1//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The ScalarEvolution class is an LLVM pass which can be used to analyze and
11// categorize scalar expressions in loops.  It specializes in recognizing
12// general induction variables, representing them with the abstract and opaque
13// SCEV class.  Given this analysis, trip counts of loops and other important
14// properties can be obtained.
15//
16// This analysis is primarily useful for induction variable substitution and
17// strength reduction.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
22#define LLVM_ANALYSIS_SCALAREVOLUTION_H
23
24#include "llvm/ADT/DenseSet.h"
25#include "llvm/ADT/FoldingSet.h"
26#include "llvm/IR/ConstantRange.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/Instructions.h"
29#include "llvm/IR/Operator.h"
30#include "llvm/IR/ValueHandle.h"
31#include "llvm/Pass.h"
32#include "llvm/Support/Allocator.h"
33#include "llvm/Support/DataTypes.h"
34#include <map>
35
36namespace llvm {
37  class APInt;
38  class Constant;
39  class ConstantInt;
40  class DominatorTree;
41  class Type;
42  class ScalarEvolution;
43  class DataLayout;
44  class TargetLibraryInfo;
45  class LLVMContext;
46  class Loop;
47  class LoopInfo;
48  class Operator;
49  class SCEVUnknown;
50  class SCEV;
51  template<> struct FoldingSetTrait<SCEV>;
52
53  /// SCEV - This class represents an analyzed expression in the program.  These
54  /// are opaque objects that the client is not allowed to do much with
55  /// directly.
56  ///
57  class SCEV : public FoldingSetNode {
58    friend struct FoldingSetTrait<SCEV>;
59
60    /// FastID - A reference to an Interned FoldingSetNodeID for this node.
61    /// The ScalarEvolution's BumpPtrAllocator holds the data.
62    FoldingSetNodeIDRef FastID;
63
64    // The SCEV baseclass this node corresponds to
65    const unsigned short SCEVType;
66
67  protected:
68    /// SubclassData - This field is initialized to zero and may be used in
69    /// subclasses to store miscellaneous information.
70    unsigned short SubclassData;
71
72  private:
73    SCEV(const SCEV &) LLVM_DELETED_FUNCTION;
74    void operator=(const SCEV &) LLVM_DELETED_FUNCTION;
75
76  public:
77    /// NoWrapFlags are bitfield indices into SubclassData.
78    ///
79    /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
80    /// no-signed-wrap <NSW> properties, which are derived from the IR
81    /// operator. NSW is a misnomer that we use to mean no signed overflow or
82    /// underflow.
83    ///
84    /// AddRec expression may have a no-self-wraparound <NW> property if the
85    /// result can never reach the start value. This property is independent of
86    /// the actual start value and step direction. Self-wraparound is defined
87    /// purely in terms of the recurrence's loop, step size, and
88    /// bitwidth. Formally, a recurrence with no self-wraparound satisfies:
89    /// abs(step) * max-iteration(loop) <= unsigned-max(bitwidth).
90    ///
91    /// Note that NUW and NSW are also valid properties of a recurrence, and
92    /// either implies NW. For convenience, NW will be set for a recurrence
93    /// whenever either NUW or NSW are set.
94    enum NoWrapFlags { FlagAnyWrap = 0,          // No guarantee.
95                       FlagNW      = (1 << 0),   // No self-wrap.
96                       FlagNUW     = (1 << 1),   // No unsigned wrap.
97                       FlagNSW     = (1 << 2),   // No signed wrap.
98                       NoWrapMask  = (1 << 3) -1 };
99
100    explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) :
101      FastID(ID), SCEVType(SCEVTy), SubclassData(0) {}
102
103    unsigned getSCEVType() const { return SCEVType; }
104
105    /// getType - Return the LLVM type of this SCEV expression.
106    ///
107    Type *getType() const;
108
109    /// isZero - Return true if the expression is a constant zero.
110    ///
111    bool isZero() const;
112
113    /// isOne - Return true if the expression is a constant one.
114    ///
115    bool isOne() const;
116
117    /// isAllOnesValue - Return true if the expression is a constant
118    /// all-ones value.
119    ///
120    bool isAllOnesValue() const;
121
122    /// isNonConstantNegative - Return true if the specified scev is negated,
123    /// but not a constant.
124    bool isNonConstantNegative() const;
125
126    /// print - Print out the internal representation of this scalar to the
127    /// specified stream.  This should really only be used for debugging
128    /// purposes.
