RegionInfo.h revision 21d842c35326281798f685661b88dedcd09c13aa
1//===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Calculate a program structure tree built out of single entry single exit
11// regions.
12// The basic ideas are taken from "The Program Structure Tree - Richard Johnson,
13// David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The
14// Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana
15// Koehler - 2009".
16// The algorithm to calculate these data structures however is completely
17// different, as it takes advantage of existing information already available
18// in (Post)dominace tree and dominance frontier passes. This leads to a simpler
19// and in practice hopefully better performing algorithm. The runtime of the
20// algorithms described in the papers above are both linear in graph size,
21// O(V+E), whereas this algorithm is not, as the dominance frontier information
22// itself is not, but in practice runtime seems to be in the order of magnitude
23// of dominance tree calculation.
24//
25//===----------------------------------------------------------------------===//
26
27#ifndef LLVM_ANALYSIS_REGION_INFO_H
28#define LLVM_ANALYSIS_REGION_INFO_H
29
30#include "llvm/ADT/PointerIntPair.h"
31#include "llvm/Analysis/Dominators.h"
32#include "llvm/Analysis/PostDominators.h"
33#include "llvm/Support/Allocator.h"
34
35namespace llvm {
36
37class Region;
38class RegionInfo;
39class raw_ostream;
40class Loop;
41class LoopInfo;
42
43/// @brief Marker class to iterate over the elements of a Region in flat mode.
44///
45/// The class is used to either iterate in Flat mode or by not using it to not
46/// iterate in Flat mode.  During a Flat mode iteration all Regions are entered
47/// and the iteration returns every BasicBlock.  If the Flat mode is not
48/// selected for SubRegions just one RegionNode containing the subregion is
49/// returned.
50template <class GraphType>
51class FlatIt {};
52
53/// @brief A RegionNode represents a subregion or a BasicBlock that is part of a
54/// Region.
55class RegionNode {
56  // DO NOT IMPLEMENT
57  RegionNode(const RegionNode &);
58  // DO NOT IMPLEMENT
59  const RegionNode &operator=(const RegionNode &);
60
61protected:
62  /// This is the entry basic block that starts this region node.  If this is a
63  /// BasicBlock RegionNode, then entry is just the basic block, that this
64  /// RegionNode represents.  Otherwise it is the entry of this (Sub)RegionNode.
65  ///
66  /// In the BBtoRegionNode map of the parent of this node, BB will always map
67  /// to this node no matter which kind of node this one is.
68  ///
69  /// The node can hold either a Region or a BasicBlock.
70  /// Use one bit to save, if this RegionNode is a subregion or BasicBlock
71  /// RegionNode.
72  PointerIntPair<BasicBlock*, 1, bool> entry;
73
74  /// @brief The parent Region of this RegionNode.
75  /// @see getParent()
76  Region* parent;
77
78public:
79  /// @brief Create a RegionNode.
80  ///
81  /// @param Parent      The parent of this RegionNode.
82  /// @param Entry       The entry BasicBlock of the RegionNode.  If this
83  ///                    RegionNode represents a BasicBlock, this is the
84  ///                    BasicBlock itself.  If it represents a subregion, this
85  ///                    is the entry BasicBlock of the subregion.
86  /// @param isSubRegion If this RegionNode represents a SubRegion.
87  inline RegionNode(Region* Parent, BasicBlock* Entry, bool isSubRegion = 0)
88    : entry(Entry, isSubRegion), parent(Parent) {}
89
90  /// @brief Get the parent Region of this RegionNode.
91  ///
92  /// The parent Region is the Region this RegionNode belongs to. If for
93  /// example a BasicBlock is element of two Regions, there exist two
94  /// RegionNodes for this BasicBlock. Each with the getParent() function
95  /// pointing to the Region this RegionNode belongs to.
96  ///
97  /// @return Get the parent Region of this RegionNode.
98  inline Region* getParent() const { return parent; }
99
100  /// @brief Get the entry BasicBlock of this RegionNode.
101  ///
102  /// If this RegionNode represents a BasicBlock this is just the BasicBlock
103  /// itself, otherwise we return the entry BasicBlock of the Subregion
104  ///
105  /// @return The entry BasicBlock of this RegionNode.
106  inline BasicBlock* getEntry() const { return entry.getPointer(); }
107
108  /// @brief Get the content of this RegionNode.
