ScalarEvolution.h revision 12ddd409535b52a7fa5157ded9a4cedd161fedb6
1//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The ScalarEvolution class is an LLVM pass which can be used to analyze and
11// catagorize scalar expressions in loops.  It specializes in recognizing
12// general induction variables, representing them with the abstract and opaque
13// SCEV class.  Given this analysis, trip counts of loops and other important
14// properties can be obtained.
15//
16// This analysis is primarily useful for induction variable substitution and
17// strength reduction.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
22#define LLVM_ANALYSIS_SCALAREVOLUTION_H
23
24#include "llvm/Pass.h"
25#include "llvm/Instructions.h"
26#include "llvm/Function.h"
27#include "llvm/Support/DataTypes.h"
28#include "llvm/Support/ValueHandle.h"
29#include "llvm/Support/Allocator.h"
30#include "llvm/Support/ConstantRange.h"
31#include "llvm/ADT/FoldingSet.h"
32#include "llvm/ADT/DenseMap.h"
33#include <iosfwd>
34#include <map>
35
36namespace llvm {
37  class APInt;
38  class Constant;
39  class ConstantInt;
40  class DominatorTree;
41  class Type;
42  class ScalarEvolution;
43  class TargetData;
44  class LLVMContext;
45  class Loop;
46  class LoopInfo;
47  class Operator;
48
49  /// SCEV - This class represents an analyzed expression in the program.  These
50  /// are opaque objects that the client is not allowed to do much with
51  /// directly.
52  ///
53  class SCEV : public FastFoldingSetNode {
54    // The SCEV baseclass this node corresponds to
55    const unsigned short SCEVType;
56
57  protected:
58    /// SubclassData - This field is initialized to zero and may be used in
59    /// subclasses to store miscelaneous information.
60    unsigned short SubclassData;
61
62  private:
63    SCEV(const SCEV &);            // DO NOT IMPLEMENT
64    void operator=(const SCEV &);  // DO NOT IMPLEMENT
65  protected:
66    virtual ~SCEV();
67  public:
68    explicit SCEV(const FoldingSetNodeID &ID, unsigned SCEVTy) :
69      FastFoldingSetNode(ID), SCEVType(SCEVTy), SubclassData(0) {}
70
71    unsigned getSCEVType() const { return SCEVType; }
72
73    /// isLoopInvariant - Return true if the value of this SCEV is unchanging in
74    /// the specified loop.
75    virtual bool isLoopInvariant(const Loop *L) const = 0;
76
77    /// hasComputableLoopEvolution - Return true if this SCEV changes value in a
78    /// known way in the specified loop.  This property being true implies that
79    /// the value is variant in the loop AND that we can emit an expression to
80    /// compute the value of the expression at any particular loop iteration.
81    virtual bool hasComputableLoopEvolution(const Loop *L) const = 0;
82
83    /// getType - Return the LLVM type of this SCEV expression.
84    ///
85    virtual const Type *getType() const = 0;
86
87    /// isZero - Return true if the expression is a constant zero.
88    ///
89    bool isZero() const;
90
91    /// isOne - Return true if the expression is a constant one.
92    ///
93    bool isOne() const;
94
95    /// isAllOnesValue - Return true if the expression is a constant
96    /// all-ones value.
97    ///
98    bool isAllOnesValue() const;
99
100    /// hasOperand - Test whether this SCEV has Op as a direct or
101    /// indirect operand.
102    virtual bool hasOperand(const SCEV *Op) const = 0;
103
104    /// dominates - Return true if elements that makes up this SCEV dominates
105    /// the specified basic block.
106    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const = 0;
107
108    /// print - Print out the internal representation of this scalar to the
109    /// specified stream.  This should really only be used for debugging
110    /// purposes.
111    virtual void print(raw_ostream &OS) const = 0;
112    void print(std::ostream &OS) const;
113    void print(std::ostream *OS) const { if (OS) print(*OS); }
114
115    /// dump - This method is used for debugging.