129    void print(raw_ostream &OS) const;
130
131    /// dump - This method is used for debugging.
132    ///
133    void dump() const;
134  };
135
136  // Specialize FoldingSetTrait for SCEV to avoid needing to compute
137  // temporary FoldingSetNodeID values.
138  template<> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
139    static void Profile(const SCEV &X, FoldingSetNodeID& ID) {
140      ID = X.FastID;
141    }
142    static bool Equals(const SCEV &X, const FoldingSetNodeID &ID,
143                       unsigned IDHash, FoldingSetNodeID &TempID) {
144      return ID == X.FastID;
145    }
146    static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
147      return X.FastID.ComputeHash();
148    }
149  };
150
151  inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
152    S.print(OS);
153    return OS;
154  }
155
156  /// SCEVCouldNotCompute - An object of this class is returned by queries that
157  /// could not be answered.  For example, if you ask for the number of
158  /// iterations of a linked-list traversal loop, you will get one of these.
159  /// None of the standard SCEV operations are valid on this class, it is just a
160  /// marker.
161  struct SCEVCouldNotCompute : public SCEV {
162    SCEVCouldNotCompute();
163
164    /// Methods for support type inquiry through isa, cast, and dyn_cast:
165    static bool classof(const SCEV *S);
166  };
167
168  /// ScalarEvolution - This class is the main scalar evolution driver.  Because
169  /// client code (intentionally) can't do much with the SCEV objects directly,
170  /// they must ask this class for services.
171  ///
172  class ScalarEvolution : public FunctionPass {
173  public:
174    /// LoopDisposition - An enum describing the relationship between a
175    /// SCEV and a loop.
176    enum LoopDisposition {
177      LoopVariant,    ///< The SCEV is loop-variant (unknown).
178      LoopInvariant,  ///< The SCEV is loop-invariant.
179      LoopComputable  ///< The SCEV varies predictably with the loop.
180    };
181
182    /// BlockDisposition - An enum describing the relationship between a
183    /// SCEV and a basic block.
184    enum BlockDisposition {
185      DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
186      DominatesBlock,        ///< The SCEV dominates the block.
187      ProperlyDominatesBlock ///< The SCEV properly dominates the block.
188    };
189
190    /// Convenient NoWrapFlags manipulation that hides enum casts and is
191    /// visible in the ScalarEvolution name space.
192    static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
193    maskFlags(SCEV::NoWrapFlags Flags, int Mask) {
194      return (SCEV::NoWrapFlags)(Flags & Mask);
195    }
196    static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
197    setFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OnFlags) {
198      return (SCEV::NoWrapFlags)(Flags | OnFlags);
199    }
200    static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
201    clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
202      return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
203    }
204
205  private:
206    /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
207    /// notified whenever a Value is deleted.
208    class SCEVCallbackVH : public CallbackVH {
209      ScalarEvolution *SE;
210      void deleted() override;
211      void allUsesReplacedWith(Value *New) override;
212    public:
213      SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
214    };
215
216    friend class SCEVCallbackVH;
217    friend class SCEVExpander;
218    friend class SCEVUnknown;
219
220    /// F - The function we are analyzing.
221    ///
222    Function *F;
223
224    /// LI - The loop information for the function we are currently analyzing.
225    ///
226    LoopInfo *LI;
227
228    /// The DataLayout information for the target we are targeting.
229    ///
230    const DataLayout *DL;
231
232    /// TLI - The target library information for the target we are targeting.
233    ///
234    TargetLibraryInfo *TLI;
235
236    /// DT - The dominator tree.
237    ///
238    DominatorTree *DT;
239
240    /// CouldNotCompute - This SCEV is used to represent unknown trip
241    /// counts and things.
242    SCEVCouldNotCompute CouldNotCompute;
243
244    /// ValueExprMapType - The typedef for ValueExprMap.
245    ///
246    typedef DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *> >
247      ValueExprMapType;
248
249    /// ValueExprMap - This is a cache of the values we have analyzed so far.
250    ///
251    ValueExprMapType ValueExprMap;
252
253    /// Mark predicate values currently being processed by isImpliedCond.
254    DenseSet<Value*> PendingLoopPredicates;
255
256    /// ExitLimit - Information about the number of loop iterations for which a
257    /// loop exit's branch condition evaluates to the not-taken path.  This is a
258    /// temporary pair of exact and max expressions that are eventually
259    /// summarized in ExitNotTakenInfo and BackedgeTakenInfo.