109  ///
110  /// This can be either a BasicBlock or a subregion. Before calling getNodeAs()
111  /// check the type of the content with the isSubRegion() function call.
112  ///
113  /// @return The content of this RegionNode.
114  template<class T>
115  inline T* getNodeAs() const;
116
117  /// @brief Is this RegionNode a subregion?
118  ///
119  /// @return True if it contains a subregion. False if it contains a
120  ///         BasicBlock.
121  inline bool isSubRegion() const {
122    return entry.getInt();
123  }
124};
125
126/// Print a RegionNode.
127inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node);
128
129template<>
130inline BasicBlock* RegionNode::getNodeAs<BasicBlock>() const {
131  assert(!isSubRegion() && "This is not a BasicBlock RegionNode!");
132  return getEntry();
133}
134
135template<>
136inline Region* RegionNode::getNodeAs<Region>() const {
137  assert(isSubRegion() && "This is not a subregion RegionNode!");
138  return reinterpret_cast<Region*>(const_cast<RegionNode*>(this));
139}
140
141//===----------------------------------------------------------------------===//
142/// @brief A single entry single exit Region.
143///
144/// A Region is a connected subgraph of a control flow graph that has exactly
145/// two connections to the remaining graph. It can be used to analyze or
146/// optimize parts of the control flow graph.
147///
148/// A <em> simple Region </em> is connected to the remaing graph by just two
149/// edges. One edge entering the Region and another one leaving the Region.
150///
151/// An <em> extended Region </em> (or just Region) is a subgraph that can be
152/// transform into a simple Region. The transformation is done by adding
153/// BasicBlocks that merge several entry or exit edges so that after the merge
154/// just one entry and one exit edge exists.
155///
156/// The \e Entry of a Region is the first BasicBlock that is passed after
157/// entering the Region. It is an element of the Region. The entry BasicBlock
158/// dominates all BasicBlocks in the Region.
159///
160/// The \e Exit of a Region is the first BasicBlock that is passed after
161/// leaving the Region. It is not an element of the Region. The exit BasicBlock,
162/// postdominates all BasicBlocks in the Region.
163///
164/// A <em> canonical Region </em> cannot be constructed by combining smaller
165/// Regions.
166///
167/// Region A is the \e parent of Region B, if B is completely contained in A.
168///
169/// Two canonical Regions either do not intersect at all or one is
170/// the parent of the other.
171///
172/// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of
173/// Regions in the control flow graph and E is the \e parent relation of these
174/// Regions.
175///
176/// Example:
177///
178/// \verbatim
179/// A simple control flow graph, that contains two regions.
180///
181///        1
182///       / |
183///      2   |
184///     / \   3
185///    4   5  |
186///    |   |  |
187///    6   7  8
188///     \  | /
189///      \ |/       Region A: 1 -> 9 {1,2,3,4,5,6,7,8}
190///        9        Region B: 2 -> 9 {2,4,5,6,7}
191/// \endverbatim
192///
193/// You can obtain more examples by either calling
194///
195/// <tt> "opt -regions -analyze anyprogram.ll" </tt>
196/// or
197/// <tt> "opt -view-regions-only anyprogram.ll" </tt>
198///
199/// on any LLVM file you are interested in.
200///
201/// The first call returns a textual representation of the program structure
202/// tree, the second one creates a graphical representation using graphviz.
203class Region : public RegionNode {
204  friend class RegionInfo;
205  // DO NOT IMPLEMENT
206  Region(const Region &);
207  // DO NOT IMPLEMENT
208  const Region &operator=(const Region &);
209
210  // Information necessary to manage this Region.
211  RegionInfo* RI;
212  DominatorTree *DT;
213
214  // The exit BasicBlock of this region.
215  // (The entry BasicBlock is part of RegionNode)
216  BasicBlock *exit;
217
218  typedef std::vector<Region*> RegionSet;
219
220  // The subregions of this region.
221  RegionSet children;
222
223  typedef std::map<BasicBlock*, RegionNode*> BBNodeMapT;
224
225  // Save the BasicBlock RegionNodes that are element of this Region.
226  mutable BBNodeMapT BBNodeMap;
227
228  /// verifyBBInRegion - Check if a BB is in this Region. This check also works
229  /// if the region is incorrectly built. (EXPENSIVE!)
230  void verifyBBInRegion(BasicBlock* BB) const;
231
232  /// verifyWalk - Walk over all the BBs of the region starting from BB and
233  /// verify that all reachable basic blocks are elements of the region.
