ScalarEvolution.h revision 17ead4ff4baceb2c5503f233d0288d363ae44165
1//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The ScalarEvolution class is an LLVM pass which can be used to analyze and
11// categorize scalar expressions in loops.  It specializes in recognizing
12// general induction variables, representing them with the abstract and opaque
13// SCEV class.  Given this analysis, trip counts of loops and other important
14// properties can be obtained.
15//
16// This analysis is primarily useful for induction variable substitution and
17// strength reduction.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
22#define LLVM_ANALYSIS_SCALAREVOLUTION_H
23
24#include "llvm/Pass.h"
25#include "llvm/Instructions.h"
26#include "llvm/Function.h"
27#include "llvm/System/DataTypes.h"
28#include "llvm/Support/ValueHandle.h"
29#include "llvm/Support/Allocator.h"
30#include "llvm/Support/ConstantRange.h"
31#include "llvm/ADT/FoldingSet.h"
32#include "llvm/ADT/DenseMap.h"
33#include <map>
34
35namespace llvm {
36  class APInt;
37  class Constant;
38  class ConstantInt;
39  class DominatorTree;
40  class Type;
41  class ScalarEvolution;
42  class TargetData;
43  class LLVMContext;
44  class Loop;
45  class LoopInfo;
46  class Operator;
47  class SCEVUnknown;
48  class SCEV;
49  template<> struct FoldingSetTrait<SCEV>;
50
51  /// SCEV - This class represents an analyzed expression in the program.  These
52  /// are opaque objects that the client is not allowed to do much with
53  /// directly.
54  ///
55  class SCEV : public FoldingSetNode {
56    friend struct FoldingSetTrait<SCEV>;
57
58    /// FastID - A reference to an Interned FoldingSetNodeID for this node.
59    /// The ScalarEvolution's BumpPtrAllocator holds the data.
60    FoldingSetNodeIDRef FastID;
61
62    // The SCEV baseclass this node corresponds to
63    const unsigned short SCEVType;
64
65  protected:
66    /// SubclassData - This field is initialized to zero and may be used in
67    /// subclasses to store miscellaneous information.
68    unsigned short SubclassData;
69
70  private:
71    SCEV(const SCEV &);            // DO NOT IMPLEMENT
72    void operator=(const SCEV &);  // DO NOT IMPLEMENT
73  protected:
74    virtual ~SCEV();
75  public:
76    explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) :
77      FastID(ID), SCEVType(SCEVTy), SubclassData(0) {}
78
79    unsigned getSCEVType() const { return SCEVType; }
80
81    /// getType - Return the LLVM type of this SCEV expression.
82    ///
83    virtual const Type *getType() const = 0;
84
85    /// isZero - Return true if the expression is a constant zero.
86    ///
87    bool isZero() const;
88
89    /// isOne - Return true if the expression is a constant one.
90    ///
91    bool isOne() const;
92
93    /// isAllOnesValue - Return true if the expression is a constant
94    /// all-ones value.
95    ///
96    bool isAllOnesValue() const;
97
98    /// hasOperand - Test whether this SCEV has Op as a direct or
99    /// indirect operand.
100    virtual bool hasOperand(const SCEV *Op) const = 0;
101
102    /// dominates - Return true if elements that makes up this SCEV dominates
103    /// the specified basic block.
104    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const = 0;
105
106    /// properlyDominates - Return true if elements that makes up this SCEV
107    /// properly dominate the specified basic block.
108    virtual bool properlyDominates(BasicBlock *BB, DominatorTree *DT) const = 0;
109
110    /// print - Print out the internal representation of this scalar to the
111    /// specified stream.  This should really only be used for debugging
112    /// purposes.
113    virtual void print(raw_ostream &OS) const = 0;
114
115    /// dump - This method is used for debugging.
116    ///
117    void dump() const;
118  };
119
120  // Specialize FoldingSetTrait for SCEV to avoid needing to compute
121  // temporary FoldingSetNodeID values.