260    ///
261    /// If MustExit is true, then the exit must be taken when the BECount
262    /// reaches Exact (and before surpassing Max). If MustExit is false, then
263    /// BECount may exceed Exact or Max if the loop exits via another branch. In
264    /// either case, the loop may exit early via another branch.
265    ///
266    /// MustExit is true for most cases. However, an exit guarded by an
267    /// (in)equality on a nonunit stride may be skipped.
268    struct ExitLimit {
269      const SCEV *Exact;
270      const SCEV *Max;
271      bool MustExit;
272
273      /*implicit*/ ExitLimit(const SCEV *E)
274        : Exact(E), Max(E), MustExit(true) {}
275
276      ExitLimit(const SCEV *E, const SCEV *M, bool MustExit)
277        : Exact(E), Max(M), MustExit(MustExit) {}
278
279      /// hasAnyInfo - Test whether this ExitLimit contains any computed
280      /// information, or whether it's all SCEVCouldNotCompute values.
281      bool hasAnyInfo() const {
282        return !isa<SCEVCouldNotCompute>(Exact) ||
283          !isa<SCEVCouldNotCompute>(Max);
284      }
285    };
286
287    /// ExitNotTakenInfo - Information about the number of times a particular
288    /// loop exit may be reached before exiting the loop.
289    struct ExitNotTakenInfo {
290      AssertingVH<BasicBlock> ExitingBlock;
291      const SCEV *ExactNotTaken;
292      PointerIntPair<ExitNotTakenInfo*, 1> NextExit;
293
294      ExitNotTakenInfo() : ExitingBlock(nullptr), ExactNotTaken(nullptr) {}
295
296      /// isCompleteList - Return true if all loop exits are computable.
297      bool isCompleteList() const {
298        return NextExit.getInt() == 0;
299      }
300
301      void setIncomplete() { NextExit.setInt(1); }
302
303      /// getNextExit - Return a pointer to the next exit's not-taken info.
304      ExitNotTakenInfo *getNextExit() const {
305        return NextExit.getPointer();
306      }
307
308      void setNextExit(ExitNotTakenInfo *ENT) { NextExit.setPointer(ENT); }
309    };
310
311    /// BackedgeTakenInfo - Information about the backedge-taken count
312    /// of a loop. This currently includes an exact count and a maximum count.
313    ///
314    class BackedgeTakenInfo {
315      /// ExitNotTaken - A list of computable exits and their not-taken counts.
316      /// Loops almost never have more than one computable exit.
317      ExitNotTakenInfo ExitNotTaken;
318
319      /// Max - An expression indicating the least maximum backedge-taken
320      /// count of the loop that is known, or a SCEVCouldNotCompute.
321      const SCEV *Max;
322
323    public:
324      BackedgeTakenInfo() : Max(nullptr) {}
325
326      /// Initialize BackedgeTakenInfo from a list of exact exit counts.
327      BackedgeTakenInfo(
328        SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
329        bool Complete, const SCEV *MaxCount);
330
331      /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
332      /// computed information, or whether it's all SCEVCouldNotCompute
333      /// values.
334      bool hasAnyInfo() const {
335        return ExitNotTaken.ExitingBlock || !isa<SCEVCouldNotCompute>(Max);
336      }
337
338      /// getExact - Return an expression indicating the exact backedge-taken
339      /// count of the loop if it is known, or SCEVCouldNotCompute
340      /// otherwise. This is the number of times the loop header can be
341      /// guaranteed to execute, minus one.
342      const SCEV *getExact(ScalarEvolution *SE) const;
343
344      /// getExact - Return the number of times this loop exit may fall through
345      /// to the back edge, or SCEVCouldNotCompute. The loop is guaranteed not
346      /// to exit via this block before this number of iterations, but may exit
347      /// via another block.
348      const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
349
350      /// getMax - Get the max backedge taken count for the loop.
351      const SCEV *getMax(ScalarEvolution *SE) const;
352
353      /// Return true if any backedge taken count expressions refer to the given
354      /// subexpression.
355      bool hasOperand(const SCEV *S, ScalarEvolution *SE) const;
356
357      /// clear - Invalidate this result and free associated memory.
358      void clear();
359    };
360
361    /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
362    /// this function as they are computed.
363    DenseMap<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
364
365    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
366    /// the PHI instructions that we attempt to compute constant evolutions for.
367    /// This allows us to avoid potentially expensive recomputation of these
368    /// properties.  An instruction maps to null if we are unable to compute its
369    /// exit value.