116    ///
117    void dump() const;
118  };
119
120  inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
121    S.print(OS);
122    return OS;
123  }
124
125  inline std::ostream &operator<<(std::ostream &OS, const SCEV &S) {
126    S.print(OS);
127    return OS;
128  }
129
130  /// SCEVCouldNotCompute - An object of this class is returned by queries that
131  /// could not be answered.  For example, if you ask for the number of
132  /// iterations of a linked-list traversal loop, you will get one of these.
133  /// None of the standard SCEV operations are valid on this class, it is just a
134  /// marker.
135  struct SCEVCouldNotCompute : public SCEV {
136    SCEVCouldNotCompute();
137
138    // None of these methods are valid for this object.
139    virtual bool isLoopInvariant(const Loop *L) const;
140    virtual const Type *getType() const;
141    virtual bool hasComputableLoopEvolution(const Loop *L) const;
142    virtual void print(raw_ostream &OS) const;
143    virtual bool hasOperand(const SCEV *Op) const;
144
145    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const {
146      return true;
147    }
148
149    /// Methods for support type inquiry through isa, cast, and dyn_cast:
150    static inline bool classof(const SCEVCouldNotCompute *S) { return true; }
151    static bool classof(const SCEV *S);
152  };
153
154  /// ScalarEvolution - This class is the main scalar evolution driver.  Because
155  /// client code (intentionally) can't do much with the SCEV objects directly,
156  /// they must ask this class for services.
157  ///
158  class ScalarEvolution : public FunctionPass {
159    /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
160    /// notified whenever a Value is deleted.
161    class SCEVCallbackVH : public CallbackVH {
162      ScalarEvolution *SE;
163      virtual void deleted();
164      virtual void allUsesReplacedWith(Value *New);
165    public:
166      SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0);
167    };
168
169    friend class SCEVCallbackVH;
170    friend struct SCEVExpander;
171
172    /// F - The function we are analyzing.
173    ///
174    Function *F;
175
176    /// LI - The loop information for the function we are currently analyzing.
177    ///
178    LoopInfo *LI;
179
180    /// TD - The target data information for the target we are targetting.
181    ///
182    TargetData *TD;
183
184    /// CouldNotCompute - This SCEV is used to represent unknown trip
185    /// counts and things.
186    SCEVCouldNotCompute CouldNotCompute;
187
188    /// Scalars - This is a cache of the scalars we have analyzed so far.
189    ///
190    std::map<SCEVCallbackVH, const SCEV *> Scalars;
191
192    /// BackedgeTakenInfo - Information about the backedge-taken count
193    /// of a loop. This currently inclues an exact count and a maximum count.
194    ///
195    struct BackedgeTakenInfo {
196      /// Exact - An expression indicating the exact backedge-taken count of
197      /// the loop if it is known, or a SCEVCouldNotCompute otherwise.
198      const SCEV *Exact;
199
200      /// Max - An expression indicating the least maximum backedge-taken
201      /// count of the loop that is known, or a SCEVCouldNotCompute.
202      const SCEV *Max;
203
204      /*implicit*/ BackedgeTakenInfo(const SCEV *exact) :
205        Exact(exact), Max(exact) {}
206
207      BackedgeTakenInfo(const SCEV *exact, const SCEV *max) :
208        Exact(exact), Max(max) {}
209
210      /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
211      /// computed information, or whether it's all SCEVCouldNotCompute
212      /// values.
213      bool hasAnyInfo() const {
214        return !isa<SCEVCouldNotCompute>(Exact) ||
215               !isa<SCEVCouldNotCompute>(Max);
216      }
217    };
218
219    /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
220    /// this function as they are computed.
221    std::map<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
222
223    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
224    /// the PHI instructions that we attempt to compute constant evolutions for.
225    /// This allows us to avoid potentially expensive recomputation of these
226    /// properties.  An instruction maps to null if we are unable to compute its
227    /// exit value.