122  template<> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
123    static void Profile(const SCEV &X, FoldingSetNodeID& ID) {
124      ID = X.FastID;
125    }
126    static bool Equals(const SCEV &X, const FoldingSetNodeID &ID,
127                       FoldingSetNodeID &TempID) {
128      return ID == X.FastID;
129    }
130    static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
131      return X.FastID.ComputeHash();
132    }
133  };
134
135  inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
136    S.print(OS);
137    return OS;
138  }
139
140  /// SCEVCouldNotCompute - An object of this class is returned by queries that
141  /// could not be answered.  For example, if you ask for the number of
142  /// iterations of a linked-list traversal loop, you will get one of these.
143  /// None of the standard SCEV operations are valid on this class, it is just a
144  /// marker.
145  struct SCEVCouldNotCompute : public SCEV {
146    SCEVCouldNotCompute();
147
148    // None of these methods are valid for this object.
149    virtual const Type *getType() const;
150    virtual void print(raw_ostream &OS) const;
151    virtual bool hasOperand(const SCEV *Op) const;
152
153    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const {
154      return true;
155    }
156
157    virtual bool properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
158      return true;
159    }
160
161    /// Methods for support type inquiry through isa, cast, and dyn_cast:
162    static inline bool classof(const SCEVCouldNotCompute *S) { return true; }
163    static bool classof(const SCEV *S);
164  };
165
166  /// ScalarEvolution - This class is the main scalar evolution driver.  Because
167  /// client code (intentionally) can't do much with the SCEV objects directly,
168  /// they must ask this class for services.
169  ///
170  class ScalarEvolution : public FunctionPass {
171    /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
172    /// notified whenever a Value is deleted.
173    class SCEVCallbackVH : public CallbackVH {
174      ScalarEvolution *SE;
175      virtual void deleted();
176      virtual void allUsesReplacedWith(Value *New);
177    public:
178      SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0);
179    };
180
181    friend class SCEVCallbackVH;
182    friend class SCEVExpander;
183    friend class SCEVUnknown;
184
185    /// F - The function we are analyzing.
186    ///
187    Function *F;
188
189    /// LI - The loop information for the function we are currently analyzing.
190    ///
191    LoopInfo *LI;
192
193    /// TD - The target data information for the target we are targeting.
194    ///
195    TargetData *TD;
196
197    /// DT - The dominator tree.
198    ///
199    DominatorTree *DT;
200
201    /// CouldNotCompute - This SCEV is used to represent unknown trip
202    /// counts and things.
203    SCEVCouldNotCompute CouldNotCompute;
204
205    /// ValueExprMapType - The typedef for ValueExprMap.
206    ///
207    typedef DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *> >
208      ValueExprMapType;
209
210    /// ValueExprMap - This is a cache of the values we have analyzed so far.
211    ///
212    ValueExprMapType ValueExprMap;
213
214    /// BackedgeTakenInfo - Information about the backedge-taken count
215    /// of a loop. This currently includes an exact count and a maximum count.
216    ///
217    struct BackedgeTakenInfo {
218      /// Exact - An expression indicating the exact backedge-taken count of
219      /// the loop if it is known, or a SCEVCouldNotCompute otherwise.
220      const SCEV *Exact;
221
222      /// Max - An expression indicating the least maximum backedge-taken
223      /// count of the loop that is known, or a SCEVCouldNotCompute.
224      const SCEV *Max;
225
226      /*implicit*/ BackedgeTakenInfo(const SCEV *exact) :
227        Exact(exact), Max(exact) {}
228
229      BackedgeTakenInfo(const SCEV *exact, const SCEV *max) :
230        Exact(exact), Max(max) {}
231
232      /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
233      /// computed information, or whether it's all SCEVCouldNotCompute
234      /// values.