370    DenseMap<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
371
372    /// ValuesAtScopes - This map contains entries for all the expressions
373    /// that we attempt to compute getSCEVAtScope information for, which can
374    /// be expensive in extreme cases.
375    DenseMap<const SCEV *,
376             SmallVector<std::pair<const Loop *, const SCEV *>, 2> > ValuesAtScopes;
377
378    /// LoopDispositions - Memoized computeLoopDisposition results.
379    DenseMap<const SCEV *,
380             SmallVector<std::pair<const Loop *, LoopDisposition>, 2> > LoopDispositions;
381
382    /// computeLoopDisposition - Compute a LoopDisposition value.
383    LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
384
385    /// BlockDispositions - Memoized computeBlockDisposition results.
386    DenseMap<const SCEV *,
387             SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> > BlockDispositions;
388
389    /// computeBlockDisposition - Compute a BlockDisposition value.
390    BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
391
392    /// UnsignedRanges - Memoized results from getUnsignedRange
393    DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
394
395    /// SignedRanges - Memoized results from getSignedRange
396    DenseMap<const SCEV *, ConstantRange> SignedRanges;
397
398    /// setUnsignedRange - Set the memoized unsigned range for the given SCEV.
399    const ConstantRange &setUnsignedRange(const SCEV *S,
400                                          const ConstantRange &CR) {
401      std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
402        UnsignedRanges.insert(std::make_pair(S, CR));
403      if (!Pair.second)
404        Pair.first->second = CR;
405      return Pair.first->second;
406    }
407
408    /// setUnsignedRange - Set the memoized signed range for the given SCEV.
409    const ConstantRange &setSignedRange(const SCEV *S,
410                                        const ConstantRange &CR) {
411      std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
412        SignedRanges.insert(std::make_pair(S, CR));
413      if (!Pair.second)
414        Pair.first->second = CR;
415      return Pair.first->second;
416    }
417
418    /// createSCEV - We know that there is no SCEV for the specified value.
419    /// Analyze the expression.
420    const SCEV *createSCEV(Value *V);
421
422    /// createNodeForPHI - Provide the special handling we need to analyze PHI
423    /// SCEVs.
424    const SCEV *createNodeForPHI(PHINode *PN);
425
426    /// createNodeForGEP - Provide the special handling we need to analyze GEP
427    /// SCEVs.
428    const SCEV *createNodeForGEP(GEPOperator *GEP);
429
430    /// computeSCEVAtScope - Implementation code for getSCEVAtScope; called
431    /// at most once for each SCEV+Loop pair.
432    ///
433    const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
434
435    /// ForgetSymbolicValue - This looks up computed SCEV values for all
436    /// instructions that depend on the given instruction and removes them from
437    /// the ValueExprMap map if they reference SymName. This is used during PHI
438    /// resolution.
439    void ForgetSymbolicName(Instruction *I, const SCEV *SymName);
440
441    /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
442    /// loop, lazily computing new values if the loop hasn't been analyzed
443    /// yet.
444    const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
445
446    /// ComputeBackedgeTakenCount - Compute the number of times the specified
447    /// loop will iterate.
448    BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
449
450    /// ComputeExitLimit - Compute the number of times the backedge of the
451    /// specified loop will execute if it exits via the specified block.
452    ExitLimit ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock);
453
454    /// ComputeExitLimitFromCond - Compute the number of times the backedge of
455    /// the specified loop will execute if its exit condition were a conditional
456    /// branch of ExitCond, TBB, and FBB.
457    ExitLimit ComputeExitLimitFromCond(const Loop *L,
458                                       Value *ExitCond,
459                                       BasicBlock *TBB,
460                                       BasicBlock *FBB,
461                                       bool IsSubExpr);
462
463    /// ComputeExitLimitFromICmp - Compute the number of times the backedge of
464    /// the specified loop will execute if its exit condition were a conditional
465    /// branch of the ICmpInst ExitCond, TBB, and FBB.
466    ExitLimit ComputeExitLimitFromICmp(const Loop *L,
467                                       ICmpInst *ExitCond,
468                                       BasicBlock *TBB,
469                                       BasicBlock *FBB,
470                                       bool IsSubExpr);
471
472    /// ComputeExitLimitFromSingleExitSwitch - Compute the number of times the
473    /// backedge of the specified loop will execute if its exit condition were a
474    /// switch with a single exiting case to ExitingBB.
