RegionInfo.h revision 7c52c97a2232756bbcc2fb4e664892bdb8b2d90c
1//===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Calculate a program structure tree built out of single entry single exit
11// regions.
12// The basic ideas are taken from "The Program Structure Tree - Richard Johnson,
13// David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The
14// Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana
15// Koehler - 2009".
16// The algorithm to calculate these data structures however is completely
17// different, as it takes advantage of existing information already available
18// in (Post)dominace tree and dominance frontier passes. This leads to a simpler
19// and in practice hopefully better performing algorithm. The runtime of the
20// algorithms described in the papers above are both linear in graph size,
21// O(V+E), whereas this algorithm is not, as the dominance frontier information
22// itself is not, but in practice runtime seems to be in the order of magnitude
23// of dominance tree calculation.
24//
25//===----------------------------------------------------------------------===//
26
27#ifndef LLVM_ANALYSIS_REGION_INFO_H
28#define LLVM_ANALYSIS_REGION_INFO_H
29
30#include "llvm/ADT/PointerIntPair.h"
31#include "llvm/Analysis/DominanceFrontier.h"
32#include "llvm/Analysis/PostDominators.h"
33#include "llvm/Support/Allocator.h"
34#include <map>
35
36namespace llvm {
37
38class Region;
39class RegionInfo;
40class raw_ostream;
41class Loop;
42class LoopInfo;
43
44/// @brief Marker class to iterate over the elements of a Region in flat mode.
45///
46/// The class is used to either iterate in Flat mode or by not using it to not
47/// iterate in Flat mode.  During a Flat mode iteration all Regions are entered
48/// and the iteration returns every BasicBlock.  If the Flat mode is not
49/// selected for SubRegions just one RegionNode containing the subregion is
50/// returned.
51template <class GraphType>
52class FlatIt {};
53
54/// @brief A RegionNode represents a subregion or a BasicBlock that is part of a
55/// Region.
56class RegionNode {
57  // DO NOT IMPLEMENT
58  RegionNode(const RegionNode &);
59  // DO NOT IMPLEMENT
60  const RegionNode &operator=(const RegionNode &);
61
62protected:
63  /// This is the entry basic block that starts this region node.  If this is a
64  /// BasicBlock RegionNode, then entry is just the basic block, that this
65  /// RegionNode represents.  Otherwise it is the entry of this (Sub)RegionNode.
66  ///
67  /// In the BBtoRegionNode map of the parent of this node, BB will always map
68  /// to this node no matter which kind of node this one is.
69  ///
70  /// The node can hold either a Region or a BasicBlock.
71  /// Use one bit to save, if this RegionNode is a subregion or BasicBlock
72  /// RegionNode.
73  PointerIntPair<BasicBlock*, 1, bool> entry;
74
75  /// @brief The parent Region of this RegionNode.
76  /// @see getParent()
77  Region* parent;
78
79public:
80  /// @brief Create a RegionNode.
81  ///
82  /// @param Parent      The parent of this RegionNode.
83  /// @param Entry       The entry BasicBlock of the RegionNode.  If this
84  ///                    RegionNode represents a BasicBlock, this is the
85  ///                    BasicBlock itself.  If it represents a subregion, this
86  ///                    is the entry BasicBlock of the subregion.
87  /// @param isSubRegion If this RegionNode represents a SubRegion.
88  inline RegionNode(Region* Parent, BasicBlock* Entry, bool isSubRegion = 0)
89    : entry(Entry, isSubRegion), parent(Parent) {}
90
91  /// @brief Get the parent Region of this RegionNode.
92  ///
93  /// The parent Region is the Region this RegionNode belongs to. If for
94  /// example a BasicBlock is element of two Regions, there exist two
95  /// RegionNodes for this BasicBlock. Each with the getParent() function
96  /// pointing to the Region this RegionNode belongs to.
97  ///
98  /// @return Get the parent Region of this RegionNode.
99  inline Region* getParent() const { return parent; }
100
101  /// @brief Get the entry BasicBlock of this RegionNode.