235      bool hasAnyInfo() const {
236        return !isa<SCEVCouldNotCompute>(Exact) ||
237               !isa<SCEVCouldNotCompute>(Max);
238      }
239    };
240
241    /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
242    /// this function as they are computed.
243    std::map<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
244
245    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
246    /// the PHI instructions that we attempt to compute constant evolutions for.
247    /// This allows us to avoid potentially expensive recomputation of these
248    /// properties.  An instruction maps to null if we are unable to compute its
249    /// exit value.
250    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
251
252    /// ValuesAtScopes - This map contains entries for all the expressions
253    /// that we attempt to compute getSCEVAtScope information for, which can
254    /// be expensive in extreme cases.
255    std::map<const SCEV *,
256             std::map<const Loop *, const SCEV *> > ValuesAtScopes;
257
258    /// UnsignedRanges - Memoized results from getUnsignedRange
259    DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
260
261    /// SignedRanges - Memoized results from getSignedRange
262    DenseMap<const SCEV *, ConstantRange> SignedRanges;
263
264    /// setUnsignedRange - Set the memoized unsigned range for the given SCEV.
265    const ConstantRange &setUnsignedRange(const SCEV *S,
266                                          const ConstantRange &CR) {
267      std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
268        UnsignedRanges.insert(std::make_pair(S, CR));
269      if (!Pair.second)
270        Pair.first->second = CR;
271      return Pair.first->second;
272    }
273
274    /// setUnsignedRange - Set the memoized signed range for the given SCEV.
275    const ConstantRange &setSignedRange(const SCEV *S,
276                                        const ConstantRange &CR) {
277      std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
278        SignedRanges.insert(std::make_pair(S, CR));
279      if (!Pair.second)
280        Pair.first->second = CR;
281      return Pair.first->second;
282    }
283
284    /// createSCEV - We know that there is no SCEV for the specified value.
285    /// Analyze the expression.
286    const SCEV *createSCEV(Value *V);
287
288    /// createNodeForPHI - Provide the special handling we need to analyze PHI
289    /// SCEVs.
290    const SCEV *createNodeForPHI(PHINode *PN);
291
292    /// createNodeForGEP - Provide the special handling we need to analyze GEP
293    /// SCEVs.
294    const SCEV *createNodeForGEP(GEPOperator *GEP);
295
296    /// computeSCEVAtScope - Implementation code for getSCEVAtScope; called
297    /// at most once for each SCEV+Loop pair.
298    ///
299    const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
300
301    /// ForgetSymbolicValue - This looks up computed SCEV values for all
302    /// instructions that depend on the given instruction and removes them from
303    /// the ValueExprMap map if they reference SymName. This is used during PHI
304    /// resolution.
305    void ForgetSymbolicName(Instruction *I, const SCEV *SymName);
306
307    /// getBECount - Subtract the end and start values and divide by the step,
308    /// rounding up, to get the number of times the backedge is executed. Return
309    /// CouldNotCompute if an intermediate computation overflows.
310    const SCEV *getBECount(const SCEV *Start,
311                           const SCEV *End,
312                           const SCEV *Step,
313                           bool NoWrap);
314
315    /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
316    /// loop, lazily computing new values if the loop hasn't been analyzed
317    /// yet.
318    const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
319
320    /// ComputeBackedgeTakenCount - Compute the number of times the specified
321    /// loop will iterate.
322    BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
323
324    /// ComputeBackedgeTakenCountFromExit - Compute the number of times the
325    /// backedge of the specified loop will execute if it exits via the
326    /// specified block.
327    BackedgeTakenInfo ComputeBackedgeTakenCountFromExit(const Loop *L,
328                                                      BasicBlock *ExitingBlock);
329
330    /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
331    /// backedge of the specified loop will execute if its exit condition
332    /// were a conditional branch of ExitCond, TBB, and FBB.
