LoopInfoImpl.h revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the generic implementation of LoopInfo used for both Loops and
11// MachineLoops.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
16#define LLVM_ANALYSIS_LOOPINFOIMPL_H
17
18#include "llvm/ADT/DepthFirstIterator.h"
19#include "llvm/ADT/PostOrderIterator.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/Analysis/LoopInfo.h"
22#include "llvm/IR/Dominators.h"
23
24namespace llvm {
25
26//===----------------------------------------------------------------------===//
27// APIs for simple analysis of the loop. See header notes.
28
29/// getExitingBlocks - Return all blocks inside the loop that have successors
30/// outside of the loop.  These are the blocks _inside of the current loop_
31/// which branch out.  The returned list is always unique.
32///
33template<class BlockT, class LoopT>
34void LoopBase<BlockT, LoopT>::
35getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
36  typedef GraphTraits<BlockT*> BlockTraits;
37  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
38    for (typename BlockTraits::ChildIteratorType I =
39           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
40         I != E; ++I)
41      if (!contains(*I)) {
42        // Not in current loop? It must be an exit block.
43        ExitingBlocks.push_back(*BI);
44        break;
45      }
46}
47
48/// getExitingBlock - If getExitingBlocks would return exactly one block,
49/// return that block. Otherwise return null.
50template<class BlockT, class LoopT>
51BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
52  SmallVector<BlockT*, 8> ExitingBlocks;
53  getExitingBlocks(ExitingBlocks);
54  if (ExitingBlocks.size() == 1)
55    return ExitingBlocks[0];
56  return nullptr;
57}
58
59/// getExitBlocks - Return all of the successor blocks of this loop.  These
60/// are the blocks _outside of the current loop_ which are branched to.
61///
62template<class BlockT, class LoopT>
63void LoopBase<BlockT, LoopT>::
64getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
65  typedef GraphTraits<BlockT*> BlockTraits;
66  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
67    for (typename BlockTraits::ChildIteratorType I =
68           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
69         I != E; ++I)
70      if (!contains(*I))
71        // Not in current loop? It must be an exit block.
72        ExitBlocks.push_back(*I);
73}
74
75/// getExitBlock - If getExitBlocks would return exactly one block,
76/// return that block. Otherwise return null.
77template<class BlockT, class LoopT>
78BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
79  SmallVector<BlockT*, 8> ExitBlocks;
80  getExitBlocks(ExitBlocks);
81  if (ExitBlocks.size() == 1)
82    return ExitBlocks[0];
83  return nullptr;
84}
85
86/// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
87template<class BlockT, class LoopT>
88void LoopBase<BlockT, LoopT>::
89getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const {
90  typedef GraphTraits<BlockT*> BlockTraits;
91  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
92    for (typename BlockTraits::ChildIteratorType I =
93           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
94         I != E; ++I)
95      if (!contains(*I))
96        // Not in current loop? It must be an exit block.
97        ExitEdges.push_back(Edge(*BI, *I));
98}
99
100/// getLoopPreheader - If there is a preheader for this loop, return it.  A
101/// loop has a preheader if there is only one edge to the header of the loop
102/// from outside of the loop.  If this is the case, the block branching to the
103/// header of the loop is the preheader node.
104///
105/// This method returns null if there is no preheader for the loop.
106///
107template<class BlockT, class LoopT>
108BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
109  // Keep track of nodes outside the loop branching to the header...
110  BlockT *Out = getLoopPredecessor();
111  if (!Out) return nullptr;
112
113  // Make sure there is only one exit out of the preheader.
114  typedef GraphTraits<BlockT*> BlockTraits;
115  typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
116  ++SI;
117  if (SI != BlockTraits::child_end(Out))
118    return nullptr;  // Multiple exits from the block, must not be a preheader.
119
120  // The predecessor has exactly one successor, so it is a preheader.
121  return Out;
122}
123
124/// getLoopPredecessor - If the given loop's header has exactly one unique
125/// predecessor outside the loop, return it. Otherwise return null.
126/// This is less strict that the loop "preheader" concept, which requires
127/// the predecessor to have exactly one successor.