102  ///
103  /// If this RegionNode represents a BasicBlock this is just the BasicBlock
104  /// itself, otherwise we return the entry BasicBlock of the Subregion
105  ///
106  /// @return The entry BasicBlock of this RegionNode.
107  inline BasicBlock* getEntry() const { return entry.getPointer(); }
108
109  /// @brief Get the content of this RegionNode.
110  ///
111  /// This can be either a BasicBlock or a subregion. Before calling getNodeAs()
112  /// check the type of the content with the isSubRegion() function call.
113  ///
114  /// @return The content of this RegionNode.
115  template<class T>
116  inline T* getNodeAs() const;
117
118  /// @brief Is this RegionNode a subregion?
119  ///
120  /// @return True if it contains a subregion. False if it contains a
121  ///         BasicBlock.
122  inline bool isSubRegion() const {
123    return entry.getInt();
124  }
125};
126
127/// Print a RegionNode.
128inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node);
129
130template<>
131inline BasicBlock* RegionNode::getNodeAs<BasicBlock>() const {
132  assert(!isSubRegion() && "This is not a BasicBlock RegionNode!");
133  return getEntry();
134}
135
136template<>
137inline Region* RegionNode::getNodeAs<Region>() const {
138  assert(isSubRegion() && "This is not a subregion RegionNode!");
139  return reinterpret_cast<Region*>(const_cast<RegionNode*>(this));
140}
141
142//===----------------------------------------------------------------------===//
143/// @brief A single entry single exit Region.
144///
145/// A Region is a connected subgraph of a control flow graph that has exactly
146/// two connections to the remaining graph. It can be used to analyze or
147/// optimize parts of the control flow graph.
148///
149/// A <em> simple Region </em> is connected to the remaining graph by just two
150/// edges. One edge entering the Region and another one leaving the Region.
151///
152/// An <em> extended Region </em> (or just Region) is a subgraph that can be
153/// transform into a simple Region. The transformation is done by adding
154/// BasicBlocks that merge several entry or exit edges so that after the merge
155/// just one entry and one exit edge exists.
156///
157/// The \e Entry of a Region is the first BasicBlock that is passed after
158/// entering the Region. It is an element of the Region. The entry BasicBlock
159/// dominates all BasicBlocks in the Region.
160///
161/// The \e Exit of a Region is the first BasicBlock that is passed after
162/// leaving the Region. It is not an element of the Region. The exit BasicBlock,
163/// postdominates all BasicBlocks in the Region.
164///
165/// A <em> canonical Region </em> cannot be constructed by combining smaller
166/// Regions.
167///
168/// Region A is the \e parent of Region B, if B is completely contained in A.
169///
170/// Two canonical Regions either do not intersect at all or one is
171/// the parent of the other.
172///
173/// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of
174/// Regions in the control flow graph and E is the \e parent relation of these
175/// Regions.
176///
177/// Example:
178///
179/// \verbatim
180/// A simple control flow graph, that contains two regions.
181///
182///        1
183///       / |
184///      2   |
185///     / \   3
186///    4   5  |
187///    |   |  |
188///    6   7  8
189///     \  | /
190///      \ |/       Region A: 1 -> 9 {1,2,3,4,5,6,7,8}
191///        9        Region B: 2 -> 9 {2,4,5,6,7}
192/// \endverbatim
193///
194/// You can obtain more examples by either calling
195///
196/// <tt> "opt -regions -analyze anyprogram.ll" </tt>
197/// or
198/// <tt> "opt -view-regions-only anyprogram.ll" </tt>
199///
200/// on any LLVM file you are interested in.
201///
202/// The first call returns a textual representation of the program structure
203/// tree, the second one creates a graphical representation using graphviz.
204class Region : public RegionNode {
205  friend class RegionInfo;
206  // DO NOT IMPLEMENT
207  Region(const Region &);
208  // DO NOT IMPLEMENT
209  const Region &operator=(const Region &);
210
211  // Information necessary to manage this Region.
212  RegionInfo* RI;
213  DominatorTree *DT;
214
215  // The exit BasicBlock of this region.