475    ExitLimit
476    ComputeExitLimitFromSingleExitSwitch(const Loop *L, SwitchInst *Switch,
477                               BasicBlock *ExitingBB, bool IsSubExpr);
478
479    /// ComputeLoadConstantCompareExitLimit - Given an exit condition
480    /// of 'icmp op load X, cst', try to see if we can compute the
481    /// backedge-taken count.
482    ExitLimit ComputeLoadConstantCompareExitLimit(LoadInst *LI,
483                                                  Constant *RHS,
484                                                  const Loop *L,
485                                                  ICmpInst::Predicate p);
486
487    /// ComputeExitCountExhaustively - If the loop is known to execute a
488    /// constant number of times (the condition evolves only from constants),
489    /// try to evaluate a few iterations of the loop until we get the exit
490    /// condition gets a value of ExitWhen (true or false).  If we cannot
491    /// evaluate the exit count of the loop, return CouldNotCompute.
492    const SCEV *ComputeExitCountExhaustively(const Loop *L,
493                                             Value *Cond,
494                                             bool ExitWhen);
495
496    /// HowFarToZero - Return the number of times an exit condition comparing
497    /// the specified value to zero will execute.  If not computable, return
498    /// CouldNotCompute.
499    ExitLimit HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr);
500
501    /// HowFarToNonZero - Return the number of times an exit condition checking
502    /// the specified value for nonzero will execute.  If not computable, return
503    /// CouldNotCompute.
504    ExitLimit HowFarToNonZero(const SCEV *V, const Loop *L);
505
506    /// HowManyLessThans - Return the number of times an exit condition
507    /// containing the specified less-than comparison will execute.  If not
508    /// computable, return CouldNotCompute. isSigned specifies whether the
509    /// less-than is signed.
510    ExitLimit HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
511                               const Loop *L, bool isSigned, bool IsSubExpr);
512    ExitLimit HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
513                                  const Loop *L, bool isSigned, bool IsSubExpr);
514
515    /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
516    /// (which may not be an immediate predecessor) which has exactly one
517    /// successor from which BB is reachable, or null if no such block is
518    /// found.
519    std::pair<BasicBlock *, BasicBlock *>
520    getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
521
522    /// isImpliedCond - Test whether the condition described by Pred, LHS, and
523    /// RHS is true whenever the given FoundCondValue value evaluates to true.
524    bool isImpliedCond(ICmpInst::Predicate Pred,
525                       const SCEV *LHS, const SCEV *RHS,
526                       Value *FoundCondValue,
527                       bool Inverse);
528
529    /// isImpliedCondOperands - Test whether the condition described by Pred,
530    /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
531    /// and FoundRHS is true.
532    bool isImpliedCondOperands(ICmpInst::Predicate Pred,
533                               const SCEV *LHS, const SCEV *RHS,
534                               const SCEV *FoundLHS, const SCEV *FoundRHS);
535
536    /// isImpliedCondOperandsHelper - Test whether the condition described by
537    /// Pred, LHS, and RHS is true whenever the condition described by Pred,
538    /// FoundLHS, and FoundRHS is true.
539    bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
540                                     const SCEV *LHS, const SCEV *RHS,
541                                     const SCEV *FoundLHS,
542                                     const SCEV *FoundRHS);
543
544    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
545    /// in the header of its containing loop, we know the loop executes a
546    /// constant number of times, and the PHI node is just a recurrence
547    /// involving constants, fold it.
548    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
549                                                const Loop *L);
550
551    /// isKnownPredicateWithRanges - Test if the given expression is known to
552    /// satisfy the condition described by Pred and the known constant ranges
553    /// of LHS and RHS.
554    ///
555    bool isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
556                                    const SCEV *LHS, const SCEV *RHS);
557
558    /// forgetMemoizedResults - Drop memoized information computed for S.
559    void forgetMemoizedResults(const SCEV *S);
560
561    /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
562    /// pointer.
563    bool checkValidity(const SCEV *S) const;
564
565  public:
566    static char ID; // Pass identification, replacement for typeid
567    ScalarEvolution();
568
569    LLVMContext &getContext() const { return F->getContext(); }
570
571    /// isSCEVable - Test if values of the given type are analyzable within
572    /// the SCEV framework. This primarily includes integer types, and it
573    /// can optionally include pointer types if the ScalarEvolution class
574    /// has access to target-specific information.
575    bool isSCEVable(Type *Ty) const;
576
577    /// getTypeSizeInBits - Return the size in bits of the specified type,
578    /// for which isSCEVable must return true.