128///
129template<class BlockT, class LoopT>
130BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
131  // Keep track of nodes outside the loop branching to the header...
132  BlockT *Out = nullptr;
133
134  // Loop over the predecessors of the header node...
135  BlockT *Header = getHeader();
136  typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
137  for (typename InvBlockTraits::ChildIteratorType PI =
138         InvBlockTraits::child_begin(Header),
139         PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
140    typename InvBlockTraits::NodeType *N = *PI;
141    if (!contains(N)) {     // If the block is not in the loop...
142      if (Out && Out != N)
143        return nullptr;     // Multiple predecessors outside the loop
144      Out = N;
145    }
146  }
147
148  // Make sure there is only one exit out of the preheader.
149  assert(Out && "Header of loop has no predecessors from outside loop?");
150  return Out;
151}
152
153/// getLoopLatch - If there is a single latch block for this loop, return it.
154/// A latch block is a block that contains a branch back to the header.
155template<class BlockT, class LoopT>
156BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
157  BlockT *Header = getHeader();
158  typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
159  typename InvBlockTraits::ChildIteratorType PI =
160    InvBlockTraits::child_begin(Header);
161  typename InvBlockTraits::ChildIteratorType PE =
162    InvBlockTraits::child_end(Header);
163  BlockT *Latch = nullptr;
164  for (; PI != PE; ++PI) {
165    typename InvBlockTraits::NodeType *N = *PI;
166    if (contains(N)) {
167      if (Latch) return nullptr;
168      Latch = N;
169    }
170  }
171
172  return Latch;
173}
174
175//===----------------------------------------------------------------------===//
176// APIs for updating loop information after changing the CFG
177//
178
179/// addBasicBlockToLoop - This method is used by other analyses to update loop
180/// information.  NewBB is set to be a new member of the current loop.
181/// Because of this, it is added as a member of all parent loops, and is added
182/// to the specified LoopInfo object as being in the current basic block.  It
183/// is not valid to replace the loop header with this method.
184///
185template<class BlockT, class LoopT>
186void LoopBase<BlockT, LoopT>::
187addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
188  assert((Blocks.empty() || LIB[getHeader()] == this) &&
189         "Incorrect LI specified for this loop!");
190  assert(NewBB && "Cannot add a null basic block to the loop!");
191  assert(!LIB[NewBB] && "BasicBlock already in the loop!");
192
193  LoopT *L = static_cast<LoopT *>(this);
194
195  // Add the loop mapping to the LoopInfo object...
196  LIB.BBMap[NewBB] = L;
197
198  // Add the basic block to this loop and all parent loops...
199  while (L) {
200    L->addBlockEntry(NewBB);
201    L = L->getParentLoop();
202  }
203}
204
205/// replaceChildLoopWith - This is used when splitting loops up.  It replaces
206/// the OldChild entry in our children list with NewChild, and updates the
207/// parent pointer of OldChild to be null and the NewChild to be this loop.
208/// This updates the loop depth of the new child.
209template<class BlockT, class LoopT>
210void LoopBase<BlockT, LoopT>::
211replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild) {
212  assert(OldChild->ParentLoop == this && "This loop is already broken!");
213  assert(!NewChild->ParentLoop && "NewChild already has a parent!");
214  typename std::vector<LoopT *>::iterator I =
215    std::find(SubLoops.begin(), SubLoops.end(), OldChild);
216  assert(I != SubLoops.end() && "OldChild not in loop!");
217  *I = NewChild;
218  OldChild->ParentLoop = nullptr;
219  NewChild->ParentLoop = static_cast<LoopT *>(this);
220}
221
222/// verifyLoop - Verify loop structure
223template<class BlockT, class LoopT>
224void LoopBase<BlockT, LoopT>::verifyLoop() const {
225#ifndef NDEBUG
226  assert(!Blocks.empty() && "Loop header is missing");
227
228  // Setup for using a depth-first iterator to visit every block in the loop.