216  // (The entry BasicBlock is part of RegionNode)
217  BasicBlock *exit;
218
219  typedef std::vector<Region*> RegionSet;
220
221  // The subregions of this region.
222  RegionSet children;
223
224  typedef std::map<BasicBlock*, RegionNode*> BBNodeMapT;
225
226  // Save the BasicBlock RegionNodes that are element of this Region.
227  mutable BBNodeMapT BBNodeMap;
228
229  /// verifyBBInRegion - Check if a BB is in this Region. This check also works
230  /// if the region is incorrectly built. (EXPENSIVE!)
231  void verifyBBInRegion(BasicBlock* BB) const;
232
233  /// verifyWalk - Walk over all the BBs of the region starting from BB and
234  /// verify that all reachable basic blocks are elements of the region.
235  /// (EXPENSIVE!)
236  void verifyWalk(BasicBlock* BB, std::set<BasicBlock*>* visitedBB) const;
237
238  /// verifyRegionNest - Verify if the region and its children are valid
239  /// regions (EXPENSIVE!)
240  void verifyRegionNest() const;
241
242public:
243  /// @brief Create a new region.
244  ///
245  /// @param Entry  The entry basic block of the region.
246  /// @param Exit   The exit basic block of the region.
247  /// @param RI     The region info object that is managing this region.
248  /// @param DT     The dominator tree of the current function.
249  /// @param Parent The surrounding region or NULL if this is a top level
250  ///               region.
251  Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo* RI,
252         DominatorTree *DT, Region *Parent = 0);
253
254  /// Delete the Region and all its subregions.
255  ~Region();
256
257  /// @brief Get the entry BasicBlock of the Region.
258  /// @return The entry BasicBlock of the region.
259  BasicBlock *getEntry() const { return RegionNode::getEntry(); }
260
261  /// @brief Replace the entry basic block of the region with the new basic
262  ///        block.
263  ///
264  /// @param BB  The new entry basic block of the region.
265  void replaceEntry(BasicBlock *BB);
266
267  /// @brief Replace the exit basic block of the region with the new basic
268  ///        block.
269  ///
270  /// @param BB  The new exit basic block of the region.
271  void replaceExit(BasicBlock *BB);
272
273  /// @brief Get the exit BasicBlock of the Region.
274  /// @return The exit BasicBlock of the Region, NULL if this is the TopLevel
275  ///         Region.
276  BasicBlock *getExit() const { return exit; }
277
278  /// @brief Get the parent of the Region.
279  /// @return The parent of the Region or NULL if this is a top level
280  ///         Region.
281  Region *getParent() const { return RegionNode::getParent(); }
282
283  /// @brief Get the RegionNode representing the current Region.
284  /// @return The RegionNode representing the current Region.
285  RegionNode* getNode() const {
286    return const_cast<RegionNode*>(reinterpret_cast<const RegionNode*>(this));
287  }
288
289  /// @brief Get the nesting level of this Region.
290  ///
291  /// An toplevel Region has depth 0.
292  ///
293  /// @return The depth of the region.
294  unsigned getDepth() const;
295
296  /// @brief Check if a Region is the TopLevel region.
297  ///
298  /// The toplevel region represents the whole function.
299  bool isTopLevelRegion() const { return exit == NULL; }
300
301  /// @brief Return a new (non canonical) region, that is obtained by joining
302  ///        this region with its predecessors.
303  ///
304  /// @return A region also starting at getEntry(), but reaching to the next
305  ///         basic block that forms with getEntry() a (non canonical) region.
306  ///         NULL if such a basic block does not exist.
307  Region *getExpandedRegion() const;
308
309  /// @brief Return the first block of this region's single entry edge,
310  ///        if existing.
311  ///
312  /// @return The BasicBlock starting this region's single entry edge,
313  ///         else NULL.
314  BasicBlock *getEnteringBlock() const;
315
316  /// @brief Return the first block of this region's single exit edge,
317  ///        if existing.
318  ///
319  /// @return The BasicBlock starting this region's single exit edge,
320  ///         else NULL.
321  BasicBlock *getExitingBlock() const;
322
323  /// @brief Is this a simple region?
