*, llvm::SmallPtrSet<BlockT*, 8> >
232    BI = df_ext_begin(getHeader(), VisitSet),
233    BE = df_ext_end(getHeader(), VisitSet);
234
235  // Keep track of the number of BBs visited.
236  unsigned NumVisited = 0;
237
238  // Check the individual blocks.
239  for ( ; BI != BE; ++BI) {
240    BlockT *BB = *BI;
241    bool HasInsideLoopSuccs = false;
242    bool HasInsideLoopPreds = false;
243    SmallVector<BlockT *, 2> OutsideLoopPreds;
244
245    typedef GraphTraits<BlockT*> BlockTraits;
246    for (typename BlockTraits::ChildIteratorType SI =
247           BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
248         SI != SE; ++SI)
249      if (contains(*SI)) {
250        HasInsideLoopSuccs = true;
251        break;
252      }
253    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
254    for (typename InvBlockTraits::ChildIteratorType PI =
255           InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
256         PI != PE; ++PI) {
257      BlockT *N = *PI;
258      if (contains(N))
259        HasInsideLoopPreds = true;
260      else
261        OutsideLoopPreds.push_back(N);
262    }
263
264    if (BB == getHeader()) {
265        assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
266    } else if (!OutsideLoopPreds.empty()) {
267      // A non-header loop shouldn't be reachable from outside the loop,
268      // though it is permitted if the predecessor is not itself actually
269      // reachable.
270      BlockT *EntryBB = BB->getParent()->begin();
271        for (df_iterator<BlockT *> NI = df_begin(EntryBB),
272               NE = df_end(EntryBB); NI != NE; ++NI)
273          for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
274            assert(*NI != OutsideLoopPreds[i] &&
275                   "Loop has multiple entry points!");
276    }
277    assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
278    assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
279    assert(BB != getHeader()->getParent()->begin() &&
280           "Loop contains function entry block!");
281
282    NumVisited++;
283  }
284
285  assert(NumVisited == getNumBlocks() && "Unreachable block in loop");
286
287  // Check the subloops.
288  for (iterator I = begin(), E = end(); I != E; ++I)
289    // Each block in each subloop should be contained within this loop.
290    for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
291         BI != BE; ++BI) {
292        assert(contains(*BI) &&
293               "Loop does not contain all the blocks of a subloop!");
294    }
295
296  // Check the parent loop pointer.
297  if (ParentLoop) {
298    assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
299           ParentLoop->end() &&
300           "Loop is not a subloop of its parent!");
301  }
302#endif
303}
304
305/// verifyLoop - Verify loop structure of this loop and all nested loops.
306template<class BlockT, class LoopT>
307void LoopBase<BlockT, LoopT>::verifyLoopNest(
308  DenseSet<const LoopT*> *Loops) const {
309  Loops->insert(static_cast<const LoopT *>(this));
310  // Verify this loop.
311  verifyLoop();
312  // Verify the subloops.
313  for (iterator I = begin(), E = end(); I != E; ++I)
314    (*I)->verifyLoopNest(Loops);
315}
316
317template<class BlockT, class LoopT>
318void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth) const {
319  OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
320       << " containing: ";
321
322  for (unsigned i = 0; i < getBlocks().size(); ++i) {
323    if (i) OS << ",";
324    BlockT *BB = getBlocks()[i];
325    WriteAsOperand(OS, BB, false);
326    if (BB == getHeader())    OS << "<header>";
327    if (BB == getLoopLatch()) OS << "<latch>";
328    if (isLoopExiting(BB))    OS << "<exiting>";
329  }
330  OS << "\n";
331
332  for (iterator I = begin(), E = end(); I != E; ++I)
333    (*I)->print(OS, Depth+2);
334}
335
336//===----------------------------------------------------------------------===//
337/// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
338/// result does / not depend on use list (block predecessor) order.
339///
340
341/// Discover a subloop with the specified backedges such that: All blocks within
342/// this loop are mapped to this loop or a subloop. And all subloops within this
343/// loop have their parent loop set to this loop or a subloop.
