RegionInfo.h revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Calculate a program structure tree built out of single entry single exit
11// regions.
12// The basic ideas are taken from "The Program Structure Tree - Richard Johnson,
13// David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The
14// Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana
15// Koehler - 2009".
16// The algorithm to calculate these data structures however is completely
17// different, as it takes advantage of existing information already available
18// in (Post)dominace tree and dominance frontier passes. This leads to a simpler
19// and in practice hopefully better performing algorithm. The runtime of the
20// algorithms described in the papers above are both linear in graph size,
21// O(V+E), whereas this algorithm is not, as the dominance frontier information
22// itself is not, but in practice runtime seems to be in the order of magnitude
23// of dominance tree calculation.
24//
25//===----------------------------------------------------------------------===//
26
27#ifndef LLVM_ANALYSIS_REGIONINFO_H
28#define LLVM_ANALYSIS_REGIONINFO_H
29
30#include "llvm/ADT/PointerIntPair.h"
31#include "llvm/ADT/iterator_range.h"
32#include "llvm/Analysis/DominanceFrontier.h"
33#include "llvm/Analysis/PostDominators.h"
34#include "llvm/Support/Allocator.h"
35#include <map>
36#include <memory>
37
38namespace llvm {
39
40class Region;
41class RegionInfo;
42class raw_ostream;
43class Loop;
44class LoopInfo;
45
46/// @brief Marker class to iterate over the elements of a Region in flat mode.
47///
48/// The class is used to either iterate in Flat mode or by not using it to not
49/// iterate in Flat mode.  During a Flat mode iteration all Regions are entered
50/// and the iteration returns every BasicBlock.  If the Flat mode is not
51/// selected for SubRegions just one RegionNode containing the subregion is
52/// returned.
53template <class GraphType>
54class FlatIt {};
55
56/// @brief A RegionNode represents a subregion or a BasicBlock that is part of a
57/// Region.
58class RegionNode {
59  RegionNode(const RegionNode &) LLVM_DELETED_FUNCTION;
60  const RegionNode &operator=(const RegionNode &) LLVM_DELETED_FUNCTION;
61
62protected:
63  /// This is the entry basic block that starts this region node.  If this is a
64  /// BasicBlock RegionNode, then entry is just the basic block, that this
65  /// RegionNode represents.  Otherwise it is the entry of this (Sub)RegionNode.
66  ///
67  /// In the BBtoRegionNode map of the parent of this node, BB will always map
68  /// to this node no matter which kind of node this one is.
69  ///
70  /// The node can hold either a Region or a BasicBlock.
71  /// Use one bit to save, if this RegionNode is a subregion or BasicBlock
72  /// RegionNode.
73  PointerIntPair<BasicBlock*, 1, bool> entry;
74
75  /// @brief The parent Region of this RegionNode.
76  /// @see getParent()
77  Region* parent;
78
79public:
80  /// @brief Create a RegionNode.
81  ///
82  /// @param Parent      The parent of this RegionNode.
83  /// @param Entry       The entry BasicBlock of the RegionNode.  If this
84  ///                    RegionNode represents a BasicBlock, this is the
85  ///                    BasicBlock itself.  If it represents a subregion, this
86  ///                    is the entry BasicBlock of the subregion.
87  /// @param isSubRegion If this RegionNode represents a SubRegion.
88  inline RegionNode(Region* Parent, BasicBlock* Entry, bool isSubRegion = 0)
89    : entry(Entry, isSubRegion), parent(Parent) {}
90
91  /// @brief Get the parent Region of this RegionNode.
92  ///
93  /// The parent Region is the Region this RegionNode belongs to. If for
94  /// example a BasicBlock is element of two Regions, there exist two
95  /// RegionNodes for this BasicBlock. Each with the getParent() function
96  /// pointing to the Region this RegionNode belongs to.
97  ///
98  /// @return Get the parent Region of this RegionNode.
99  inline Region* getParent() const { return parent; }
100
101  /// @brief Get the entry BasicBlock of this RegionNode.
102  ///
103  /// If this RegionNode represents a BasicBlock this is just the BasicBlock
104  /// itself, otherwise we return the entry BasicBlock of the Subregion
105  ///
106  /// @return The entry BasicBlock of this RegionNode.