324  ///
325  /// A region is simple if it has exactly one exit and one entry edge.
326  ///
327  /// @return True if the Region is simple.
328  bool isSimple() const;
329
330  /// @brief Returns the name of the Region.
331  /// @return The Name of the Region.
332  std::string getNameStr() const;
333
334  /// @brief Return the RegionInfo object, that belongs to this Region.
335  RegionInfo *getRegionInfo() const {
336    return RI;
337  }
338
339  /// PrintStyle - Print region in difference ways.
340  enum PrintStyle { PrintNone, PrintBB, PrintRN  };
341
342  /// @brief Print the region.
343  ///
344  /// @param OS The output stream the Region is printed to.
345  /// @param printTree Print also the tree of subregions.
346  /// @param level The indentation level used for printing.
347  void print(raw_ostream& OS, bool printTree = true, unsigned level = 0,
348             enum PrintStyle Style = PrintNone) const;
349
350  /// @brief Print the region to stderr.
351  void dump() const;
352
353  /// @brief Check if the region contains a BasicBlock.
354  ///
355  /// @param BB The BasicBlock that might be contained in this Region.
356  /// @return True if the block is contained in the region otherwise false.
357  bool contains(const BasicBlock *BB) const;
358
359  /// @brief Check if the region contains another region.
360  ///
361  /// @param SubRegion The region that might be contained in this Region.
362  /// @return True if SubRegion is contained in the region otherwise false.
363  bool contains(const Region *SubRegion) const {
364    // Toplevel Region.
365    if (!getExit())
366      return true;
367
368    return contains(SubRegion->getEntry())
369      && (contains(SubRegion->getExit()) || SubRegion->getExit() == getExit());
370  }
371
372  /// @brief Check if the region contains an Instruction.
373  ///
374  /// @param Inst The Instruction that might be contained in this region.
375  /// @return True if the Instruction is contained in the region otherwise false.
376  bool contains(const Instruction *Inst) const {
377    return contains(Inst->getParent());
378  }
379
380  /// @brief Check if the region contains a loop.
381  ///
382  /// @param L The loop that might be contained in this region.
383  /// @return True if the loop is contained in the region otherwise false.
384  ///         In case a NULL pointer is passed to this function the result
385  ///         is false, except for the region that describes the whole function.
386  ///         In that case true is returned.
387  bool contains(const Loop *L) const;
388
389  /// @brief Get the outermost loop in the region that contains a loop.
390  ///
391  /// Find for a Loop L the outermost loop OuterL that is a parent loop of L
392  /// and is itself contained in the region.
393  ///
394  /// @param L The loop the lookup is started.
395  /// @return The outermost loop in the region, NULL if such a loop does not
396  ///         exist or if the region describes the whole function.
397  Loop *outermostLoopInRegion(Loop *L) const;
398
399  /// @brief Get the outermost loop in the region that contains a basic block.
400  ///
401  /// Find for a basic block BB the outermost loop L that contains BB and is
402  /// itself contained in the region.
403  ///
404  /// @param LI A pointer to a LoopInfo analysis.
405  /// @param BB The basic block surrounded by the loop.
406  /// @return The outermost loop in the region, NULL if such a loop does not
407  ///         exist or if the region describes the whole function.
408  Loop *outermostLoopInRegion(LoopInfo *LI, BasicBlock* BB) const;
409
410  /// @brief Get the subregion that starts at a BasicBlock
411  ///
412  /// @param BB The BasicBlock the subregion should start.
413  /// @return The Subregion if available, otherwise NULL.
414  Region* getSubRegionNode(BasicBlock *BB) const;
415
416  /// @brief Get the RegionNode for a BasicBlock
417  ///
418  /// @param BB The BasicBlock at which the RegionNode should start.
419  /// @return If available, the RegionNode that represents the subregion
420  ///         starting at BB. If no subregion starts at BB, the RegionNode
421  ///         representing BB.
422  RegionNode* getNode(BasicBlock *BB) const;
423
424  /// @brief Get the BasicBlock RegionNode for a BasicBlock
425  ///
426  /// @param BB The BasicBlock for which the RegionNode is requested.