333    BackedgeTakenInfo
334      ComputeBackedgeTakenCountFromExitCond(const Loop *L,
335                                            Value *ExitCond,
336                                            BasicBlock *TBB,
337                                            BasicBlock *FBB);
338
339    /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of
340    /// times the backedge of the specified loop will execute if its exit
341    /// condition were a conditional branch of the ICmpInst ExitCond, TBB,
342    /// and FBB.
343    BackedgeTakenInfo
344      ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
345                                                ICmpInst *ExitCond,
346                                                BasicBlock *TBB,
347                                                BasicBlock *FBB);
348
349    /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition
350    /// of 'icmp op load X, cst', try to see if we can compute the
351    /// backedge-taken count.
352    BackedgeTakenInfo
353      ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI,
354                                                   Constant *RHS,
355                                                   const Loop *L,
356                                                   ICmpInst::Predicate p);
357
358    /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute
359    /// a constant number of times (the condition evolves only from constants),
360    /// try to evaluate a few iterations of the loop until we get the exit
361    /// condition gets a value of ExitWhen (true or false).  If we cannot
362    /// evaluate the backedge-taken count of the loop, return CouldNotCompute.
363    const SCEV *ComputeBackedgeTakenCountExhaustively(const Loop *L,
364                                                      Value *Cond,
365                                                      bool ExitWhen);
366
367    /// HowFarToZero - Return the number of times a backedge comparing the
368    /// specified value to zero will execute.  If not computable, return
369    /// CouldNotCompute.
370    BackedgeTakenInfo HowFarToZero(const SCEV *V, const Loop *L);
371
372    /// HowFarToNonZero - Return the number of times a backedge checking the
373    /// specified value for nonzero will execute.  If not computable, return
374    /// CouldNotCompute.
375    BackedgeTakenInfo HowFarToNonZero(const SCEV *V, const Loop *L);
376
377    /// HowManyLessThans - Return the number of times a backedge containing the
378    /// specified less-than comparison will execute.  If not computable, return
379    /// CouldNotCompute. isSigned specifies whether the less-than is signed.
380    BackedgeTakenInfo HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
381                                       const Loop *L, bool isSigned);
382
383    /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
384    /// (which may not be an immediate predecessor) which has exactly one
385    /// successor from which BB is reachable, or null if no such block is
386    /// found.
387    std::pair<BasicBlock *, BasicBlock *>
388    getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
389
390    /// isImpliedCond - Test whether the condition described by Pred, LHS, and
391    /// RHS is true whenever the given FoundCondValue value evaluates to true.
392    bool isImpliedCond(ICmpInst::Predicate Pred,
393                       const SCEV *LHS, const SCEV *RHS,
394                       Value *FoundCondValue,
395                       bool Inverse);
396
397    /// isImpliedCondOperands - Test whether the condition described by Pred,
398    /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
399    /// and FoundRHS is true.
400    bool isImpliedCondOperands(ICmpInst::Predicate Pred,
401                               const SCEV *LHS, const SCEV *RHS,
402                               const SCEV *FoundLHS, const SCEV *FoundRHS);
403
404    /// isImpliedCondOperandsHelper - Test whether the condition described by
405    /// Pred, LHS, and RHS is true whenever the condition described by Pred,
406    /// FoundLHS, and FoundRHS is true.
407    bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
408                                     const SCEV *LHS, const SCEV *RHS,
409                                     const SCEV *FoundLHS, const SCEV *FoundRHS);
410
411    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
412    /// in the header of its containing loop, we know the loop executes a
413    /// constant number of times, and the PHI node is just a recurrence
414    /// involving constants, fold it.
415    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
416                                                const Loop *L);
417
418    /// isKnownPredicateWithRanges - Test if the given expression is known to
419    /// satisfy the condition described by Pred and the known constant ranges
420    /// of LHS and RHS.