579    uint64_t getTypeSizeInBits(Type *Ty) const;
580
581    /// getEffectiveSCEVType - Return a type with the same bitwidth as
582    /// the given type and which represents how SCEV will treat the given
583    /// type, for which isSCEVable must return true. For pointer types,
584    /// this is the pointer-sized integer type.
585    Type *getEffectiveSCEVType(Type *Ty) const;
586
587    /// getSCEV - Return a SCEV expression for the full generality of the
588    /// specified expression.
589    const SCEV *getSCEV(Value *V);
590
591    const SCEV *getConstant(ConstantInt *V);
592    const SCEV *getConstant(const APInt& Val);
593    const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
594    const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty);
595    const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty);
596    const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty);
597    const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
598    const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
599                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
600    const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
601                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
602      SmallVector<const SCEV *, 2> Ops;
603      Ops.push_back(LHS);
604      Ops.push_back(RHS);
605      return getAddExpr(Ops, Flags);
606    }
607    const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
608                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
609      SmallVector<const SCEV *, 3> Ops;
610      Ops.push_back(Op0);
611      Ops.push_back(Op1);
612      Ops.push_back(Op2);
613      return getAddExpr(Ops, Flags);
614    }
615    const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
616                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
617    const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
618                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap)
619    {
620      SmallVector<const SCEV *, 2> Ops;
621      Ops.push_back(LHS);
622      Ops.push_back(RHS);
623      return getMulExpr(Ops, Flags);
624    }
625    const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
626                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
627      SmallVector<const SCEV *, 3> Ops;
628      Ops.push_back(Op0);
629      Ops.push_back(Op1);
630      Ops.push_back(Op2);
631      return getMulExpr(Ops, Flags);
632    }
633    const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
634    const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
635    const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
636                              const Loop *L, SCEV::NoWrapFlags Flags);
637    const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
638                              const Loop *L, SCEV::NoWrapFlags Flags);
639    const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
640                              const Loop *L, SCEV::NoWrapFlags Flags) {
641      SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
642      return getAddRecExpr(NewOp, L, Flags);
643    }
644    const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
645    const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
646    const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
647    const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
648    const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
649    const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
650    const SCEV *getUnknown(Value *V);
651    const SCEV *getCouldNotCompute();
652
653    /// getSizeOfExpr - Return an expression for sizeof AllocTy that is type
654    /// IntTy
655    ///
656    const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
657
658    /// getOffsetOfExpr - Return an expression for offsetof on the given field
659    /// with type IntTy
660    ///
661    const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);
662
663    /// getNegativeSCEV - Return the SCEV object corresponding to -V.
664    ///
665    const SCEV *getNegativeSCEV(const SCEV *V);
666
667    /// getNotSCEV - Return the SCEV object corresponding to ~V.
668    ///
669    const SCEV *getNotSCEV(const SCEV *V);
670
671    /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
672    const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
673                             SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
674
675    /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
676    /// of the input value to the specified type.  If the type must be
677    /// extended, it is zero extended.
678    const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty);
679
680    /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
681    /// of the input value to the specified type.  If the type must be
682    /// extended, it is sign extended.
683    const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty);
684
685    /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
686    /// the input value to the specified type.  If the type must be extended,
687    /// it is zero extended.  The conversion must not be narrowing.
688    const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
689
690    /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
691    /// the input value to the specified type.  If the type must be extended,
692    /// it is sign extended.  The conversion must not be narrowing.
693    const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
694
695    /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
696    /// the input value to the specified type. If the type must be extended,
697    /// it is extended with unspecified bits. The conversion must not be
698    /// narrowing.
699    const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
700
701    /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
702    /// input value to the specified type.  The conversion must not be
703    /// widening.
704    const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
705
706    /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
707    /// the types using zero-extension, and then perform a umax operation
708    /// with them.
709    const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
710                                           const SCEV *RHS);
711
712    /// getUMinFromMismatchedTypes - Promote the operands to the wider of
713    /// the types using zero-extension, and then perform a umin operation
714    /// with them.
715    const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
716                                           const SCEV *RHS);
717
718    /// getPointerBase - Transitively follow the chain of pointer-type operands
719    /// until reaching a SCEV that does not have a single pointer operand. This
720    /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
721    /// but corner cases do exist.
722    const SCEV *getPointerBase(const SCEV *V);
723
724    /// getSCEVAtScope - Return a SCEV expression for the specified value
725    /// at the specified scope in the program.  The L value specifies a loop
726    /// nest to evaluate the expression at, where null is the top-level or a
727    /// specified loop is immediately inside of the loop.