427  /// @return The RegionNode representing the BB.
428  RegionNode* getBBNode(BasicBlock *BB) const;
429
430  /// @brief Add a new subregion to this Region.
431  ///
432  /// @param SubRegion The new subregion that will be added.
433  /// @param moveChildren Move the children of this region, that are also
434  ///                     contained in SubRegion into SubRegion.
435  void addSubRegion(Region *SubRegion, bool moveChildren = false);
436
437  /// @brief Remove a subregion from this Region.
438  ///
439  /// The subregion is not deleted, as it will probably be inserted into another
440  /// region.
441  /// @param SubRegion The SubRegion that will be removed.
442  Region *removeSubRegion(Region *SubRegion);
443
444  /// @brief Move all direct child nodes of this Region to another Region.
445  ///
446  /// @param To The Region the child nodes will be transferred to.
447  void transferChildrenTo(Region *To);
448
449  /// @brief Verify if the region is a correct region.
450  ///
451  /// Check if this is a correctly build Region. This is an expensive check, as
452  /// the complete CFG of the Region will be walked.
453  void verifyRegion() const;
454
455  /// @brief Clear the cache for BB RegionNodes.
456  ///
457  /// After calling this function the BasicBlock RegionNodes will be stored at
458  /// different memory locations. RegionNodes obtained before this function is
459  /// called are therefore not comparable to RegionNodes abtained afterwords.
460  void clearNodeCache();
461
462  /// @name Subregion Iterators
463  ///
464  /// These iterators iterator over all subregions of this Region.
465  //@{
466  typedef RegionSet::iterator iterator;
467  typedef RegionSet::const_iterator const_iterator;
468
469  iterator begin() { return children.begin(); }
470  iterator end() { return children.end(); }
471
472  const_iterator begin() const { return children.begin(); }
473  const_iterator end() const { return children.end(); }
474  //@}
475
476  /// @name BasicBlock Node Iterators
477  ///
478  /// These iterators iterate over all BasicBlock RegionNodes that are
479  /// contained in this Region. The iterator also iterates over BasicBlock
480  /// RegionNodes that are elements of a subregion of this Region. It is
481  /// therefore called a flat iterator.
482  //@{
483  typedef df_iterator<RegionNode*, SmallPtrSet<RegionNode*, 8>, false,
484                      GraphTraits<FlatIt<RegionNode*> > > block_node_iterator;
485
486  typedef df_iterator<const RegionNode*, SmallPtrSet<const RegionNode*, 8>,
487                      false, GraphTraits<FlatIt<const RegionNode*> > >
488            const_block_node_iterator;
489
490  block_node_iterator block_node_begin();
491  block_node_iterator block_node_end();
492
493  const_block_node_iterator block_node_begin() const;
494  const_block_node_iterator block_node_end() const;
495  //@}
496
497  /// @name BasicBlock Iterators
498  ///
499  /// These iterators iterate over all BasicBlocks that are contained in this
500  /// Region. The iterator also iterates over BasicBlocks that are elements of
501  /// a subregion of this Region. It is therefore called a flat iterator.
502  //@{
503  template <typename RegionNodeItT>
504  class block_iterator_wrapper
505    : public std::iterator<std::forward_iterator_tag, BasicBlock, ptrdiff_t> {
506    typedef std::iterator<std::forward_iterator_tag, BasicBlock, ptrdiff_t>
507      super;
508
509    RegionNodeItT Iter;
510
511  public:
512    typedef block_iterator_wrapper<RegionNodeItT> Self;
513    typedef typename super::pointer pointer;
514
515    block_iterator_wrapper(RegionNodeItT Iter) : Iter(Iter) {}
516
517    bool operator==(const Self &RHS) const { return Iter == RHS.Iter; }
518    bool operator!=(const Self &RHS) const { return Iter != RHS.Iter; }
519    pointer operator*() const {
520      return (*Iter)->template getNodeAs<BasicBlock>();
521    }
522
523    Self& operator++() {
524      ++Iter;
525      return *this;
526    }
527    Self operator++(int) {
528      Self tmp = *this;
529      ++*this;
530      return tmp;
531    }
532
533    const Self &operator=(const Self &I) {
534      Iter = I.Iter;
535      return *this;
536    }
537  };
538  typedef block_iterator_wrapper<block_node_iterator> block_iterator;
539  typedef block_iterator_wrapper<const_block_node_iterator>
540    const_block_iterator;
541
542  block_iterator block_begin();
543  block_iterator block_end();
544
545  const_block_iterator block_begin() const;
546  const_block_iterator block_end() const;
547  //@}
548
549  /// @name Element Iterators
550  ///
551  /// These iterators iterate over all BasicBlock and subregion RegionNodes that
552  /// are direct children of this Region. It does not iterate over any
553  /// RegionNodes that are also element of a subregion of this Region.