234  /// (EXPENSIVE!)
235  void verifyWalk(BasicBlock* BB, std::set<BasicBlock*>* visitedBB) const;
236
237  /// verifyRegionNest - Verify if the region and its children are valid
238  /// regions (EXPENSIVE!)
239  void verifyRegionNest() const;
240
241public:
242  /// @brief Create a new region.
243  ///
244  /// @param Entry  The entry basic block of the region.
245  /// @param Exit   The exit basic block of the region.
246  /// @param RI     The region info object that is managing this region.
247  /// @param DT     The dominator tree of the current function.
248  /// @param Parent The surrounding region or NULL if this is a top level
249  ///               region.
250  Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo* RI,
251         DominatorTree *DT, Region *Parent = 0);
252
253  /// Delete the Region and all its subregions.
254  ~Region();
255
256  /// @brief Get the entry BasicBlock of the Region.
257  /// @return The entry BasicBlock of the region.
258  BasicBlock *getEntry() const { return RegionNode::getEntry(); }
259
260  /// @brief Replace the entry basic block of the region with the new basic
261  ///        block.
262  ///
263  /// @param BB  The new entry basic block of the region.
264  void replaceEntry(BasicBlock *BB);
265
266  /// @brief Replace the exit basic block of the region with the new basic
267  ///        block.
268  ///
269  /// @param BB  The new exit basic block of the region.
270  void replaceExit(BasicBlock *BB);
271
272  /// @brief Get the exit BasicBlock of the Region.
273  /// @return The exit BasicBlock of the Region, NULL if this is the TopLevel
274  ///         Region.
275  BasicBlock *getExit() const { return exit; }
276
277  /// @brief Get the parent of the Region.
278  /// @return The parent of the Region or NULL if this is a top level
279  ///         Region.
280  Region *getParent() const { return RegionNode::getParent(); }
281
282  /// @brief Get the RegionNode representing the current Region.
283  /// @return The RegionNode representing the current Region.
284  RegionNode* getNode() const {
285    return const_cast<RegionNode*>(reinterpret_cast<const RegionNode*>(this));
286  }
287
288  /// @brief Get the nesting level of this Region.
289  ///
290  /// An toplevel Region has depth 0.
291  ///
292  /// @return The depth of the region.
293  unsigned getDepth() const;
294
295  /// @brief Check if a Region is the TopLevel region.
296  ///
297  /// The toplevel region represents the whole function.
298  bool isTopLevelRegion() const { return exit == NULL; }
299
300  /// @brief Return a new (non canonical) region, that is obtained by joining
301  ///        this region with its predecessors.
302  ///
303  /// @return A region also starting at getEntry(), but reaching to the next
304  ///         basic block that forms with getEntry() a (non canonical) region.
305  ///         NULL if such a basic block does not exist.
306  Region *getExpandedRegion() const;
307
308  /// @brief Return the first block of this region's single entry edge,
309  ///        if existing.
310  ///
311  /// @return The BasicBlock starting this region's single entry edge,
312  ///         else NULL.
313  BasicBlock *getEnteringBlock() const;
314
315  /// @brief Return the first block of this region's single exit edge,
316  ///        if existing.
317  ///
318  /// @return The BasicBlock starting this region's single exit edge,
319  ///         else NULL.
320  BasicBlock *getExitingBlock() const;
321
322  /// @brief Is this a simple region?
323  ///
324  /// A region is simple if it has exactly one exit and one entry edge.
325  ///
326  /// @return True if the Region is simple.
327  bool isSimple() const;
328
329  /// @brief Returns the name of the Region.
330  /// @return The Name of the Region.
331  std::string getNameStr() const;
332
333  /// @brief Return the RegionInfo object, that belongs to this Region.
334  RegionInfo *getRegionInfo() const {
335    return RI;
336  }
337
338  /// @brief Print the region.
339  ///
340  /// @param OS The output stream the Region is printed to.
341  /// @param printTree Print also the tree of subregions.
342  /// @param level The indentation level used for printing.
343  void print(raw_ostream& OS, bool printTree = true, unsigned level = 0) const;
344
345  /// @brief Print the region to stderr.
346  void dump() const;
347
348  /// @brief Check if the region contains a BasicBlock.
349  ///
350  /// @param BB The BasicBlock that might be contained in this Region.
351  /// @return True if the block is contained in the region otherwise false.