228    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
229
230    /// ValuesAtScopes - This map contains entries for all the instructions
231    /// that we attempt to compute getSCEVAtScope information for without
232    /// using SCEV techniques, which can be expensive.
233    std::map<Instruction *, std::map<const Loop *, Constant *> > ValuesAtScopes;
234
235    /// createSCEV - We know that there is no SCEV for the specified value.
236    /// Analyze the expression.
237    const SCEV *createSCEV(Value *V);
238
239    /// createNodeForPHI - Provide the special handling we need to analyze PHI
240    /// SCEVs.
241    const SCEV *createNodeForPHI(PHINode *PN);
242
243    /// createNodeForGEP - Provide the special handling we need to analyze GEP
244    /// SCEVs.
245    const SCEV *createNodeForGEP(Operator *GEP);
246
247    /// ForgetSymbolicValue - This looks up computed SCEV values for all
248    /// instructions that depend on the given instruction and removes them from
249    /// the Scalars map if they reference SymName. This is used during PHI
250    /// resolution.
251    void ForgetSymbolicName(Instruction *I, const SCEV *SymName);
252
253    /// getBECount - Subtract the end and start values and divide by the step,
254    /// rounding up, to get the number of times the backedge is executed. Return
255    /// CouldNotCompute if an intermediate computation overflows.
256    const SCEV *getBECount(const SCEV *Start,
257                           const SCEV *End,
258                           const SCEV *Step);
259
260    /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
261    /// loop, lazily computing new values if the loop hasn't been analyzed
262    /// yet.
263    const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
264
265    /// ComputeBackedgeTakenCount - Compute the number of times the specified
266    /// loop will iterate.
267    BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
268
269    /// ComputeBackedgeTakenCountFromExit - Compute the number of times the
270    /// backedge of the specified loop will execute if it exits via the
271    /// specified block.
272    BackedgeTakenInfo ComputeBackedgeTakenCountFromExit(const Loop *L,
273                                                      BasicBlock *ExitingBlock);
274
275    /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
276    /// backedge of the specified loop will execute if its exit condition
277    /// were a conditional branch of ExitCond, TBB, and FBB.
278    BackedgeTakenInfo
279      ComputeBackedgeTakenCountFromExitCond(const Loop *L,
280                                            Value *ExitCond,
281                                            BasicBlock *TBB,
282                                            BasicBlock *FBB);
283
284    /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of
285    /// times the backedge of the specified loop will execute if its exit
286    /// condition were a conditional branch of the ICmpInst ExitCond, TBB,
287    /// and FBB.
288    BackedgeTakenInfo
289      ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
290                                                ICmpInst *ExitCond,
291                                                BasicBlock *TBB,
292                                                BasicBlock *FBB);
293
294    /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition
295    /// of 'icmp op load X, cst', try to see if we can compute the
296    /// backedge-taken count.
297    const SCEV *
298      ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI,
299                                                   Constant *RHS,
300                                                   const Loop *L,
301                                                   ICmpInst::Predicate p);
302
303    /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute
304    /// a constant number of times (the condition evolves only from constants),
305    /// try to evaluate a few iterations of the loop until we get the exit
306    /// condition gets a value of ExitWhen (true or false).  If we cannot
307    /// evaluate the backedge-taken count of the loop, return CouldNotCompute.
308    const SCEV *ComputeBackedgeTakenCountExhaustively(const Loop *L,
309                                                      Value *Cond,
310                                                      bool ExitWhen);
311
312    /// HowFarToZero - Return the number of times a backedge comparing the
313    /// specified value to zero will execute.  If not computable, return
314    /// CouldNotCompute.
315    const SCEV *HowFarToZero(const SCEV *V, const Loop *L);
316
317    /// HowFarToNonZero - Return the number of times a backedge checking the
318    /// specified value for nonzero will execute.  If not computable, return
319    /// CouldNotCompute.