107  inline BasicBlock* getEntry() const { return entry.getPointer(); }
108
109  /// @brief Get the content of this RegionNode.
110  ///
111  /// This can be either a BasicBlock or a subregion. Before calling getNodeAs()
112  /// check the type of the content with the isSubRegion() function call.
113  ///
114  /// @return The content of this RegionNode.
115  template<class T>
116  inline T* getNodeAs() const;
117
118  /// @brief Is this RegionNode a subregion?
119  ///
120  /// @return True if it contains a subregion. False if it contains a
121  ///         BasicBlock.
122  inline bool isSubRegion() const {
123    return entry.getInt();
124  }
125};
126
127/// Print a RegionNode.
128inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node);
129
130template<>
131inline BasicBlock* RegionNode::getNodeAs<BasicBlock>() const {
132  assert(!isSubRegion() && "This is not a BasicBlock RegionNode!");
133  return getEntry();
134}
135
136template<>
137inline Region* RegionNode::getNodeAs<Region>() const {
138  assert(isSubRegion() && "This is not a subregion RegionNode!");
139  return reinterpret_cast<Region*>(const_cast<RegionNode*>(this));
140}
141
142//===----------------------------------------------------------------------===//
143/// @brief A single entry single exit Region.
144///
145/// A Region is a connected subgraph of a control flow graph that has exactly
146/// two connections to the remaining graph. It can be used to analyze or
147/// optimize parts of the control flow graph.
148///
149/// A <em> simple Region </em> is connected to the remaining graph by just two
150/// edges. One edge entering the Region and another one leaving the Region.
151///
152/// An <em> extended Region </em> (or just Region) is a subgraph that can be
153/// transform into a simple Region. The transformation is done by adding
154/// BasicBlocks that merge several entry or exit edges so that after the merge
155/// just one entry and one exit edge exists.
156///
157/// The \e Entry of a Region is the first BasicBlock that is passed after
158/// entering the Region. It is an element of the Region. The entry BasicBlock
159/// dominates all BasicBlocks in the Region.
160///
161/// The \e Exit of a Region is the first BasicBlock that is passed after
162/// leaving the Region. It is not an element of the Region. The exit BasicBlock,
163/// postdominates all BasicBlocks in the Region.
164///
165/// A <em> canonical Region </em> cannot be constructed by combining smaller
166/// Regions.
167///
168/// Region A is the \e parent of Region B, if B is completely contained in A.
169///
170/// Two canonical Regions either do not intersect at all or one is
171/// the parent of the other.
172///
173/// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of
174/// Regions in the control flow graph and E is the \e parent relation of these
175/// Regions.
176///
177/// Example:
178///
179/// \verbatim
180/// A simple control flow graph, that contains two regions.
181///
182///        1
183///       / |
184///      2   |
185///     / \   3
186///    4   5  |
187///    |   |  |
188///    6   7  8
189///     \  | /
190///      \ |/       Region A: 1 -> 9 {1,2,3,4,5,6,7,8}
191///        9        Region B: 2 -> 9 {2,4,5,6,7}
192/// \endverbatim
193///
194/// You can obtain more examples by either calling
195///
196/// <tt> "opt -regions -analyze anyprogram.ll" </tt>
197/// or
198/// <tt> "opt -view-regions-only anyprogram.ll" </tt>
199///
200/// on any LLVM file you are interested in.
201///
202/// The first call returns a textual representation of the program structure
203/// tree, the second one creates a graphical representation using graphviz.
204class Region : public RegionNode {
205  friend class RegionInfo;
206  Region(const Region &) LLVM_DELETED_FUNCTION;
207  const Region &operator=(const Region &) LLVM_DELETED_FUNCTION;
208
209  // Information necessary to manage this Region.
210  RegionInfo* RI;
211  DominatorTree *DT;
212
213  // The exit BasicBlock of this region.
214  // (The entry BasicBlock is part of RegionNode)
215  BasicBlock *exit;
216
217  typedef std::vector<std::unique_ptr<Region>> RegionSet;
218
219  // The subregions of this region.