229  SmallVector<BlockT*, 8> ExitBBs;
230  getExitBlocks(ExitBBs);
231  llvm::SmallPtrSet<BlockT*, 8> VisitSet;
232  VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
233  df_ext_iterator<BlockT*, llvm::SmallPtrSet<BlockT*, 8> >
234    BI = df_ext_begin(getHeader(), VisitSet),
235    BE = df_ext_end(getHeader(), VisitSet);
236
237  // Keep track of the number of BBs visited.
238  unsigned NumVisited = 0;
239
240  // Check the individual blocks.
241  for ( ; BI != BE; ++BI) {
242    BlockT *BB = *BI;
243    bool HasInsideLoopSuccs = false;
244    bool HasInsideLoopPreds = false;
245    SmallVector<BlockT *, 2> OutsideLoopPreds;
246
247    typedef GraphTraits<BlockT*> BlockTraits;
248    for (typename BlockTraits::ChildIteratorType SI =
249           BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
250         SI != SE; ++SI)
251      if (contains(*SI)) {
252        HasInsideLoopSuccs = true;
253        break;
254      }
255    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
256    for (typename InvBlockTraits::ChildIteratorType PI =
257           InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
258         PI != PE; ++PI) {
259      BlockT *N = *PI;
260      if (contains(N))
261        HasInsideLoopPreds = true;
262      else
263        OutsideLoopPreds.push_back(N);
264    }
265
266    if (BB == getHeader()) {
267        assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
268    } else if (!OutsideLoopPreds.empty()) {
269      // A non-header loop shouldn't be reachable from outside the loop,
270      // though it is permitted if the predecessor is not itself actually
271      // reachable.
272      BlockT *EntryBB = BB->getParent()->begin();
273      for (BlockT *CB : depth_first(EntryBB))
274        for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
275          assert(CB != OutsideLoopPreds[i] &&
276                 "Loop has multiple entry points!");
277    }
278    assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
279    assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
280    assert(BB != getHeader()->getParent()->begin() &&
281           "Loop contains function entry block!");
282
283    NumVisited++;
284  }
285
286  assert(NumVisited == getNumBlocks() && "Unreachable block in loop");
287
288  // Check the subloops.
289  for (iterator I = begin(), E = end(); I != E; ++I)
290    // Each block in each subloop should be contained within this loop.
291    for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
292         BI != BE; ++BI) {
293        assert(contains(*BI) &&
294               "Loop does not contain all the blocks of a subloop!");
295    }
296
297  // Check the parent loop pointer.
298  if (ParentLoop) {
299    assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
300           ParentLoop->end() &&
301           "Loop is not a subloop of its parent!");
302  }
303#endif
304}
305
306/// verifyLoop - Verify loop structure of this loop and all nested loops.
307template<class BlockT, class LoopT>
308void LoopBase<BlockT, LoopT>::verifyLoopNest(
309  DenseSet<const LoopT*> *Loops) const {
310  Loops->insert(static_cast<const LoopT *>(this));
311  // Verify this loop.
312  verifyLoop();
313  // Verify the subloops.
314  for (iterator I = begin(), E = end(); I != E; ++I)
315    (*I)->verifyLoopNest(Loops);
316}
317
318template<class BlockT, class LoopT>
319void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth) const {
320  OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
321       << " containing: ";
322
323  for (unsigned i = 0; i < getBlocks().size(); ++i) {
324    if (i) OS << ",";
325    BlockT *BB = getBlocks()[i];
326    BB->printAsOperand(OS, false);
327    if (BB == getHeader())    OS << "<header>";
328    if (BB == getLoopLatch()) OS << "<latch>";
329    if (isLoopExiting(BB))    OS << "<exiting>";
330  }
331  OS << "\n";
332
333  for (iterator I = begin(), E = end(); I != E; ++I)
334    (*I)->print(OS, Depth+2);
335}
336
337//===----------------------------------------------------------------------===//
338/// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
339/// result does / not depend on use list (block predecessor) order.
340///
341
342/// Discover a subloop with the specified backedges such that: All blocks within
343/// this loop are mapped to this loop or a subloop. And all subloops within this
344/// loop have their parent loop set to this loop or a subloop.