352  bool contains(const BasicBlock *BB) const;
353
354  /// @brief Check if the region contains another region.
355  ///
356  /// @param SubRegion The region that might be contained in this Region.
357  /// @return True if SubRegion is contained in the region otherwise false.
358  bool contains(const Region *SubRegion) const {
359    // Toplevel Region.
360    if (!getExit())
361      return true;
362
363    return contains(SubRegion->getEntry())
364      && (contains(SubRegion->getExit()) || SubRegion->getExit() == getExit());
365  }
366
367  /// @brief Check if the region contains an Instruction.
368  ///
369  /// @param Inst The Instruction that might be contained in this region.
370  /// @return True if the Instruction is contained in the region otherwise false.
371  bool contains(const Instruction *Inst) const {
372    return contains(Inst->getParent());
373  }
374
375  /// @brief Check if the region contains a loop.
376  ///
377  /// @param L The loop that might be contained in this region.
378  /// @return True if the loop is contained in the region otherwise false.
379  ///         In case a NULL pointer is passed to this function the result
380  ///         is false, except for the region that describes the whole function.
381  ///         In that case true is returned.
382  bool contains(const Loop *L) const;
383
384  /// @brief Get the outermost loop in the region that contains a loop.
385  ///
386  /// Find for a Loop L the outermost loop OuterL that is a parent loop of L
387  /// and is itself contained in the region.
388  ///
389  /// @param L The loop the lookup is started.
390  /// @return The outermost loop in the region, NULL if such a loop does not
391  ///         exist or if the region describes the whole function.
392  Loop *outermostLoopInRegion(Loop *L) const;
393
394  /// @brief Get the outermost loop in the region that contains a basic block.
395  ///
396  /// Find for a basic block BB the outermost loop L that contains BB and is
397  /// itself contained in the region.
398  ///
399  /// @param LI A pointer to a LoopInfo analysis.
400  /// @param BB The basic block surrounded by the loop.
401  /// @return The outermost loop in the region, NULL if such a loop does not
402  ///         exist or if the region describes the whole function.
403  Loop *outermostLoopInRegion(LoopInfo *LI, BasicBlock* BB) const;
404
405  /// @brief Get the subregion that starts at a BasicBlock
406  ///
407  /// @param BB The BasicBlock the subregion should start.
408  /// @return The Subregion if available, otherwise NULL.
409  Region* getSubRegionNode(BasicBlock *BB) const;
410
411  /// @brief Get the RegionNode for a BasicBlock
412  ///
413  /// @param BB The BasicBlock at which the RegionNode should start.
414  /// @return If available, the RegionNode that represents the subregion
415  ///         starting at BB. If no subregion starts at BB, the RegionNode
416  ///         representing BB.
417  RegionNode* getNode(BasicBlock *BB) const;
418
419  /// @brief Get the BasicBlock RegionNode for a BasicBlock
420  ///
421  /// @param BB The BasicBlock for which the RegionNode is requested.
422  /// @return The RegionNode representing the BB.
423  RegionNode* getBBNode(BasicBlock *BB) const;
424
425  /// @brief Add a new subregion to this Region.
426  ///
427  /// @param SubRegion The new subregion that will be added.
428  /// @param moveChildren Move the children of this region, that are also
429  ///                     contained in SubRegion into SubRegion.
430  void addSubRegion(Region *SubRegion, bool moveChildren = false);
431
432  /// @brief Remove a subregion from this Region.
433  ///
434  /// The subregion is not deleted, as it will probably be inserted into another
435  /// region.
436  /// @param SubRegion The SubRegion that will be removed.
437  Region *removeSubRegion(Region *SubRegion);
438
439  /// @brief Move all direct child nodes of this Region to another Region.
440  ///
441  /// @param To The Region the child nodes will be transfered to.
442  void transferChildrenTo(Region *To);
443
444  /// @brief Verify if the region is a correct region.
445  ///
446  /// Check if this is a correctly build Region. This is an expensive check, as
447  /// the complete CFG of the Region will be walked.
448  void verifyRegion() const;
449
450  /// @brief Clear the cache for BB RegionNodes.
451  ///
452  /// After calling this function the BasicBlock RegionNodes will be stored at
453  /// different memory locations. RegionNodes obtained before this function is
454  /// called are therefore not comparable to RegionNodes abtained afterwords.
455  void clearNodeCache();
456
457  /// @name Subregion Iterators
458  ///
459  /// These iterators iterator over all subregions of this Region.