220  RegionSet children;
221
222  typedef std::map<BasicBlock*, RegionNode*> BBNodeMapT;
223
224  // Save the BasicBlock RegionNodes that are element of this Region.
225  mutable BBNodeMapT BBNodeMap;
226
227  /// verifyBBInRegion - Check if a BB is in this Region. This check also works
228  /// if the region is incorrectly built. (EXPENSIVE!)
229  void verifyBBInRegion(BasicBlock* BB) const;
230
231  /// verifyWalk - Walk over all the BBs of the region starting from BB and
232  /// verify that all reachable basic blocks are elements of the region.
233  /// (EXPENSIVE!)
234  void verifyWalk(BasicBlock* BB, std::set<BasicBlock*>* visitedBB) const;
235
236  /// verifyRegionNest - Verify if the region and its children are valid
237  /// regions (EXPENSIVE!)
238  void verifyRegionNest() const;
239
240public:
241  /// @brief Create a new region.
242  ///
243  /// @param Entry  The entry basic block of the region.
244  /// @param Exit   The exit basic block of the region.
245  /// @param RI     The region info object that is managing this region.
246  /// @param DT     The dominator tree of the current function.
247  /// @param Parent The surrounding region or NULL if this is a top level
248  ///               region.
249  Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo* RI,
250         DominatorTree *DT, Region *Parent = nullptr);
251
252  /// Delete the Region and all its subregions.
253  ~Region();
254
255  /// @brief Get the entry BasicBlock of the Region.
256  /// @return The entry BasicBlock of the region.
257  BasicBlock *getEntry() const { return RegionNode::getEntry(); }
258
259  /// @brief Replace the entry basic block of the region with the new basic
260  ///        block.
261  ///
262  /// @param BB  The new entry basic block of the region.
263  void replaceEntry(BasicBlock *BB);
264
265  /// @brief Replace the exit basic block of the region with the new basic
266  ///        block.
267  ///
268  /// @param BB  The new exit basic block of the region.
269  void replaceExit(BasicBlock *BB);
270
271  /// @brief Recursively replace the entry basic block of the region.
272  ///
273  /// This function replaces the entry basic block with a new basic block. It
274  /// also updates all child regions that have the same entry basic block as
275  /// this region.
276  ///
277  /// @param NewEntry The new entry basic block.
278  void replaceEntryRecursive(BasicBlock *NewEntry);
279
280  /// @brief Recursively replace the exit basic block of the region.
281  ///
282  /// This function replaces the exit basic block with a new basic block. It
283  /// also updates all child regions that have the same exit basic block as
284  /// this region.
285  ///
286  /// @param NewExit The new exit basic block.
287  void replaceExitRecursive(BasicBlock *NewExit);
288
289  /// @brief Get the exit BasicBlock of the Region.
290  /// @return The exit BasicBlock of the Region, NULL if this is the TopLevel
291  ///         Region.
292  BasicBlock *getExit() const { return exit; }
293
294  /// @brief Get the parent of the Region.
295  /// @return The parent of the Region or NULL if this is a top level
296  ///         Region.
297  Region *getParent() const { return RegionNode::getParent(); }
298
299  /// @brief Get the RegionNode representing the current Region.
300  /// @return The RegionNode representing the current Region.
301  RegionNode* getNode() const {
302    return const_cast<RegionNode*>(reinterpret_cast<const RegionNode*>(this));
303  }
304
305  /// @brief Get the nesting level of this Region.
306  ///
307  /// An toplevel Region has depth 0.
308  ///
309  /// @return The depth of the region.
310  unsigned getDepth() const;
311
312  /// @brief Check if a Region is the TopLevel region.
313  ///
314  /// The toplevel region represents the whole function.
315  bool isTopLevelRegion() const { return exit == nullptr; }
316
317  /// @brief Return a new (non-canonical) region, that is obtained by joining
318  ///        this region with its predecessors.
319  ///
320  /// @return A region also starting at getEntry(), but reaching to the next
321  ///         basic block that forms with getEntry() a (non-canonical) region.
322  ///         NULL if such a basic block does not exist.
323  Region *getExpandedRegion() const;
324
325  /// @brief Return the first block of this region's single entry edge,
326  ///        if existing.