320    const SCEV *HowFarToNonZero(const SCEV *V, const Loop *L);
321
322    /// HowManyLessThans - Return the number of times a backedge containing the
323    /// specified less-than comparison will execute.  If not computable, return
324    /// CouldNotCompute. isSigned specifies whether the less-than is signed.
325    BackedgeTakenInfo HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
326                                       const Loop *L, bool isSigned);
327
328    /// getLoopPredecessor - If the given loop's header has exactly one unique
329    /// predecessor outside the loop, return it. Otherwise return null.
330    BasicBlock *getLoopPredecessor(const Loop *L);
331
332    /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
333    /// (which may not be an immediate predecessor) which has exactly one
334    /// successor from which BB is reachable, or null if no such block is
335    /// found.
336    BasicBlock* getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
337
338    /// isImpliedCond - Test whether the condition described by Pred, LHS,
339    /// and RHS is true whenever the given Cond value evaluates to true.
340    bool isImpliedCond(Value *Cond, ICmpInst::Predicate Pred,
341                       const SCEV *LHS, const SCEV *RHS,
342                       bool Inverse);
343
344    /// isImpliedCondOperands - Test whether the condition described by Pred,
345    /// LHS, and RHS is true whenever the condition desribed by Pred, FoundLHS,
346    /// and FoundRHS is true.
347    bool isImpliedCondOperands(ICmpInst::Predicate Pred,
348                               const SCEV *LHS, const SCEV *RHS,
349                               const SCEV *FoundLHS, const SCEV *FoundRHS);
350
351    /// isImpliedCondOperandsHelper - Test whether the condition described by
352    /// Pred, LHS, and RHS is true whenever the condition desribed by Pred,
353    /// FoundLHS, and FoundRHS is true.
354    bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
355                                     const SCEV *LHS, const SCEV *RHS,
356                                     const SCEV *FoundLHS, const SCEV *FoundRHS);
357
358    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
359    /// in the header of its containing loop, we know the loop executes a
360    /// constant number of times, and the PHI node is just a recurrence
361    /// involving constants, fold it.
362    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
363                                                const Loop *L);
364
365  public:
366    static char ID; // Pass identification, replacement for typeid
367    ScalarEvolution();
368
369    LLVMContext &getContext() const { return F->getContext(); }
370
371    /// isSCEVable - Test if values of the given type are analyzable within
372    /// the SCEV framework. This primarily includes integer types, and it
373    /// can optionally include pointer types if the ScalarEvolution class
374    /// has access to target-specific information.
375    bool isSCEVable(const Type *Ty) const;
376
377    /// getTypeSizeInBits - Return the size in bits of the specified type,
378    /// for which isSCEVable must return true.
379    uint64_t getTypeSizeInBits(const Type *Ty) const;
380
381    /// getEffectiveSCEVType - Return a type with the same bitwidth as
382    /// the given type and which represents how SCEV will treat the given
383    /// type, for which isSCEVable must return true. For pointer types,
384    /// this is the pointer-sized integer type.
385    const Type *getEffectiveSCEVType(const Type *Ty) const;
386
387    /// getSCEV - Return a SCEV expression handle for the full generality of the
388    /// specified expression.