345template<class BlockT, class LoopT>
346static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT*> Backedges,
347                                  LoopInfoBase<BlockT, LoopT> *LI,
348                                  DominatorTreeBase<BlockT> &DomTree) {
349  typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
350
351  unsigned NumBlocks = 0;
352  unsigned NumSubloops = 0;
353
354  // Perform a backward CFG traversal using a worklist.
355  std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
356  while (!ReverseCFGWorklist.empty()) {
357    BlockT *PredBB = ReverseCFGWorklist.back();
358    ReverseCFGWorklist.pop_back();
359
360    LoopT *Subloop = LI->getLoopFor(PredBB);
361    if (!Subloop) {
362      if (!DomTree.isReachableFromEntry(PredBB))
363        continue;
364
365      // This is an undiscovered block. Map it to the current loop.
366      LI->changeLoopFor(PredBB, L);
367      ++NumBlocks;
368      if (PredBB == L->getHeader())
369          continue;
370      // Push all block predecessors on the worklist.
371      ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
372                                InvBlockTraits::child_begin(PredBB),
373                                InvBlockTraits::child_end(PredBB));
374    }
375    else {
376      // This is a discovered block. Find its outermost discovered loop.
377      while (LoopT *Parent = Subloop->getParentLoop())
378        Subloop = Parent;
379
380      // If it is already discovered to be a subloop of this loop, continue.
381      if (Subloop == L)
382        continue;
383
384      // Discover a subloop of this loop.
385      Subloop->setParentLoop(L);
386      ++NumSubloops;
387      NumBlocks += Subloop->getBlocks().capacity();
388      PredBB = Subloop->getHeader();
389      // Continue traversal along predecessors that are not loop-back edges from
390      // within this subloop tree itself. Note that a predecessor may directly
391      // reach another subloop that is not yet discovered to be a subloop of
392      // this loop, which we must traverse.
393      for (typename InvBlockTraits::ChildIteratorType PI =
394             InvBlockTraits::child_begin(PredBB),
395             PE = InvBlockTraits::child_end(PredBB); PI != PE; ++PI) {
396        if (LI->getLoopFor(*PI) != Subloop)
397          ReverseCFGWorklist.push_back(*PI);
398      }
399    }
400  }
401  L->getSubLoopsVector().reserve(NumSubloops);
402  L->reserveBlocks(NumBlocks);
403}
404
405namespace {
406/// Populate all loop data in a stable order during a single forward DFS.
407template<class BlockT, class LoopT>
408class PopulateLoopsDFS {
409  typedef GraphTraits<BlockT*> BlockTraits;
410  typedef typename BlockTraits::ChildIteratorType SuccIterTy;
411
412  LoopInfoBase<BlockT, LoopT> *LI;
413  DenseSet<const BlockT *> VisitedBlocks;
414  std::vector<std::pair<BlockT*, SuccIterTy> > DFSStack;
415
416public:
417  PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li):
418    LI(li) {}
419
420  void traverse(BlockT *EntryBlock);
421
422protected:
423  void insertIntoLoop(BlockT *Block);
424
425  BlockT *dfsSource() { return DFSStack.back().first; }
426  SuccIterTy &dfsSucc() { return DFSStack.back().second; }
427  SuccIterTy dfsSuccEnd() { return BlockTraits::child_end(dfsSource()); }
428
429  void pushBlock(BlockT *Block) {
430    DFSStack.push_back(std::make_pair(Block, BlockTraits::child_begin(Block)));
431  }
432};
433} // anonymous
434
435/// Top-level driver for the forward DFS within the loop.
436template<class BlockT, class LoopT>
437void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
438  pushBlock(EntryBlock);
439  VisitedBlocks.insert(EntryBlock);
440  while (!DFSStack.empty()) {
441    // Traverse the leftmost path as far as possible.
442    while (dfsSucc() != dfsSuccEnd()) {
443      BlockT *BB = *dfsSucc();
444      ++dfsSucc();
445      if (!VisitedBlocks.insert(BB).second)
446        continue;
447
448      // Push the next DFS successor onto the stack.