344template<class BlockT, class LoopT>
345static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT*> Backedges,
346                                  LoopInfoBase<BlockT, LoopT> *LI,
347                                  DominatorTreeBase<BlockT> &DomTree) {
348  typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
349
350  unsigned NumBlocks = 0;
351  unsigned NumSubloops = 0;
352
353  // Perform a backward CFG traversal using a worklist.
354  std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
355  while (!ReverseCFGWorklist.empty()) {
356    BlockT *PredBB = ReverseCFGWorklist.back();
357    ReverseCFGWorklist.pop_back();
358
359    LoopT *Subloop = LI->getLoopFor(PredBB);
360    if (!Subloop) {
361      if (!DomTree.isReachableFromEntry(PredBB))
362        continue;
363
364      // This is an undiscovered block. Map it to the current loop.
365      LI->changeLoopFor(PredBB, L);
366      ++NumBlocks;
367      if (PredBB == L->getHeader())
368          continue;
369      // Push all block predecessors on the worklist.
370      ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
371                                InvBlockTraits::child_begin(PredBB),
372                                InvBlockTraits::child_end(PredBB));
373    }
374    else {
375      // This is a discovered block. Find its outermost discovered loop.
376      while (LoopT *Parent = Subloop->getParentLoop())
377        Subloop = Parent;
378
379      // If it is already discovered to be a subloop of this loop, continue.
380      if (Subloop == L)
381        continue;
382
383      // Discover a subloop of this loop.
384      Subloop->setParentLoop(L);
385      ++NumSubloops;
386      NumBlocks += Subloop->getBlocks().capacity();
387      PredBB = Subloop->getHeader();
388      // Continue traversal along predecessors that are not loop-back edges from
389      // within this subloop tree itself. Note that a predecessor may directly
390      // reach another subloop that is not yet discovered to be a subloop of
391      // this loop, which we must traverse.
392      for (typename InvBlockTraits::ChildIteratorType PI =
393             InvBlockTraits::child_begin(PredBB),
394             PE = InvBlockTraits::child_end(PredBB); PI != PE; ++PI) {
395        if (LI->getLoopFor(*PI) != Subloop)
396          ReverseCFGWorklist.push_back(*PI);
397      }
398    }
399  }
400  L->getSubLoopsVector().reserve(NumSubloops);
401  L->reserveBlocks(NumBlocks);
402}
403
404namespace {
405/// Populate all loop data in a stable order during a single forward DFS.
406template<class BlockT, class LoopT>
407class PopulateLoopsDFS {
408  typedef GraphTraits<BlockT*> BlockTraits;
409  typedef typename BlockTraits::ChildIteratorType SuccIterTy;
410
411  LoopInfoBase<BlockT, LoopT> *LI;
412  DenseSet<const BlockT *> VisitedBlocks;
413  std::vector<std::pair<BlockT*, SuccIterTy> > DFSStack;
414
415public:
416  PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li):
417    LI(li) {}
418
419  void traverse(BlockT *EntryBlock);
420
421protected:
422  void insertIntoLoop(BlockT *Block);
423
424  BlockT *dfsSource() { return DFSStack.back().first; }
425  SuccIterTy &dfsSucc() { return DFSStack.back().second; }
426  SuccIterTy dfsSuccEnd() { return BlockTraits::child_end(dfsSource()); }
427
428  void pushBlock(BlockT *Block) {
429    DFSStack.push_back(std::make_pair(Block, BlockTraits::child_begin(Block)));
430  }
431};
432} // anonymous
433
434/// Top-level driver for the forward DFS within the loop.
435template<class BlockT, class LoopT>
436void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
437  pushBlock(EntryBlock);
438  VisitedBlocks.insert(EntryBlock);
439  while (!DFSStack.empty()) {
440    // Traverse the leftmost path as far as possible.
441    while (dfsSucc() != dfsSuccEnd()) {
442      BlockT *BB = *dfsSucc();
443      ++dfsSucc();
444      if (!VisitedBlocks.insert(BB).second)
445        continue;
446
447      // Push the next DFS successor onto the stack.