460  //@{
461  typedef RegionSet::iterator iterator;
462  typedef RegionSet::const_iterator const_iterator;
463
464  iterator begin() { return children.begin(); }
465  iterator end() { return children.end(); }
466
467  const_iterator begin() const { return children.begin(); }
468  const_iterator end() const { return children.end(); }
469  //@}
470
471  /// @name BasicBlock Iterators
472  ///
473  /// These iterators iterate over all BasicBlock RegionNodes that are
474  /// contained in this Region. The iterator also iterates over BasicBlocks
475  /// that are elements of a subregion of this Region. It is therefore called a
476  /// flat iterator.
477  //@{
478  typedef df_iterator<RegionNode*, SmallPtrSet<RegionNode*, 8>, false,
479                      GraphTraits<FlatIt<RegionNode*> > > block_iterator;
480
481  typedef df_iterator<const RegionNode*, SmallPtrSet<const RegionNode*, 8>,
482                      false, GraphTraits<FlatIt<const RegionNode*> > >
483            const_block_iterator;
484
485  block_iterator block_begin();
486  block_iterator block_end();
487
488  const_block_iterator block_begin() const;
489  const_block_iterator block_end() const;
490  //@}
491
492  /// @name Element Iterators
493  ///
494  /// These iterators iterate over all BasicBlock and subregion RegionNodes that
495  /// are direct children of this Region. It does not iterate over any
496  /// RegionNodes that are also element of a subregion of this Region.
497  //@{
498  typedef df_iterator<RegionNode*, SmallPtrSet<RegionNode*, 8>, false,
499                      GraphTraits<RegionNode*> > element_iterator;
500
501  typedef df_iterator<const RegionNode*, SmallPtrSet<const RegionNode*, 8>,
502                      false, GraphTraits<const RegionNode*> >
503            const_element_iterator;
504
505  element_iterator element_begin();
506  element_iterator element_end();
507
508  const_element_iterator element_begin() const;
509  const_element_iterator element_end() const;
510  //@}
511};
512
513//===----------------------------------------------------------------------===//
514/// @brief Analysis that detects all canonical Regions.
515///
516/// The RegionInfo pass detects all canonical regions in a function. The Regions
517/// are connected using the parent relation. This builds a Program Structure
518/// Tree.
519class RegionInfo : public FunctionPass {
520  typedef DenseMap<BasicBlock*,BasicBlock*> BBtoBBMap;
521  typedef DenseMap<BasicBlock*, Region*> BBtoRegionMap;
522  typedef SmallPtrSet<Region*, 4> RegionSet;
523
524  // DO NOT IMPLEMENT
525  RegionInfo(const RegionInfo &);
526  // DO NOT IMPLEMENT
527  const RegionInfo &operator=(const RegionInfo &);
528
529  DominatorTree *DT;
530  PostDominatorTree *PDT;
531  DominanceFrontier *DF;
532
533  /// The top level region.
534  Region *TopLevelRegion;
535
536  /// Map every BB to the smallest region, that contains BB.
537  BBtoRegionMap BBtoRegion;
538
539  // isCommonDomFrontier - Returns true if BB is in the dominance frontier of
540  // entry, because it was inherited from exit. In the other case there is an
541  // edge going from entry to BB without passing exit.
542  bool isCommonDomFrontier(BasicBlock* BB, BasicBlock* entry,
543                           BasicBlock* exit) const;
544
545  // isRegion - Check if entry and exit surround a valid region, based on
546  // dominance tree and dominance frontier.
547  bool isRegion(BasicBlock* entry, BasicBlock* exit) const;
548
549  // insertShortCut - Saves a shortcut pointing from entry to exit.
550  // This function may extend this shortcut if possible.
551  void insertShortCut(BasicBlock* entry, BasicBlock* exit,
552                      BBtoBBMap* ShortCut) const;
553
554  // getNextPostDom - Returns the next BB that postdominates N, while skipping
555  // all post dominators that cannot finish a canonical region.
556  DomTreeNode *getNextPostDom(DomTreeNode* N, BBtoBBMap *ShortCut) const;
557
558  // isTrivialRegion - A region is trivial, if it contains only one BB.
559  bool isTrivialRegion(BasicBlock *entry, BasicBlock *exit) const;
560
561  // createRegion - Creates a single entry single exit region.
562  Region *createRegion(BasicBlock *entry, BasicBlock *exit);
563
564  // findRegionsWithEntry - Detect all regions starting with bb 'entry'.