421    ///
422    bool isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
423                                    const SCEV *LHS, const SCEV *RHS);
424
425  public:
426    static char ID; // Pass identification, replacement for typeid
427    ScalarEvolution();
428
429    LLVMContext &getContext() const { return F->getContext(); }
430
431    /// isSCEVable - Test if values of the given type are analyzable within
432    /// the SCEV framework. This primarily includes integer types, and it
433    /// can optionally include pointer types if the ScalarEvolution class
434    /// has access to target-specific information.
435    bool isSCEVable(const Type *Ty) const;
436
437    /// getTypeSizeInBits - Return the size in bits of the specified type,
438    /// for which isSCEVable must return true.
439    uint64_t getTypeSizeInBits(const Type *Ty) const;
440
441    /// getEffectiveSCEVType - Return a type with the same bitwidth as
442    /// the given type and which represents how SCEV will treat the given
443    /// type, for which isSCEVable must return true. For pointer types,
444    /// this is the pointer-sized integer type.
445    const Type *getEffectiveSCEVType(const Type *Ty) const;
446
447    /// getSCEV - Return a SCEV expression for the full generality of the
448    /// specified expression.
449    const SCEV *getSCEV(Value *V);
450
451    const SCEV *getConstant(ConstantInt *V);
452    const SCEV *getConstant(const APInt& Val);
453    const SCEV *getConstant(const Type *Ty, uint64_t V, bool isSigned = false);
454    const SCEV *getTruncateExpr(const SCEV *Op, const Type *Ty);
455    const SCEV *getZeroExtendExpr(const SCEV *Op, const Type *Ty);
456    const SCEV *getSignExtendExpr(const SCEV *Op, const Type *Ty);
457    const SCEV *getAnyExtendExpr(const SCEV *Op, const Type *Ty);
458    const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
459                           bool HasNUW = false, bool HasNSW = false);
460    const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
461                           bool HasNUW = false, bool HasNSW = false) {
462      SmallVector<const SCEV *, 2> Ops;
463      Ops.push_back(LHS);
464      Ops.push_back(RHS);
465      return getAddExpr(Ops, HasNUW, HasNSW);
466    }
467    const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1,
468                           const SCEV *Op2,
469                           bool HasNUW = false, bool HasNSW = false) {
470      SmallVector<const SCEV *, 3> Ops;
471      Ops.push_back(Op0);
472      Ops.push_back(Op1);
473      Ops.push_back(Op2);
474      return getAddExpr(Ops, HasNUW, HasNSW);
475    }
476    const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
477                           bool HasNUW = false, bool HasNSW = false);
478    const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
479                           bool HasNUW = false, bool HasNSW = false) {
480      SmallVector<const SCEV *, 2> Ops;
481      Ops.push_back(LHS);
482      Ops.push_back(RHS);
483      return getMulExpr(Ops, HasNUW, HasNSW);
484    }
485    const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
486    const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
487                              const Loop *L,
488                              bool HasNUW = false, bool HasNSW = false);
489    const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
490                              const Loop *L,
491                              bool HasNUW = false, bool HasNSW = false);
492    const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
493                              const Loop *L,
494                              bool HasNUW = false, bool HasNSW = false) {
495      SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
496      return getAddRecExpr(NewOp, L, HasNUW, HasNSW);
497    }
498    const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
499    const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
500    const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
501    const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
502    const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
503    const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
504    const SCEV *getUnknown(Value *V);
505    const SCEV *getCouldNotCompute();
506
507    /// getSizeOfExpr - Return an expression for sizeof on the given type.
508    ///
509    const SCEV *getSizeOfExpr(const Type *AllocTy);
510
511    /// getAlignOfExpr - Return an expression for alignof on the given type.
512    ///
513    const SCEV *getAlignOfExpr(const Type *AllocTy);
514
515    /// getOffsetOfExpr - Return an expression for offsetof on the given field.
516    ///
517    const SCEV *getOffsetOfExpr(const StructType *STy, unsigned FieldNo);
518
519    /// getOffsetOfExpr - Return an expression for offsetof on the given field.