327  ///
328  /// @return The BasicBlock starting this region's single entry edge,
329  ///         else NULL.
330  BasicBlock *getEnteringBlock() const;
331
332  /// @brief Return the first block of this region's single exit edge,
333  ///        if existing.
334  ///
335  /// @return The BasicBlock starting this region's single exit edge,
336  ///         else NULL.
337  BasicBlock *getExitingBlock() const;
338
339  /// @brief Is this a simple region?
340  ///
341  /// A region is simple if it has exactly one exit and one entry edge.
342  ///
343  /// @return True if the Region is simple.
344  bool isSimple() const;
345
346  /// @brief Returns the name of the Region.
347  /// @return The Name of the Region.
348  std::string getNameStr() const;
349
350  /// @brief Return the RegionInfo object, that belongs to this Region.
351  RegionInfo *getRegionInfo() const {
352    return RI;
353  }
354
355  /// PrintStyle - Print region in difference ways.
356  enum PrintStyle { PrintNone, PrintBB, PrintRN  };
357
358  /// @brief Print the region.
359  ///
360  /// @param OS The output stream the Region is printed to.
361  /// @param printTree Print also the tree of subregions.
362  /// @param level The indentation level used for printing.
363  void print(raw_ostream& OS, bool printTree = true, unsigned level = 0,
364             enum PrintStyle Style = PrintNone) const;
365
366  /// @brief Print the region to stderr.
367  void dump() const;
368
369  /// @brief Check if the region contains a BasicBlock.
370  ///
371  /// @param BB The BasicBlock that might be contained in this Region.
372  /// @return True if the block is contained in the region otherwise false.
373  bool contains(const BasicBlock *BB) const;
374
375  /// @brief Check if the region contains another region.
376  ///
377  /// @param SubRegion The region that might be contained in this Region.
378  /// @return True if SubRegion is contained in the region otherwise false.
379  bool contains(const Region *SubRegion) const {
380    // Toplevel Region.
381    if (!getExit())
382      return true;
383
384    return contains(SubRegion->getEntry())
385      && (contains(SubRegion->getExit()) || SubRegion->getExit() == getExit());
386  }
387
388  /// @brief Check if the region contains an Instruction.
389  ///
390  /// @param Inst The Instruction that might be contained in this region.
391  /// @return True if the Instruction is contained in the region otherwise false.
392  bool contains(const Instruction *Inst) const {
393    return contains(Inst->getParent());
394  }
395
396  /// @brief Check if the region contains a loop.
397  ///
398  /// @param L The loop that might be contained in this region.
399  /// @return True if the loop is contained in the region otherwise false.
400  ///         In case a NULL pointer is passed to this function the result
401  ///         is false, except for the region that describes the whole function.
402  ///         In that case true is returned.
403  bool contains(const Loop *L) const;
404
405  /// @brief Get the outermost loop in the region that contains a loop.
406  ///
407  /// Find for a Loop L the outermost loop OuterL that is a parent loop of L
408  /// and is itself contained in the region.
409  ///
410  /// @param L The loop the lookup is started.
411  /// @return The outermost loop in the region, NULL if such a loop does not
412  ///         exist or if the region describes the whole function.
413  Loop *outermostLoopInRegion(Loop *L) const;
414
415  /// @brief Get the outermost loop in the region that contains a basic block.
416  ///
417  /// Find for a basic block BB the outermost loop L that contains BB and is
418  /// itself contained in the region.
419  ///
420  /// @param LI A pointer to a LoopInfo analysis.
421  /// @param BB The basic block surrounded by the loop.
422  /// @return The outermost loop in the region, NULL if such a loop does not
423  ///         exist or if the region describes the whole function.
424  Loop *outermostLoopInRegion(LoopInfo *LI, BasicBlock* BB) const;
425
426  /// @brief Get the subregion that starts at a BasicBlock
427  ///
428  /// @param BB The BasicBlock the subregion should start.
429  /// @return The Subregion if available, otherwise NULL.
430  Region* getSubRegionNode(BasicBlock *BB) const;
431
432  /// @brief Get the RegionNode for a BasicBlock
433  ///
434  /// @param BB The BasicBlock at which the RegionNode should start.
