MemoryDependenceAnalysis.h revision ba6ca6dd3bc4a7f30e07010c3b0b95cced719f76
1//===- llvm/Analysis/MemoryDependenceAnalysis.h - Memory Deps  --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the MemoryDependenceAnalysis analysis pass.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ANALYSIS_MEMORY_DEPENDENCE_H
15#define LLVM_ANALYSIS_MEMORY_DEPENDENCE_H
16
17#include "llvm/BasicBlock.h"
18#include "llvm/Pass.h"
19#include "llvm/Support/ValueHandle.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/OwningPtr.h"
23#include "llvm/ADT/PointerIntPair.h"
24
25namespace llvm {
26  class Function;
27  class FunctionPass;
28  class Instruction;
29  class CallSite;
30  class AliasAnalysis;
31  class TargetData;
32  class MemoryDependenceAnalysis;
33  class PredIteratorCache;
34  class DominatorTree;
35  class PHITransAddr;
36
37  /// MemDepResult - A memory dependence query can return one of three different
38  /// answers, described below.
39  class MemDepResult {
40    enum DepType {
41      /// Invalid - Clients of MemDep never see this.
42      Invalid = 0,
43
44      /// Clobber - This is a dependence on the specified instruction which
45      /// clobbers the desired value.  The pointer member of the MemDepResult
46      /// pair holds the instruction that clobbers the memory.  For example,
47      /// this occurs when we see a may-aliased store to the memory location we
48      /// care about.
49      Clobber,
50
51      /// Def - This is a dependence on the specified instruction which
52      /// defines/produces the desired memory location.  The pointer member of
53      /// the MemDepResult pair holds the instruction that defines the memory.
54      /// Cases of interest:
55      ///   1. This could be a load or store for dependence queries on
56      ///      load/store.  The value loaded or stored is the produced value.
57      ///      Note that the pointer operand may be different than that of the
58      ///      queried pointer due to must aliases and phi translation.  Note
59      ///      that the def may not be the same type as the query, the pointers
60      ///      may just be must aliases.
61      ///   2. For loads and stores, this could be an allocation instruction. In
62      ///      this case, the load is loading an undef value or a store is the
63      ///      first store to (that part of) the allocation.
64      ///   3. Dependence queries on calls return Def only when they are
65      ///      readonly calls or memory use intrinsics with identical callees
66      ///      and no intervening clobbers.  No validation is done that the
67      ///      operands to the calls are the same.
68      Def,
69
70      /// NonLocal - This marker indicates that the query has no dependency in
71      /// the specified block.  To find out more, the client should query other
72      /// predecessor blocks.
73      NonLocal
74    };
75    typedef PointerIntPair<Instruction*, 2, DepType> PairTy;
76    PairTy Value;
77    explicit MemDepResult(PairTy V) : Value(V) {}
78  public:
79    MemDepResult() : Value(0, Invalid) {}
80
81    /// get methods: These are static ctor methods for creating various
82    /// MemDepResult kinds.
83    static MemDepResult getDef(Instruction *Inst) {
84      return MemDepResult(PairTy(Inst, Def));
85    }
86    static MemDepResult getClobber(Instruction *Inst) {
87      return MemDepResult(PairTy(Inst, Clobber));
88    }
89    static MemDepResult getNonLocal() {
90      return MemDepResult(PairTy(0, NonLocal));
91    }
92
93    /// isClobber - Return true if this MemDepResult represents a query that is
94    /// a instruction clobber dependency.
95    bool isClobber() const { return Value.getInt() == Clobber; }
96
97    /// isDef - Return true if this MemDepResult represents a query that is
98    /// a instruction definition dependency.
99    bool isDef() const { return Value.getInt() == Def; }
100
101    /// isNonLocal - Return true if this MemDepResult represents a query that
102    /// is transparent to the start of the block, but where a non-local hasn't
103    /// been done.
104    bool isNonLocal() const { return Value.getInt() == NonLocal; }
105
106    /// getInst() - If this is a normal dependency, return the instruction that
107    /// is depended on.  Otherwise, return null.
108    Instruction *getInst() const { return Value.getPointer(); }
109
110    bool operator==(const MemDepResult &M) const { return Value == M.Value; }
111    bool operator!=(const MemDepResult &M) const { return Value != M.Value; }
112    bool operator<(const MemDepResult &M) const { return Value < M.Value; }
113    bool operator>(const MemDepResult &M) const { return Value > M.Value; }
114  private:
115    friend class MemoryDependenceAnalysis;
116    /// Dirty - Entries with this marker occur in a LocalDeps map or
117    /// NonLocalDeps map when the instruction they previously referenced was
118    /// removed from MemDep.  In either case, the entry may include an
119    /// instruction pointer.  If so, the pointer is an instruction in the
120    /// block where scanning can start from, saving some work.
121    ///
122    /// In a default-constructed MemDepResult object, the type will be Dirty
123    /// and the instruction pointer will be null.
124    ///
125
126    /// isDirty - Return true if this is a MemDepResult in its dirty/invalid.