520    ///
521    const SCEV *getOffsetOfExpr(const Type *CTy, Constant *FieldNo);
522
523    /// getNegativeSCEV - Return the SCEV object corresponding to -V.
524    ///
525    const SCEV *getNegativeSCEV(const SCEV *V);
526
527    /// getNotSCEV - Return the SCEV object corresponding to ~V.
528    ///
529    const SCEV *getNotSCEV(const SCEV *V);
530
531    /// getMinusSCEV - Return LHS-RHS.
532    ///
533    const SCEV *getMinusSCEV(const SCEV *LHS,
534                             const SCEV *RHS);
535
536    /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
537    /// of the input value to the specified type.  If the type must be
538    /// extended, it is zero extended.
539    const SCEV *getTruncateOrZeroExtend(const SCEV *V, const Type *Ty);
540
541    /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
542    /// of the input value to the specified type.  If the type must be
543    /// extended, it is sign extended.
544    const SCEV *getTruncateOrSignExtend(const SCEV *V, const Type *Ty);
545
546    /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
547    /// the input value to the specified type.  If the type must be extended,
548    /// it is zero extended.  The conversion must not be narrowing.
549    const SCEV *getNoopOrZeroExtend(const SCEV *V, const Type *Ty);
550
551    /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
552    /// the input value to the specified type.  If the type must be extended,
553    /// it is sign extended.  The conversion must not be narrowing.
554    const SCEV *getNoopOrSignExtend(const SCEV *V, const Type *Ty);
555
556    /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
557    /// the input value to the specified type. If the type must be extended,
558    /// it is extended with unspecified bits. The conversion must not be
559    /// narrowing.
560    const SCEV *getNoopOrAnyExtend(const SCEV *V, const Type *Ty);
561
562    /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
563    /// input value to the specified type.  The conversion must not be
564    /// widening.
565    const SCEV *getTruncateOrNoop(const SCEV *V, const Type *Ty);
566
567    /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
568    /// the types using zero-extension, and then perform a umax operation
569    /// with them.
570    const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
571                                           const SCEV *RHS);
572
573    /// getUMinFromMismatchedTypes - Promote the operands to the wider of
574    /// the types using zero-extension, and then perform a umin operation
575    /// with them.
576    const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
577                                           const SCEV *RHS);
578
579    /// getSCEVAtScope - Return a SCEV expression for the specified value
580    /// at the specified scope in the program.  The L value specifies a loop
581    /// nest to evaluate the expression at, where null is the top-level or a
582    /// specified loop is immediately inside of the loop.
583    ///
584    /// This method can be used to compute the exit value for a variable defined
585    /// in a loop by querying what the value will hold in the parent loop.
586    ///
587    /// In the case that a relevant loop exit value cannot be computed, the
588    /// original value V is returned.
589    const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
590
591    /// getSCEVAtScope - This is a convenience function which does
592    /// getSCEVAtScope(getSCEV(V), L).
593    const SCEV *getSCEVAtScope(Value *V, const Loop *L);
594
595    /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
596    /// by a conditional between LHS and RHS.  This is used to help avoid max
597    /// expressions in loop trip counts, and to eliminate casts.
598    bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
599                                  const SCEV *LHS, const SCEV *RHS);
600
601    /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
602    /// protected by a conditional between LHS and RHS.  This is used to
603    /// to eliminate casts.
604    bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
605                                     const SCEV *LHS, const SCEV *RHS);
606
607    /// getBackedgeTakenCount - If the specified loop has a predictable
608    /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
609    /// object. The backedge-taken count is the number of times the loop header
610    /// will be branched to from within the loop. This is one less than the
611    /// trip count of the loop, since it doesn't count the first iteration,
612    /// when the header is branched to from outside the loop.
613    ///
614    /// Note that it is not valid to call this method on a loop without a
615    /// loop-invariant backedge-taken count (see
616    /// hasLoopInvariantBackedgeTakenCount).