435  /// @return If available, the RegionNode that represents the subregion
436  ///         starting at BB. If no subregion starts at BB, the RegionNode
437  ///         representing BB.
438  RegionNode* getNode(BasicBlock *BB) const;
439
440  /// @brief Get the BasicBlock RegionNode for a BasicBlock
441  ///
442  /// @param BB The BasicBlock for which the RegionNode is requested.
443  /// @return The RegionNode representing the BB.
444  RegionNode* getBBNode(BasicBlock *BB) const;
445
446  /// @brief Add a new subregion to this Region.
447  ///
448  /// @param SubRegion The new subregion that will be added.
449  /// @param moveChildren Move the children of this region, that are also
450  ///                     contained in SubRegion into SubRegion.
451  void addSubRegion(Region *SubRegion, bool moveChildren = false);
452
453  /// @brief Remove a subregion from this Region.
454  ///
455  /// The subregion is not deleted, as it will probably be inserted into another
456  /// region.
457  /// @param SubRegion The SubRegion that will be removed.
458  Region *removeSubRegion(Region *SubRegion);
459
460  /// @brief Move all direct child nodes of this Region to another Region.
461  ///
462  /// @param To The Region the child nodes will be transferred to.
463  void transferChildrenTo(Region *To);
464
465  /// @brief Verify if the region is a correct region.
466  ///
467  /// Check if this is a correctly build Region. This is an expensive check, as
468  /// the complete CFG of the Region will be walked.
469  void verifyRegion() const;
470
471  /// @brief Clear the cache for BB RegionNodes.
472  ///
473  /// After calling this function the BasicBlock RegionNodes will be stored at
474  /// different memory locations. RegionNodes obtained before this function is
475  /// called are therefore not comparable to RegionNodes abtained afterwords.
476  void clearNodeCache();
477
478  /// @name Subregion Iterators
479  ///
480  /// These iterators iterator over all subregions of this Region.
481  //@{
482  typedef RegionSet::iterator iterator;
483  typedef RegionSet::const_iterator const_iterator;
484
485  iterator begin() { return children.begin(); }
486  iterator end() { return children.end(); }
487
488  const_iterator begin() const { return children.begin(); }
489  const_iterator end() const { return children.end(); }
490  //@}
491
492  /// @name BasicBlock Iterators
493  ///
494  /// These iterators iterate over all BasicBlocks that are contained in this
495  /// Region. The iterator also iterates over BasicBlocks that are elements of
496  /// a subregion of this Region. It is therefore called a flat iterator.
497  //@{
498  template <bool IsConst>
499  class block_iterator_wrapper
500      : public df_iterator<typename std::conditional<IsConst, const BasicBlock,
501                                                     BasicBlock>::type *> {
502    typedef df_iterator<typename std::conditional<IsConst, const BasicBlock,
503                                                  BasicBlock>::type *> super;
504
505  public:
506    typedef block_iterator_wrapper<IsConst> Self;
507    typedef typename super::pointer pointer;
508
509    // Construct the begin iterator.
510    block_iterator_wrapper(pointer Entry, pointer Exit) : super(df_begin(Entry))
511    {
512      // Mark the exit of the region as visited, so that the children of the
513      // exit and the exit itself, i.e. the block outside the region will never
514      // be visited.
515      super::Visited.insert(Exit);
516    }
517
518    // Construct the end iterator.
519    block_iterator_wrapper() : super(df_end<pointer>((BasicBlock *)nullptr)) {}
520
521    /*implicit*/ block_iterator_wrapper(super I) : super(I) {}
522
523    // FIXME: Even a const_iterator returns a non-const BasicBlock pointer.
524    //        This was introduced for backwards compatibility, but should
525    //        be removed as soon as all users are fixed.
526    BasicBlock *operator*() const {
527      return const_cast<BasicBlock*>(super::operator*());
528    }
529  };
530
531  typedef block_iterator_wrapper<false> block_iterator;
532  typedef block_iterator_wrapper<true>  const_block_iterator;
533
534  block_iterator block_begin() {
535   return block_iterator(getEntry(), getExit());
536  }
537
538  block_iterator block_end() {
539   return block_iterator();
540  }
541
542  const_block_iterator block_begin() const {
543    return const_block_iterator(getEntry(), getExit());
544  }
545  const_block_iterator block_end() const {
546    return const_block_iterator();
547  }
548
549  typedef iterator_range<block_iterator> block_range;
550  typedef iterator_range<const_block_iterator> const_block_range;
551
552  /// @brief Returns a range view of the basic blocks in the region.