127    /// state.
128    bool isDirty() const { return Value.getInt() == Invalid; }
129
130    static MemDepResult getDirty(Instruction *Inst) {
131      return MemDepResult(PairTy(Inst, Invalid));
132    }
133  };
134
135  /// NonLocalDepResult - This is a result from a NonLocal dependence query.
136  /// For each BasicBlock (the BB entry) it keeps a MemDepResult and the
137  /// (potentially phi translated) address that was live in the block.
138  class NonLocalDepResult {
139    BasicBlock *BB;
140    MemDepResult Result;
141    Value *Address;
142  public:
143    NonLocalDepResult(BasicBlock *bb, MemDepResult result, Value *address)
144      : BB(bb), Result(result), Address(address) {}
145
146    // BB is the sort key, it can't be changed.
147    BasicBlock *getBB() const { return BB; }
148
149    void setResult(const MemDepResult &R, Value *Addr) {
150      Result = R;
151      Address = Addr;
152    }
153
154    const MemDepResult &getResult() const { return Result; }
155
156    /// getAddress - Return the address of this pointer in this block.  This can
157    /// be different than the address queried for the non-local result because
158    /// of phi translation.  This returns null if the address was not available
159    /// in a block (i.e. because phi translation failed) or if this is a cached
160    /// result and that address was deleted.
161    ///
162    /// The address is always null for a non-local 'call' dependence.
163    Value *getAddress() const { return Address; }
164  };
165
166  /// NonLocalDepEntry - This is an entry in the NonLocalDepInfo cache.  For
167  /// each BasicBlock (the BB entry) it keeps a MemDepResult.
168  class NonLocalDepEntry {
169    BasicBlock *BB;
170    MemDepResult Result;
171  public:
172    NonLocalDepEntry(BasicBlock *bb, MemDepResult result)
173      : BB(bb), Result(result) {}
174
175    // This is used for searches.
176    NonLocalDepEntry(BasicBlock *bb) : BB(bb) {}
177
178    // BB is the sort key, it can't be changed.
179    BasicBlock *getBB() const { return BB; }
180
181    void setResult(const MemDepResult &R) { Result = R; }
182
183    const MemDepResult &getResult() const { return Result; }
184
185    bool operator<(const NonLocalDepEntry &RHS) const {
186      return BB < RHS.BB;
187    }
188  };
189
190  /// MemoryDependenceAnalysis - This is an analysis that determines, for a
191  /// given memory operation, what preceding memory operations it depends on.
192  /// It builds on alias analysis information, and tries to provide a lazy,
193  /// caching interface to a common kind of alias information query.
194  ///
195  /// The dependency information returned is somewhat unusual, but is pragmatic.
196  /// If queried about a store or call that might modify memory, the analysis
197  /// will return the instruction[s] that may either load from that memory or
198  /// store to it.  If queried with a load or call that can never modify memory,
199  /// the analysis will return calls and stores that might modify the pointer,
200  /// but generally does not return loads unless a) they are volatile, or
201  /// b) they load from *must-aliased* pointers.  Returning a dependence on
202  /// must-alias'd pointers instead of all pointers interacts well with the
203  /// internal caching mechanism.
204  ///
205  class MemoryDependenceAnalysis : public FunctionPass {
206    // A map from instructions to their dependency.
207    typedef DenseMap<Instruction*, MemDepResult> LocalDepMapType;
208    LocalDepMapType LocalDeps;
209
210  public:
211    typedef std::vector<NonLocalDepEntry> NonLocalDepInfo;
212  private:
213    /// ValueIsLoadPair - This is a pair<Value*, bool> where the bool is true if
214    /// the dependence is a read only dependence, false if read/write.
215    typedef PointerIntPair<const Value*, 1, bool> ValueIsLoadPair;
216
217    /// BBSkipFirstBlockPair - This pair is used when caching information for a
218    /// block.  If the pointer is null, the cache value is not a full query that
219    /// starts at the specified block.  If non-null, the bool indicates whether
220    /// or not the contents of the block was skipped.
221    typedef PointerIntPair<BasicBlock*, 1, bool> BBSkipFirstBlockPair;
222
223    /// CachedNonLocalPointerInfo - This map stores the cached results of doing
224    /// a pointer lookup at the bottom of a block.  The key of this map is the
225    /// pointer+isload bit, the value is a list of <bb->result> mappings.
226    typedef DenseMap<ValueIsLoadPair, std::pair<BBSkipFirstBlockPair,
227                  NonLocalDepInfo> > CachedNonLocalPointerInfo;
228    CachedNonLocalPointerInfo NonLocalPointerDeps;
229
230    // A map from instructions to their non-local pointer dependencies.
231    typedef DenseMap<Instruction*,
232                     SmallPtrSet<ValueIsLoadPair, 4> > ReverseNonLocalPtrDepTy;
233    ReverseNonLocalPtrDepTy ReverseNonLocalPtrDeps;
234
235
236    /// PerInstNLInfo - This is the instruction we keep for each cached access
237    /// that we have for an instruction.  The pointer is an owning pointer and
238    /// the bool indicates whether we have any dirty bits in the set.