448      pushBlock(BB);
449    }
450    // Visit the top of the stack in postorder and backtrack.
451    insertIntoLoop(dfsSource());
452    DFSStack.pop_back();
453  }
454}
455
456/// Add a single Block to its ancestor loops in PostOrder. If the block is a
457/// subloop header, add the subloop to its parent in PostOrder, then reverse the
458/// Block and Subloop vectors of the now complete subloop to achieve RPO.
459template<class BlockT, class LoopT>
460void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
461  LoopT *Subloop = LI->getLoopFor(Block);
462  if (Subloop && Block == Subloop->getHeader()) {
463    // We reach this point once per subloop after processing all the blocks in
464    // the subloop.
465    if (Subloop->getParentLoop())
466      Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
467    else
468      LI->addTopLevelLoop(Subloop);
469
470    // For convenience, Blocks and Subloops are inserted in postorder. Reverse
471    // the lists, except for the loop header, which is always at the beginning.
472    Subloop->reverseBlock(1);
473    std::reverse(Subloop->getSubLoopsVector().begin(),
474                 Subloop->getSubLoopsVector().end());
475
476    Subloop = Subloop->getParentLoop();
477  }
478  for (; Subloop; Subloop = Subloop->getParentLoop())
479    Subloop->addBlockEntry(Block);
480}
481
482/// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
483/// interleaved with backward CFG traversals within each subloop
484/// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
485/// this part of the algorithm is linear in the number of CFG edges. Subloop and
486/// Block vectors are then populated during a single forward CFG traversal
487/// (PopulateLoopDFS).
488///
489/// During the two CFG traversals each block is seen three times:
490/// 1) Discovered and mapped by a reverse CFG traversal.
491/// 2) Visited during a forward DFS CFG traversal.
492/// 3) Reverse-inserted in the loop in postorder following forward DFS.
493///
494/// The Block vectors are inclusive, so step 3 requires loop-depth number of
495/// insertions per block.
496template<class BlockT, class LoopT>
497void LoopInfoBase<BlockT, LoopT>::
498Analyze(DominatorTreeBase<BlockT> &DomTree) {
499
500  // Postorder traversal of the dominator tree.
501  DomTreeNodeBase<BlockT>* DomRoot = DomTree.getRootNode();
502  for (po_iterator<DomTreeNodeBase<BlockT>*> DomIter = po_begin(DomRoot),
503         DomEnd = po_end(DomRoot); DomIter != DomEnd; ++DomIter) {
504
505    BlockT *Header = DomIter->getBlock();
506    SmallVector<BlockT *, 4> Backedges;
507
508    // Check each predecessor of the potential loop header.
509    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
510    for (typename InvBlockTraits::ChildIteratorType PI =
511           InvBlockTraits::child_begin(Header),
512           PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
513
514      BlockT *Backedge = *PI;
515
516      // If Header dominates predBB, this is a new loop. Collect the backedges.
517      if (DomTree.dominates(Header, Backedge)
518          && DomTree.isReachableFromEntry(Backedge)) {
519        Backedges.push_back(Backedge);
520      }
521    }
522    // Perform a backward CFG traversal to discover and map blocks in this loop.
523    if (!Backedges.empty()) {
524      LoopT *L = new LoopT(Header);
525      discoverAndMapSubloop(L, ArrayRef<BlockT*>(Backedges), this, DomTree);
526    }
527  }
528  // Perform a single forward CFG traversal to populate block and subloop
529  // vectors for all loops.
530  PopulateLoopsDFS<BlockT, LoopT> DFS(this);
531  DFS.traverse(DomRoot->getBlock());
532}
533
534// Debugging
535template<class BlockT, class LoopT>
536void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
537  for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
538    TopLevelLoops[i]->print(OS);
539#if 0
540  for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
541         E = BBMap.end(); I != E; ++I)
542    OS << "BB '" << I->first->getName() << "' level = "
543       << I->second->getLoopDepth() << "\n";
544#endif
545}
546
547} // End llvm namespace
548
549#endif
550