553  inline block_range blocks() {
554    return block_range(block_begin(), block_end());
555  }
556
557  /// @brief Returns a range view of the basic blocks in the region.
558  ///
559  /// This is the 'const' version of the range view.
560  inline const_block_range blocks() const {
561    return const_block_range(block_begin(), block_end());
562  }
563  //@}
564
565  /// @name Element Iterators
566  ///
567  /// These iterators iterate over all BasicBlock and subregion RegionNodes that
568  /// are direct children of this Region. It does not iterate over any
569  /// RegionNodes that are also element of a subregion of this Region.
570  //@{
571  typedef df_iterator<RegionNode*, SmallPtrSet<RegionNode*, 8>, false,
572                      GraphTraits<RegionNode*> > element_iterator;
573
574  typedef df_iterator<const RegionNode*, SmallPtrSet<const RegionNode*, 8>,
575                      false, GraphTraits<const RegionNode*> >
576            const_element_iterator;
577
578  element_iterator element_begin();
579  element_iterator element_end();
580
581  const_element_iterator element_begin() const;
582  const_element_iterator element_end() const;
583  //@}
584};
585
586//===----------------------------------------------------------------------===//
587/// @brief Analysis that detects all canonical Regions.
588///
589/// The RegionInfo pass detects all canonical regions in a function. The Regions
590/// are connected using the parent relation. This builds a Program Structure
591/// Tree.
592class RegionInfo : public FunctionPass {
593  typedef DenseMap<BasicBlock*,BasicBlock*> BBtoBBMap;
594  typedef DenseMap<BasicBlock*, Region*> BBtoRegionMap;
595  typedef SmallPtrSet<Region*, 4> RegionSet;
596
597  RegionInfo(const RegionInfo &) LLVM_DELETED_FUNCTION;
598  const RegionInfo &operator=(const RegionInfo &) LLVM_DELETED_FUNCTION;
599
600  DominatorTree *DT;
601  PostDominatorTree *PDT;
602  DominanceFrontier *DF;
603
604  /// The top level region.
605  Region *TopLevelRegion;
606
607  /// Map every BB to the smallest region, that contains BB.
608  BBtoRegionMap BBtoRegion;
609
610  // isCommonDomFrontier - Returns true if BB is in the dominance frontier of
611  // entry, because it was inherited from exit. In the other case there is an
612  // edge going from entry to BB without passing exit.
613  bool isCommonDomFrontier(BasicBlock* BB, BasicBlock* entry,
614                           BasicBlock* exit) const;
615
616  // isRegion - Check if entry and exit surround a valid region, based on
617  // dominance tree and dominance frontier.
618  bool isRegion(BasicBlock* entry, BasicBlock* exit) const;
619
620  // insertShortCut - Saves a shortcut pointing from entry to exit.
621  // This function may extend this shortcut if possible.
622  void insertShortCut(BasicBlock* entry, BasicBlock* exit,
623                      BBtoBBMap* ShortCut) const;
624
625  // getNextPostDom - Returns the next BB that postdominates N, while skipping
626  // all post dominators that cannot finish a canonical region.
627  DomTreeNode *getNextPostDom(DomTreeNode* N, BBtoBBMap *ShortCut) const;
628
629  // isTrivialRegion - A region is trivial, if it contains only one BB.
630  bool isTrivialRegion(BasicBlock *entry, BasicBlock *exit) const;
631
632  // createRegion - Creates a single entry single exit region.
633  Region *createRegion(BasicBlock *entry, BasicBlock *exit);
634
635  // findRegionsWithEntry - Detect all regions starting with bb 'entry'.
636  void findRegionsWithEntry(BasicBlock *entry, BBtoBBMap *ShortCut);
637
638  // scanForRegions - Detects regions in F.