554  //@{
555  typedef df_iterator<RegionNode*, SmallPtrSet<RegionNode*, 8>, false,
556                      GraphTraits<RegionNode*> > element_iterator;
557
558  typedef df_iterator<const RegionNode*, SmallPtrSet<const RegionNode*, 8>,
559                      false, GraphTraits<const RegionNode*> >
560            const_element_iterator;
561
562  element_iterator element_begin();
563  element_iterator element_end();
564
565  const_element_iterator element_begin() const;
566  const_element_iterator element_end() const;
567  //@}
568};
569
570//===----------------------------------------------------------------------===//
571/// @brief Analysis that detects all canonical Regions.
572///
573/// The RegionInfo pass detects all canonical regions in a function. The Regions
574/// are connected using the parent relation. This builds a Program Structure
575/// Tree.
576class RegionInfo : public FunctionPass {
577  typedef DenseMap<BasicBlock*,BasicBlock*> BBtoBBMap;
578  typedef DenseMap<BasicBlock*, Region*> BBtoRegionMap;
579  typedef SmallPtrSet<Region*, 4> RegionSet;
580
581  // DO NOT IMPLEMENT
582  RegionInfo(const RegionInfo &);
583  // DO NOT IMPLEMENT
584  const RegionInfo &operator=(const RegionInfo &);
585
586  DominatorTree *DT;
587  PostDominatorTree *PDT;
588  DominanceFrontier *DF;
589
590  /// The top level region.
591  Region *TopLevelRegion;
592
593  /// Map every BB to the smallest region, that contains BB.
594  BBtoRegionMap BBtoRegion;
595
596  // isCommonDomFrontier - Returns true if BB is in the dominance frontier of
597  // entry, because it was inherited from exit. In the other case there is an
598  // edge going from entry to BB without passing exit.
599  bool isCommonDomFrontier(BasicBlock* BB, BasicBlock* entry,
600                           BasicBlock* exit) const;
601
602  // isRegion - Check if entry and exit surround a valid region, based on
603  // dominance tree and dominance frontier.
604  bool isRegion(BasicBlock* entry, BasicBlock* exit) const;
605
606  // insertShortCut - Saves a shortcut pointing from entry to exit.
607  // This function may extend this shortcut if possible.
608  void insertShortCut(BasicBlock* entry, BasicBlock* exit,
609                      BBtoBBMap* ShortCut) const;
610
611  // getNextPostDom - Returns the next BB that postdominates N, while skipping
612  // all post dominators that cannot finish a canonical region.
613  DomTreeNode *getNextPostDom(DomTreeNode* N, BBtoBBMap *ShortCut) const;
614
615  // isTrivialRegion - A region is trivial, if it contains only one BB.
616  bool isTrivialRegion(BasicBlock *entry, BasicBlock *exit) const;
617
618  // createRegion - Creates a single entry single exit region.
619  Region *createRegion(BasicBlock *entry, BasicBlock *exit);
620
621  // findRegionsWithEntry - Detect all regions starting with bb 'entry'.
622  void findRegionsWithEntry(BasicBlock *entry, BBtoBBMap *ShortCut);
623
624  // scanForRegions - Detects regions in F.
625  void scanForRegions(Function &F, BBtoBBMap *ShortCut);
626
627  // getTopMostParent - Get the top most parent with the same entry block.