565  void findRegionsWithEntry(BasicBlock *entry, BBtoBBMap *ShortCut);
566
567  // scanForRegions - Detects regions in F.
568  void scanForRegions(Function &F, BBtoBBMap *ShortCut);
569
570  // getTopMostParent - Get the top most parent with the same entry block.
571  Region *getTopMostParent(Region *region);
572
573  // buildRegionsTree - build the region hierarchy after all region detected.
574  void buildRegionsTree(DomTreeNode *N, Region *region);
575
576  // Calculate - detecte all regions in function and build the region tree.
577  void Calculate(Function& F);
578
579  void releaseMemory();
580
581  // updateStatistics - Update statistic about created regions.
582  void updateStatistics(Region *R);
583
584  // isSimple - Check if a region is a simple region with exactly one entry
585  // edge and exactly one exit edge.
586  bool isSimple(Region* R) const;
587
588public:
589  static char ID;
590  explicit RegionInfo();
591
592  ~RegionInfo();
593
594  /// @name FunctionPass interface
595  //@{
596  virtual bool runOnFunction(Function &F);
597  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
598  virtual void print(raw_ostream &OS, const Module *) const;
599  virtual void verifyAnalysis() const;
600  //@}
601
602  /// @brief Get the smallest region that contains a BasicBlock.
603  ///
604  /// @param BB The basic block.
605  /// @return The smallest region, that contains BB or NULL, if there is no
606  /// region containing BB.
607  Region *getRegionFor(BasicBlock *BB) const;
608
609  /// @brief  Set the smallest region that surrounds a basic block.
610  ///
611  /// @param BB The basic block surrounded by a region.
612  /// @param R The smallest region that surrounds BB.
613  void setRegionFor(BasicBlock *BB, Region *R);
614
615  /// @brief A shortcut for getRegionFor().
616  ///
617  /// @param BB The basic block.
618  /// @return The smallest region, that contains BB or NULL, if there is no
619  /// region containing BB.
620  Region *operator[](BasicBlock *BB) const;
621
622  /// @brief Return the exit of the maximal refined region, that starts at a
623  /// BasicBlock.
624  ///
625  /// @param BB The BasicBlock the refined region starts.
626  BasicBlock *getMaxRegionExit(BasicBlock *BB) const;
627
628  /// @brief Find the smallest region that contains two regions.
629  ///
630  /// @param A The first region.
631  /// @param B The second region.
632  /// @return The smallest region containing A and B.
633  Region *getCommonRegion(Region* A, Region *B) const;
634
635  /// @brief Find the smallest region that contains two basic blocks.
636  ///
637  /// @param A The first basic block.
638  /// @param B The second basic block.
639  /// @return The smallest region that contains A and B.
640  Region* getCommonRegion(BasicBlock* A, BasicBlock *B) const {
641    return getCommonRegion(getRegionFor(A), getRegionFor(B));
642  }
643
644  /// @brief Find the smallest region that contains a set of regions.
645  ///
646  /// @param Regions A vector of regions.
647  /// @return The smallest region that contains all regions in Regions.
648  Region* getCommonRegion(SmallVectorImpl<Region*> &Regions) const;
649
650  /// @brief Find the smallest region that contains a set of basic blocks.
651  ///
652  /// @param BBs A vector of basic blocks.
653  /// @return The smallest region that contains all basic blocks in BBS.
654  Region* getCommonRegion(SmallVectorImpl<BasicBlock*> &BBs) const;
655
656  Region *getTopLevelRegion() const {
657    return TopLevelRegion;
658  }
659
660  /// @brief Update RegionInfo after a basic block was split.
661  ///
662  /// @param NewBB The basic block that was created before OldBB.
663  /// @param OldBB The old basic block.
664  void splitBlock(BasicBlock* NewBB, BasicBlock *OldBB);
665
666  /// @brief Clear the Node Cache for all Regions.
667  ///
668  /// @see Region::clearNodeCache()
669  void clearNodeCache() {
670    if (TopLevelRegion)
671      TopLevelRegion->clearNodeCache();
672  }
673};
674
675inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node) {
676  if (Node.isSubRegion())
677    return OS << Node.getNodeAs<Region>()->getNameStr();
678  else
679    return OS << Node.getNodeAs<BasicBlock>()->getNameStr();
680}
681} // End llvm namespace
682#endif
683
684