617    ///
618    const SCEV *getBackedgeTakenCount(const Loop *L);
619
620    /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
621    /// return the least SCEV value that is known never to be less than the
622    /// actual backedge taken count.
623    const SCEV *getMaxBackedgeTakenCount(const Loop *L);
624
625    /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
626    /// has an analyzable loop-invariant backedge-taken count.
627    bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
628
629    /// forgetLoop - This method should be called by the client when it has
630    /// changed a loop in a way that may effect ScalarEvolution's ability to
631    /// compute a trip count, or if the loop is deleted.
632    void forgetLoop(const Loop *L);
633
634    /// forgetValue - This method should be called by the client when it has
635    /// changed a value in a way that may effect its value, or which may
636    /// disconnect it from a def-use chain linking it to a loop.
637    void forgetValue(Value *V);
638
639    /// GetMinTrailingZeros - Determine the minimum number of zero bits that S
640    /// is guaranteed to end in (at every loop iteration).  It is, at the same
641    /// time, the minimum number of times S is divisible by 2.  For example,
642    /// given {4,+,8} it returns 2.  If S is guaranteed to be 0, it returns the
643    /// bitwidth of S.
644    uint32_t GetMinTrailingZeros(const SCEV *S);
645
646    /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
647    ///
648    ConstantRange getUnsignedRange(const SCEV *S);
649
650    /// getSignedRange - Determine the signed range for a particular SCEV.
651    ///
652    ConstantRange getSignedRange(const SCEV *S);
653
654    /// isKnownNegative - Test if the given expression is known to be negative.
655    ///
656    bool isKnownNegative(const SCEV *S);
657
658    /// isKnownPositive - Test if the given expression is known to be positive.
659    ///
660    bool isKnownPositive(const SCEV *S);
661
662    /// isKnownNonNegative - Test if the given expression is known to be
663    /// non-negative.
664    ///
665    bool isKnownNonNegative(const SCEV *S);
666
667    /// isKnownNonPositive - Test if the given expression is known to be
668    /// non-positive.
669    ///
670    bool isKnownNonPositive(const SCEV *S);
671
672    /// isKnownNonZero - Test if the given expression is known to be
673    /// non-zero.
674    ///
675    bool isKnownNonZero(const SCEV *S);
676
677    /// isKnownPredicate - Test if the given expression is known to satisfy
678    /// the condition described by Pred, LHS, and RHS.
679    ///
680    bool isKnownPredicate(ICmpInst::Predicate Pred,
681                          const SCEV *LHS, const SCEV *RHS);
682
683    /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
684    /// predicate Pred. Return true iff any changes were made. If the
685    /// operands are provably equal or inequal, LHS and RHS are set to
686    /// the same value and Pred is set to either ICMP_EQ or ICMP_NE.
687    ///
688    bool SimplifyICmpOperands(ICmpInst::Predicate &Pred,
689                              const SCEV *&LHS,
690                              const SCEV *&RHS);
691
692    /// isLoopInvariant - Return true if the value of the given SCEV is
693    /// unchanging in the specified loop.
694    bool isLoopInvariant(const SCEV *S, const Loop *L);
695
696    /// hasComputableLoopEvolution - Return true if the given SCEV changes value
697    /// in a known way in the specified loop.  This property being true implies
698    /// that the value is variant in the loop AND that we can emit an expression
699    /// to compute the value of the expression at any particular loop iteration.
700    bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
701
702    virtual bool runOnFunction(Function &F);
703    virtual void releaseMemory();
704    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
705    virtual void print(raw_ostream &OS, const Module* = 0) const;
706
707  private:
708    FoldingSet<SCEV> UniqueSCEVs;
709    BumpPtrAllocator SCEVAllocator;
710
711    /// FirstUnknown - The head of a linked list of all SCEVUnknown
712    /// values that have been allocated. This is used by releaseMemory
713    /// to locate them all and call their destructors.
714    SCEVUnknown *FirstUnknown;
715  };
716}
717
718#endif
719