389    const SCEV *getSCEV(Value *V);
390
391    const SCEV *getConstant(ConstantInt *V);
392    const SCEV *getConstant(const APInt& Val);
393    const SCEV *getConstant(const Type *Ty, uint64_t V, bool isSigned = false);
394    const SCEV *getTruncateExpr(const SCEV *Op, const Type *Ty);
395    const SCEV *getZeroExtendExpr(const SCEV *Op, const Type *Ty);
396    const SCEV *getSignExtendExpr(const SCEV *Op, const Type *Ty);
397    const SCEV *getAnyExtendExpr(const SCEV *Op, const Type *Ty);
398    const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops);
399    const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS) {
400      SmallVector<const SCEV *, 2> Ops;
401      Ops.push_back(LHS);
402      Ops.push_back(RHS);
403      return getAddExpr(Ops);
404    }
405    const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1,
406                           const SCEV *Op2) {
407      SmallVector<const SCEV *, 3> Ops;
408      Ops.push_back(Op0);
409      Ops.push_back(Op1);
410      Ops.push_back(Op2);
411      return getAddExpr(Ops);
412    }
413    const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops);
414    const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS) {
415      SmallVector<const SCEV *, 2> Ops;
416      Ops.push_back(LHS);
417      Ops.push_back(RHS);
418      return getMulExpr(Ops);
419    }
420    const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
421    const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
422                              const Loop *L);
423    const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
424                              const Loop *L);
425    const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
426                              const Loop *L) {
427      SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
428      return getAddRecExpr(NewOp, L);
429    }
430    const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
431    const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
432    const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
433    const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
434    const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
435    const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
436    const SCEV *getUnknown(Value *V);
437    const SCEV *getCouldNotCompute();
438
439    /// getNegativeSCEV - Return the SCEV object corresponding to -V.
440    ///
441    const SCEV *getNegativeSCEV(const SCEV *V);
442
443    /// getNotSCEV - Return the SCEV object corresponding to ~V.
444    ///
445    const SCEV *getNotSCEV(const SCEV *V);
446
447    /// getMinusSCEV - Return LHS-RHS.
448    ///
449    const SCEV *getMinusSCEV(const SCEV *LHS,
450                             const SCEV *RHS);
451
452    /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
453    /// of the input value to the specified type.  If the type must be
454    /// extended, it is zero extended.
455    const SCEV *getTruncateOrZeroExtend(const SCEV *V, const Type *Ty);
456
457    /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
458    /// of the input value to the specified type.  If the type must be
459    /// extended, it is sign extended.
460    const SCEV *getTruncateOrSignExtend(const SCEV *V, const Type *Ty);
461
462    /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
463    /// the input value to the specified type.  If the type must be extended,
464    /// it is zero extended.  The conversion must not be narrowing.
465    const SCEV *getNoopOrZeroExtend(const SCEV *V, const Type *Ty);
466
467    /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
468    /// the input value to the specified type.  If the type must be extended,
469    /// it is sign extended.  The conversion must not be narrowing.
470    const SCEV *getNoopOrSignExtend(const SCEV *V, const Type *Ty);
471
472    /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
473    /// the input value to the specified type. If the type must be extended,
474    /// it is extended with unspecified bits. The conversion must not be
475    /// narrowing.
476    const SCEV *getNoopOrAnyExtend(const SCEV *V, const Type *Ty);
477
478    /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
479    /// input value to the specified type.  The conversion must not be
480    /// widening.
481    const SCEV *getTruncateOrNoop(const SCEV *V, const Type *Ty);
482
483    /// getIntegerSCEV - Given a SCEVable type, create a constant for the
484    /// specified signed integer value and return a SCEV for the constant.
485    const SCEV *getIntegerSCEV(int Val, const Type *Ty);
486
487    /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
488    /// the types using zero-extension, and then perform a umax operation
489    /// with them.
490    const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
491                                           const SCEV *RHS);
492
493    /// getUMinFromMismatchedTypes - Promote the operands to the wider of
494    /// the types using zero-extension, and then perform a umin operation
495    /// with them.
496    const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
497                                           const SCEV *RHS);
498
499    /// getSCEVAtScope - Return a SCEV expression handle for the specified value
500    /// at the specified scope in the program.  The L value specifies a loop
501    /// nest to evaluate the expression at, where null is the top-level or a
502    /// specified loop is immediately inside of the loop.
503    ///
504    /// This method can be used to compute the exit value for a variable defined
505    /// in a loop by querying what the value will hold in the parent loop.
506    ///
507    /// In the case that a relevant loop exit value cannot be computed, the
508    /// original value V is returned.
509    const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
510
511    /// getSCEVAtScope - This is a convenience function which does
512    /// getSCEVAtScope(getSCEV(V), L).