728    ///
729    /// This method can be used to compute the exit value for a variable defined
730    /// in a loop by querying what the value will hold in the parent loop.
731    ///
732    /// In the case that a relevant loop exit value cannot be computed, the
733    /// original value V is returned.
734    const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
735
736    /// getSCEVAtScope - This is a convenience function which does
737    /// getSCEVAtScope(getSCEV(V), L).
738    const SCEV *getSCEVAtScope(Value *V, const Loop *L);
739
740    /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
741    /// by a conditional between LHS and RHS.  This is used to help avoid max
742    /// expressions in loop trip counts, and to eliminate casts.
743    bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
744                                  const SCEV *LHS, const SCEV *RHS);
745
746    /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
747    /// protected by a conditional between LHS and RHS.  This is used to
748    /// to eliminate casts.
749    bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
750                                     const SCEV *LHS, const SCEV *RHS);
751
752    /// getSmallConstantTripCount - Returns the maximum trip count of this loop
753    /// as a normal unsigned value. Returns 0 if the trip count is unknown or
754    /// not constant. This "trip count" assumes that control exits via
755    /// ExitingBlock. More precisely, it is the number of times that control may
756    /// reach ExitingBlock before taking the branch. For loops with multiple
757    /// exits, it may not be the number times that the loop header executes if
758    /// the loop exits prematurely via another branch.
759    unsigned getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock);
760
761    /// getSmallConstantTripMultiple - Returns the largest constant divisor of
762    /// the trip count of this loop as a normal unsigned value, if
763    /// possible. This means that the actual trip count is always a multiple of
764    /// the returned value (don't forget the trip count could very well be zero
765    /// as well!). As explained in the comments for getSmallConstantTripCount,
766    /// this assumes that control exits the loop via ExitingBlock.
767    unsigned getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock);
768
769    // getExitCount - Get the expression for the number of loop iterations for
770    // which this loop is guaranteed not to exit via ExitingBlock. Otherwise
771    // return SCEVCouldNotCompute.
772    const SCEV *getExitCount(Loop *L, BasicBlock *ExitingBlock);
773
774    /// getBackedgeTakenCount - If the specified loop has a predictable
775    /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
776    /// object. The backedge-taken count is the number of times the loop header
777    /// will be branched to from within the loop. This is one less than the
778    /// trip count of the loop, since it doesn't count the first iteration,
779    /// when the header is branched to from outside the loop.
780    ///
781    /// Note that it is not valid to call this method on a loop without a
782    /// loop-invariant backedge-taken count (see
783    /// hasLoopInvariantBackedgeTakenCount).
784    ///
785    const SCEV *getBackedgeTakenCount(const Loop *L);
786
787    /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
788    /// return the least SCEV value that is known never to be less than the
789    /// actual backedge taken count.
790    const SCEV *getMaxBackedgeTakenCount(const Loop *L);
791
792    /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
793    /// has an analyzable loop-invariant backedge-taken count.
794    bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
795
796    /// forgetLoop - This method should be called by the client when it has
797    /// changed a loop in a way that may effect ScalarEvolution's ability to
798    /// compute a trip count, or if the loop is deleted.
799    void forgetLoop(const Loop *L);
800
801    /// forgetValue - This method should be called by the client when it has
802    /// changed a value in a way that may effect its value, or which may
803    /// disconnect it from a def-use chain linking it to a loop.
804    void forgetValue(Value *V);
805
806    /// \brief Called when the client has changed the disposition of values in
807    /// this loop.
808    ///
809    /// We don't have a way to invalidate per-loop dispositions. Clear and
810    /// recompute is simpler.
811    void forgetLoopDispositions(const Loop *L) { LoopDispositions.clear(); }
812
813    /// GetMinTrailingZeros - Determine the minimum number of zero bits that S
814    /// is guaranteed to end in (at every loop iteration).  It is, at the same
815    /// time, the minimum number of times S is divisible by 2.  For example,
816    /// given {4,+,8} it returns 2.  If S is guaranteed to be 0, it returns the
817    /// bitwidth of S.
818    uint32_t GetMinTrailingZeros(const SCEV *S);
819
820    /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
821    ///
822    ConstantRange getUnsignedRange(const SCEV *S);
823
824    /// getSignedRange - Determine the signed range for a particular SCEV.
825    ///
826    ConstantRange getSignedRange(const SCEV *S);
827
828    /// isKnownNegative - Test if the given expression is known to be negative.