449      pushBlock(BB);
450    }
451    // Visit the top of the stack in postorder and backtrack.
452    insertIntoLoop(dfsSource());
453    DFSStack.pop_back();
454  }
455}
456
457/// Add a single Block to its ancestor loops in PostOrder. If the block is a
458/// subloop header, add the subloop to its parent in PostOrder, then reverse the
459/// Block and Subloop vectors of the now complete subloop to achieve RPO.
460template<class BlockT, class LoopT>
461void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
462  LoopT *Subloop = LI->getLoopFor(Block);
463  if (Subloop && Block == Subloop->getHeader()) {
464    // We reach this point once per subloop after processing all the blocks in
465    // the subloop.
466    if (Subloop->getParentLoop())
467      Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
468    else
469      LI->addTopLevelLoop(Subloop);
470
471    // For convenience, Blocks and Subloops are inserted in postorder. Reverse
472    // the lists, except for the loop header, which is always at the beginning.
473    Subloop->reverseBlock(1);
474    std::reverse(Subloop->getSubLoopsVector().begin(),
475                 Subloop->getSubLoopsVector().end());
476
477    Subloop = Subloop->getParentLoop();
478  }
479  for (; Subloop; Subloop = Subloop->getParentLoop())
480    Subloop->addBlockEntry(Block);
481}
482
483/// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
484/// interleaved with backward CFG traversals within each subloop
485/// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
486/// this part of the algorithm is linear in the number of CFG edges. Subloop and
487/// Block vectors are then populated during a single forward CFG traversal
488/// (PopulateLoopDFS).
489///
490/// During the two CFG traversals each block is seen three times:
491/// 1) Discovered and mapped by a reverse CFG traversal.
492/// 2) Visited during a forward DFS CFG traversal.
493/// 3) Reverse-inserted in the loop in postorder following forward DFS.
494///
495/// The Block vectors are inclusive, so step 3 requires loop-depth number of
496/// insertions per block.
497template<class BlockT, class LoopT>
498void LoopInfoBase<BlockT, LoopT>::
499Analyze(DominatorTreeBase<BlockT> &DomTree) {
500
501  // Postorder traversal of the dominator tree.
502  DomTreeNodeBase<BlockT>* DomRoot = DomTree.getRootNode();
503  for (po_iterator<DomTreeNodeBase<BlockT>*> DomIter = po_begin(DomRoot),
504         DomEnd = po_end(DomRoot); DomIter != DomEnd; ++DomIter) {
505
506    BlockT *Header = DomIter->getBlock();
507    SmallVector<BlockT *, 4> Backedges;
508
509    // Check each predecessor of the potential loop header.
510    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
511    for (typename InvBlockTraits::ChildIteratorType PI =
512           InvBlockTraits::child_begin(Header),
513           PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
514
515      BlockT *Backedge = *PI;
516
517      // If Header dominates predBB, this is a new loop. Collect the backedges.
518      if (DomTree.dominates(Header, Backedge)
519          && DomTree.isReachableFromEntry(Backedge)) {
520        Backedges.push_back(Backedge);
521      }
522    }
523    // Perform a backward CFG traversal to discover and map blocks in this loop.
524    if (!Backedges.empty()) {
525      LoopT *L = new LoopT(Header);
526      discoverAndMapSubloop(L, ArrayRef<BlockT*>(Backedges), this, DomTree);
527    }
528  }
529  // Perform a single forward CFG traversal to populate block and subloop
530  // vectors for all loops.
531  PopulateLoopsDFS<BlockT, LoopT> DFS(this);
532  DFS.traverse(DomRoot->getBlock());
533}
534
535// Debugging
536template<class BlockT, class LoopT>
537void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
538  for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
539    TopLevelLoops[i]->print(OS);
540#if 0
541  for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
542         E = BBMap.end(); I != E; ++I)
543    OS << "BB '" << I->first->getName() << "' level = "
544       << I->second->getLoopDepth() << "\n";
545#endif
546}
547
548} // End llvm namespace
549
550#endif
551