513    const SCEV *getSCEVAtScope(Value *V, const Loop *L);
514
515    /// isLoopGuardedByCond - Test whether entry to the loop is protected by
516    /// a conditional between LHS and RHS.  This is used to help avoid max
517    /// expressions in loop trip counts, and to eliminate casts.
518    bool isLoopGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
519                             const SCEV *LHS, const SCEV *RHS);
520
521    /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
522    /// protected by a conditional between LHS and RHS.  This is used to
523    /// to eliminate casts.
524    bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
525                                     const SCEV *LHS, const SCEV *RHS);
526
527    /// getBackedgeTakenCount - If the specified loop has a predictable
528    /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
529    /// object. The backedge-taken count is the number of times the loop header
530    /// will be branched to from within the loop. This is one less than the
531    /// trip count of the loop, since it doesn't count the first iteration,
532    /// when the header is branched to from outside the loop.
533    ///
534    /// Note that it is not valid to call this method on a loop without a
535    /// loop-invariant backedge-taken count (see
536    /// hasLoopInvariantBackedgeTakenCount).
537    ///
538    const SCEV *getBackedgeTakenCount(const Loop *L);
539
540    /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
541    /// return the least SCEV value that is known never to be less than the
542    /// actual backedge taken count.
543    const SCEV *getMaxBackedgeTakenCount(const Loop *L);
544
545    /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
546    /// has an analyzable loop-invariant backedge-taken count.
547    bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
548
549    /// forgetLoopBackedgeTakenCount - This method should be called by the
550    /// client when it has changed a loop in a way that may effect
551    /// ScalarEvolution's ability to compute a trip count, or if the loop
552    /// is deleted.
553    void forgetLoopBackedgeTakenCount(const Loop *L);
554
555    /// GetMinTrailingZeros - Determine the minimum number of zero bits that S
556    /// is guaranteed to end in (at every loop iteration).  It is, at the same
557    /// time, the minimum number of times S is divisible by 2.  For example,
558    /// given {4,+,8} it returns 2.  If S is guaranteed to be 0, it returns the
559    /// bitwidth of S.
560    uint32_t GetMinTrailingZeros(const SCEV *S);
561
562    /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
563    ///
564    ConstantRange getUnsignedRange(const SCEV *S);
565
566    /// getSignedRange - Determine the signed range for a particular SCEV.
567    ///
568    ConstantRange getSignedRange(const SCEV *S);
569
570    /// isKnownNegative - Test if the given expression is known to be negative.
571    ///
572    bool isKnownNegative(const SCEV *S);
573
574    /// isKnownPositive - Test if the given expression is known to be positive.
575    ///
576    bool isKnownPositive(const SCEV *S);
577
578    /// isKnownNonNegative - Test if the given expression is known to be
579    /// non-negative.
580    ///
581    bool isKnownNonNegative(const SCEV *S);
582
583    /// isKnownNonPositive - Test if the given expression is known to be
584    /// non-positive.
585    ///
586    bool isKnownNonPositive(const SCEV *S);
587
588    /// isKnownNonZero - Test if the given expression is known to be
589    /// non-zero.
590    ///
591    bool isKnownNonZero(const SCEV *S);
592
593    /// isKnownNonZero - Test if the given expression is known to satisfy
594    /// the condition described by Pred, LHS, and RHS.
595    ///
596    bool isKnownPredicate(ICmpInst::Predicate Pred,
597                          const SCEV *LHS, const SCEV *RHS);
598
599    virtual bool runOnFunction(Function &F);
600    virtual void releaseMemory();
601    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
602    void print(raw_ostream &OS, const Module* = 0) const;
603    virtual void print(std::ostream &OS, const Module* = 0) const;
604    void print(std::ostream *OS, const Module* M = 0) const {
605      if (OS) print(*OS, M);
606    }
607
608  private:
609    FoldingSet<SCEV> UniqueSCEVs;
610    BumpPtrAllocator SCEVAllocator;
611  };
612}
613
614#endif
615