628  Region *getTopMostParent(Region *region);
629
630  // buildRegionsTree - build the region hierarchy after all region detected.
631  void buildRegionsTree(DomTreeNode *N, Region *region);
632
633  // Calculate - detecte all regions in function and build the region tree.
634  void Calculate(Function& F);
635
636  void releaseMemory();
637
638  // updateStatistics - Update statistic about created regions.
639  void updateStatistics(Region *R);
640
641  // isSimple - Check if a region is a simple region with exactly one entry
642  // edge and exactly one exit edge.
643  bool isSimple(Region* R) const;
644
645public:
646  static char ID;
647  explicit RegionInfo();
648
649  ~RegionInfo();
650
651  /// @name FunctionPass interface
652  //@{
653  virtual bool runOnFunction(Function &F);
654  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
655  virtual void print(raw_ostream &OS, const Module *) const;
656  virtual void verifyAnalysis() const;
657  //@}
658
659  /// @brief Get the smallest region that contains a BasicBlock.
660  ///
661  /// @param BB The basic block.
662  /// @return The smallest region, that contains BB or NULL, if there is no
663  /// region containing BB.
664  Region *getRegionFor(BasicBlock *BB) const;
665
666  /// @brief  Set the smallest region that surrounds a basic block.
667  ///
668  /// @param BB The basic block surrounded by a region.
669  /// @param R The smallest region that surrounds BB.
670  void setRegionFor(BasicBlock *BB, Region *R);
671
672  /// @brief A shortcut for getRegionFor().
673  ///
674  /// @param BB The basic block.
675  /// @return The smallest region, that contains BB or NULL, if there is no
676  /// region containing BB.
677  Region *operator[](BasicBlock *BB) const;
678
679  /// @brief Return the exit of the maximal refined region, that starts at a
680  /// BasicBlock.
681  ///
682  /// @param BB The BasicBlock the refined region starts.
683  BasicBlock *getMaxRegionExit(BasicBlock *BB) const;
684
685  /// @brief Find the smallest region that contains two regions.
686  ///
687  /// @param A The first region.
688  /// @param B The second region.
689  /// @return The smallest region containing A and B.
690  Region *getCommonRegion(Region* A, Region *B) const;
691
692  /// @brief Find the smallest region that contains two basic blocks.
693  ///
694  /// @param A The first basic block.
695  /// @param B The second basic block.
696  /// @return The smallest region that contains A and B.
697  Region* getCommonRegion(BasicBlock* A, BasicBlock *B) const {
698    return getCommonRegion(getRegionFor(A), getRegionFor(B));
699  }
700
701  /// @brief Find the smallest region that contains a set of regions.
702  ///
703  /// @param Regions A vector of regions.
704  /// @return The smallest region that contains all regions in Regions.
705  Region* getCommonRegion(SmallVectorImpl<Region*> &Regions) const;
706
707  /// @brief Find the smallest region that contains a set of basic blocks.
708  ///
709  /// @param BBs A vector of basic blocks.
710  /// @return The smallest region that contains all basic blocks in BBS.
711  Region* getCommonRegion(SmallVectorImpl<BasicBlock*> &BBs) const;
712
713  Region *getTopLevelRegion() const {
714    return TopLevelRegion;
715  }
716
717  /// @brief Update RegionInfo after a basic block was split.
718  ///
719  /// @param NewBB The basic block that was created before OldBB.
720  /// @param OldBB The old basic block.
721  void splitBlock(BasicBlock* NewBB, BasicBlock *OldBB);
722
723  /// @brief Clear the Node Cache for all Regions.
724  ///
725  /// @see Region::clearNodeCache()
726  void clearNodeCache() {
727    if (TopLevelRegion)
728      TopLevelRegion->clearNodeCache();
729  }
730};
731
732inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node) {
733  if (Node.isSubRegion())
734    return OS << Node.getNodeAs<Region>()->getNameStr();
735  else
736    return OS << Node.getNodeAs<BasicBlock>()->getName();
737}
738} // End llvm namespace
739#endif
740
741