239    typedef std::pair<NonLocalDepInfo, bool> PerInstNLInfo;
240
241    // A map from instructions to their non-local dependencies.
242    typedef DenseMap<Instruction*, PerInstNLInfo> NonLocalDepMapType;
243
244    NonLocalDepMapType NonLocalDeps;
245
246    // A reverse mapping from dependencies to the dependees.  This is
247    // used when removing instructions to keep the cache coherent.
248    typedef DenseMap<Instruction*,
249                     SmallPtrSet<Instruction*, 4> > ReverseDepMapType;
250    ReverseDepMapType ReverseLocalDeps;
251
252    // A reverse mapping from dependencies to the non-local dependees.
253    ReverseDepMapType ReverseNonLocalDeps;
254
255    /// Current AA implementation, just a cache.
256    AliasAnalysis *AA;
257    TargetData *TD;
258    OwningPtr<PredIteratorCache> PredCache;
259  public:
260    MemoryDependenceAnalysis();
261    ~MemoryDependenceAnalysis();
262    static char ID;
263
264    /// Pass Implementation stuff.  This doesn't do any analysis eagerly.
265    bool runOnFunction(Function &);
266
267    /// Clean up memory in between runs
268    void releaseMemory();
269
270    /// getAnalysisUsage - Does not modify anything.  It uses Value Numbering
271    /// and Alias Analysis.
272    ///
273    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
274
275    /// getDependency - Return the instruction on which a memory operation
276    /// depends.  See the class comment for more details.  It is illegal to call
277    /// this on non-memory instructions.
278    MemDepResult getDependency(Instruction *QueryInst);
279
280    /// getNonLocalCallDependency - Perform a full dependency query for the
281    /// specified call, returning the set of blocks that the value is
282    /// potentially live across.  The returned set of results will include a
283    /// "NonLocal" result for all blocks where the value is live across.
284    ///
285    /// This method assumes the instruction returns a "NonLocal" dependency
286    /// within its own block.
287    ///
288    /// This returns a reference to an internal data structure that may be
289    /// invalidated on the next non-local query or when an instruction is
290    /// removed.  Clients must copy this data if they want it around longer than
291    /// that.
292    const NonLocalDepInfo &getNonLocalCallDependency(CallSite QueryCS);
293
294
295    /// getNonLocalPointerDependency - Perform a full dependency query for an
296    /// access to the specified (non-volatile) memory location, returning the
297    /// set of instructions that either define or clobber the value.
298    ///
299    /// This method assumes the pointer has a "NonLocal" dependency within BB.
300    void getNonLocalPointerDependency(Value *Pointer, bool isLoad,
301                                      BasicBlock *BB,
302                                    SmallVectorImpl<NonLocalDepResult> &Result);
303
304    /// removeInstruction - Remove an instruction from the dependence analysis,
305    /// updating the dependence of instructions that previously depended on it.
306    void removeInstruction(Instruction *InstToRemove);
307
308    /// invalidateCachedPointerInfo - This method is used to invalidate cached
309    /// information about the specified pointer, because it may be too
310    /// conservative in memdep.  This is an optional call that can be used when
311    /// the client detects an equivalence between the pointer and some other
312    /// value and replaces the other value with ptr. This can make Ptr available
313    /// in more places that cached info does not necessarily keep.
314    void invalidateCachedPointerInfo(Value *Ptr);
315
316    /// invalidateCachedPredecessors - Clear the PredIteratorCache info.
317    /// This needs to be done when the CFG changes, e.g., due to splitting
318    /// critical edges.
319    void invalidateCachedPredecessors();
320
321  private:
322    MemDepResult getPointerDependencyFrom(Value *Pointer, uint64_t MemSize,
323                                          bool isLoad,
324                                          BasicBlock::iterator ScanIt,
325                                          BasicBlock *BB);
326    MemDepResult getCallSiteDependencyFrom(CallSite C, bool isReadOnlyCall,
327                                           BasicBlock::iterator ScanIt,
328                                           BasicBlock *BB);
329    bool getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, uint64_t Size,
330                                     bool isLoad, BasicBlock *BB,
331                                     SmallVectorImpl<NonLocalDepResult> &Result,
332                                     DenseMap<BasicBlock*, Value*> &Visited,
333                                     bool SkipFirstBlock = false);
334    MemDepResult GetNonLocalInfoForBlock(Value *Pointer, uint64_t PointeeSize,
335                                         bool isLoad, BasicBlock *BB,
336                                         NonLocalDepInfo *Cache,
337                                         unsigned NumSortedEntries);
338
339    void RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P);
340
341    /// verifyRemoved - Verify that the specified instruction does not occur
342    /// in our internal data structures.
343    void verifyRemoved(Instruction *Inst) const;
344
345  };
346
347} // End llvm namespace
348
349#endif
350