829    ///
830    bool isKnownNegative(const SCEV *S);
831
832    /// isKnownPositive - Test if the given expression is known to be positive.
833    ///
834    bool isKnownPositive(const SCEV *S);
835
836    /// isKnownNonNegative - Test if the given expression is known to be
837    /// non-negative.
838    ///
839    bool isKnownNonNegative(const SCEV *S);
840
841    /// isKnownNonPositive - Test if the given expression is known to be
842    /// non-positive.
843    ///
844    bool isKnownNonPositive(const SCEV *S);
845
846    /// isKnownNonZero - Test if the given expression is known to be
847    /// non-zero.
848    ///
849    bool isKnownNonZero(const SCEV *S);
850
851    /// isKnownPredicate - Test if the given expression is known to satisfy
852    /// the condition described by Pred, LHS, and RHS.
853    ///
854    bool isKnownPredicate(ICmpInst::Predicate Pred,
855                          const SCEV *LHS, const SCEV *RHS);
856
857    /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
858    /// predicate Pred. Return true iff any changes were made. If the
859    /// operands are provably equal or unequal, LHS and RHS are set to
860    /// the same value and Pred is set to either ICMP_EQ or ICMP_NE.
861    ///
862    bool SimplifyICmpOperands(ICmpInst::Predicate &Pred,
863                              const SCEV *&LHS,
864                              const SCEV *&RHS,
865                              unsigned Depth = 0);
866
867    /// getLoopDisposition - Return the "disposition" of the given SCEV with
868    /// respect to the given loop.
869    LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
870
871    /// isLoopInvariant - Return true if the value of the given SCEV is
872    /// unchanging in the specified loop.
873    bool isLoopInvariant(const SCEV *S, const Loop *L);
874
875    /// hasComputableLoopEvolution - Return true if the given SCEV changes value
876    /// in a known way in the specified loop.  This property being true implies
877    /// that the value is variant in the loop AND that we can emit an expression
878    /// to compute the value of the expression at any particular loop iteration.
879    bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
880
881    /// getLoopDisposition - Return the "disposition" of the given SCEV with
882    /// respect to the given block.
883    BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
884
885    /// dominates - Return true if elements that makes up the given SCEV
886    /// dominate the specified basic block.
887    bool dominates(const SCEV *S, const BasicBlock *BB);
888
889    /// properlyDominates - Return true if elements that makes up the given SCEV
890    /// properly dominate the specified basic block.
891    bool properlyDominates(const SCEV *S, const BasicBlock *BB);
892
893    /// hasOperand - Test whether the given SCEV has Op as a direct or
894    /// indirect operand.
895    bool hasOperand(const SCEV *S, const SCEV *Op) const;
896
897    /// Return the size of an element read or written by Inst.
898    const SCEV *getElementSize(Instruction *Inst);
899
900    /// Compute the array dimensions Sizes from the set of Terms extracted from
901    /// the memory access function of this SCEVAddRecExpr.
902    void findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
903                             SmallVectorImpl<const SCEV *> &Sizes,
904                             const SCEV *ElementSize) const;
905
906    bool runOnFunction(Function &F) override;
907    void releaseMemory() override;
908    void getAnalysisUsage(AnalysisUsage &AU) const override;
909    void print(raw_ostream &OS, const Module* = nullptr) const override;
910    void verifyAnalysis() const override;
911
912  private:
913    /// Compute the backedge taken count knowing the interval difference, the
914    /// stride and presence of the equality in the comparison.
915    const SCEV *computeBECount(const SCEV *Delta, const SCEV *Stride,
916                               bool Equality);
917
918    /// Verify if an linear IV with positive stride can overflow when in a
919    /// less-than comparison, knowing the invariant term of the comparison,
920    /// the stride and the knowledge of NSW/NUW flags on the recurrence.
921    bool doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
922                            bool IsSigned, bool NoWrap);
923
924    /// Verify if an linear IV with negative stride can overflow when in a
925    /// greater-than comparison, knowing the invariant term of the comparison,
926    /// the stride and the knowledge of NSW/NUW flags on the recurrence.
927    bool doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
928                            bool IsSigned, bool NoWrap);
929
930  private:
931    FoldingSet<SCEV> UniqueSCEVs;
932    BumpPtrAllocator SCEVAllocator;
933
934    /// FirstUnknown - The head of a linked list of all SCEVUnknown
935    /// values that have been allocated. This is used by releaseMemory
936    /// to locate them all and call their destructors.
937    SCEVUnknown *FirstUnknown;
938  };
939}
940
941#endif
942