639  void scanForRegions(Function &F, BBtoBBMap *ShortCut);
640
641  // getTopMostParent - Get the top most parent with the same entry block.
642  Region *getTopMostParent(Region *region);
643
644  // buildRegionsTree - build the region hierarchy after all region detected.
645  void buildRegionsTree(DomTreeNode *N, Region *region);
646
647  // Calculate - detecte all regions in function and build the region tree.
648  void Calculate(Function& F);
649
650  void releaseMemory() override;
651
652  // updateStatistics - Update statistic about created regions.
653  void updateStatistics(Region *R);
654
655  // isSimple - Check if a region is a simple region with exactly one entry
656  // edge and exactly one exit edge.
657  bool isSimple(Region* R) const;
658
659public:
660  static char ID;
661  explicit RegionInfo();
662
663  ~RegionInfo();
664
665  /// @name FunctionPass interface
666  //@{
667  bool runOnFunction(Function &F) override;
668  void getAnalysisUsage(AnalysisUsage &AU) const override;
669  void print(raw_ostream &OS, const Module *) const override;
670  void verifyAnalysis() const override;
671  //@}
672
673  /// @brief Get the smallest region that contains a BasicBlock.
674  ///
675  /// @param BB The basic block.
676  /// @return The smallest region, that contains BB or NULL, if there is no
677  /// region containing BB.
678  Region *getRegionFor(BasicBlock *BB) const;
679
680  /// @brief  Set the smallest region that surrounds a basic block.
681  ///
682  /// @param BB The basic block surrounded by a region.
683  /// @param R The smallest region that surrounds BB.
684  void setRegionFor(BasicBlock *BB, Region *R);
685
686  /// @brief A shortcut for getRegionFor().
687  ///
688  /// @param BB The basic block.
689  /// @return The smallest region, that contains BB or NULL, if there is no
690  /// region containing BB.
691  Region *operator[](BasicBlock *BB) const;
692
693  /// @brief Return the exit of the maximal refined region, that starts at a
694  /// BasicBlock.
695  ///
696  /// @param BB The BasicBlock the refined region starts.
697  BasicBlock *getMaxRegionExit(BasicBlock *BB) const;
698
699  /// @brief Find the smallest region that contains two regions.
700  ///
701  /// @param A The first region.
702  /// @param B The second region.
703  /// @return The smallest region containing A and B.
704  Region *getCommonRegion(Region* A, Region *B) const;
705
706  /// @brief Find the smallest region that contains two basic blocks.
707  ///
708  /// @param A The first basic block.
709  /// @param B The second basic block.
710  /// @return The smallest region that contains A and B.
711  Region* getCommonRegion(BasicBlock* A, BasicBlock *B) const {
712    return getCommonRegion(getRegionFor(A), getRegionFor(B));
713  }
714
715  /// @brief Find the smallest region that contains a set of regions.
716  ///
717  /// @param Regions A vector of regions.
718  /// @return The smallest region that contains all regions in Regions.
719  Region* getCommonRegion(SmallVectorImpl<Region*> &Regions) const;
720
721  /// @brief Find the smallest region that contains a set of basic blocks.
722  ///
723  /// @param BBs A vector of basic blocks.
724  /// @return The smallest region that contains all basic blocks in BBS.
725  Region* getCommonRegion(SmallVectorImpl<BasicBlock*> &BBs) const;
726
727  Region *getTopLevelRegion() const {
728    return TopLevelRegion;
729  }
730
731  /// @brief Update RegionInfo after a basic block was split.
732  ///
733  /// @param NewBB The basic block that was created before OldBB.
734  /// @param OldBB The old basic block.
735  void splitBlock(BasicBlock* NewBB, BasicBlock *OldBB);
736
737  /// @brief Clear the Node Cache for all Regions.
738  ///
739  /// @see Region::clearNodeCache()
740  void clearNodeCache() {
741    if (TopLevelRegion)
742      TopLevelRegion->clearNodeCache();
743  }
744};
745
746inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node) {
747  if (Node.isSubRegion())
748    return OS << Node.getNodeAs<Region>()->getNameStr();
749  else
750    return OS << Node.getNodeAs<BasicBlock>()->getName();
751}
752} // End llvm namespace
753#endif
754
755