ScalarEvolution.h revision 1c34375f79b7786351c27ae45f0412cfdfa004ed
1//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The ScalarEvolution class is an LLVM pass which can be used to analyze and
11// catagorize scalar expressions in loops.  It specializes in recognizing
12// general induction variables, representing them with the abstract and opaque
13// SCEV class.  Given this analysis, trip counts of loops and other important
14// properties can be obtained.
15//
16// This analysis is primarily useful for induction variable substitution and
17// strength reduction.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
22#define LLVM_ANALYSIS_SCALAREVOLUTION_H
23
24#include "llvm/Pass.h"
25#include "llvm/Analysis/LoopInfo.h"
26#include "llvm/Support/DataTypes.h"
27#include "llvm/Support/ValueHandle.h"
28#include "llvm/Support/Allocator.h"
29#include "llvm/ADT/FoldingSet.h"
30#include "llvm/ADT/DenseMap.h"
31#include <iosfwd>
32
33namespace llvm {
34  class APInt;
35  class ConstantInt;
36  class Type;
37  class ScalarEvolution;
38  class TargetData;
39
40  /// SCEV - This class represents an analyzed expression in the program.  These
41  /// are opaque objects that the client is not allowed to do much with
42  /// directly.
43  ///
44  class SCEV : public FoldingSetNode {
45    const unsigned SCEVType;      // The SCEV baseclass this node corresponds to
46
47    SCEV(const SCEV &);            // DO NOT IMPLEMENT
48    void operator=(const SCEV &);  // DO NOT IMPLEMENT
49  protected:
50    virtual ~SCEV();
51  public:
52    explicit SCEV(unsigned SCEVTy) :
53      SCEVType(SCEVTy) {}
54
55    virtual void Profile(FoldingSetNodeID &ID) const = 0;
56
57    unsigned getSCEVType() const { return SCEVType; }
58
59    /// isLoopInvariant - Return true if the value of this SCEV is unchanging in
60    /// the specified loop.
61    virtual bool isLoopInvariant(const Loop *L) const = 0;
62
63    /// hasComputableLoopEvolution - Return true if this SCEV changes value in a
64    /// known way in the specified loop.  This property being true implies that
65    /// the value is variant in the loop AND that we can emit an expression to
66    /// compute the value of the expression at any particular loop iteration.
67    virtual bool hasComputableLoopEvolution(const Loop *L) const = 0;
68
69    /// getType - Return the LLVM type of this SCEV expression.
70    ///
71    virtual const Type *getType() const = 0;
72
73    /// isZero - Return true if the expression is a constant zero.
74    ///
75    bool isZero() const;
76
77    /// isOne - Return true if the expression is a constant one.
78    ///
79    bool isOne() const;
80
81    /// isAllOnesValue - Return true if the expression is a constant
82    /// all-ones value.
83    ///
84    bool isAllOnesValue() const;
85
86    /// replaceSymbolicValuesWithConcrete - If this SCEV internally references
87    /// the symbolic value "Sym", construct and return a new SCEV that produces
88    /// the same value, but which uses the concrete value Conc instead of the
89    /// symbolic value.  If this SCEV does not use the symbolic value, it
90    /// returns itself.
91    virtual const SCEV*
92    replaceSymbolicValuesWithConcrete(const SCEV* Sym,
93                                      const SCEV* Conc,
94                                      ScalarEvolution &SE) const = 0;
95
96    /// dominates - Return true if elements that makes up this SCEV dominates
97    /// the specified basic block.
98    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const = 0;
99
100    /// print - Print out the internal representation of this scalar to the
101    /// specified stream.  This should really only be used for debugging
102    /// purposes.
103    virtual void print(raw_ostream &OS) const = 0;
104    void print(std::ostream &OS) const;
105    void print(std::ostream *OS) const { if (OS) print(*OS); }
106
107    /// dump - This method is used for debugging.
108    ///
109    void dump() const;
110  };
111
112  inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
113    S.print(OS);
114    return OS;
115  }
116
117  inline std::ostream &operator<<(std::ostream &OS, const SCEV &S) {
118    S.print(OS);
119    return OS;
120  }
121
122  /// SCEVCouldNotCompute - An object of this class is returned by queries that
123  /// could not be answered.  For example, if you ask for the number of
124  /// iterations of a linked-list traversal loop, you will get one of these.
125  /// None of the standard SCEV operations are valid on this class, it is just a
126  /// marker.
127  struct SCEVCouldNotCompute : public SCEV {
128    SCEVCouldNotCompute();
129
130    // None of these methods are valid for this object.
131    virtual void Profile(FoldingSetNodeID &ID) const;
132    virtual bool isLoopInvariant(const Loop *L) const;
133    virtual const Type *getType() const;
134    virtual bool hasComputableLoopEvolution(const Loop *L) const;
135    virtual void print(raw_ostream &OS) const;
136    virtual const SCEV*
137    replaceSymbolicValuesWithConcrete(const SCEV* Sym,
138                                      const SCEV* Conc,
139                                      ScalarEvolution &SE) const;
140
141    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const {
142      return true;
143    }
144
145    /// Methods for support type inquiry through isa, cast, and dyn_cast:
146    static inline bool classof(const SCEVCouldNotCompute *S) { return true; }
147    static bool classof(const SCEV *S);
148  };
149
150  /// ScalarEvolution - This class is the main scalar evolution driver.  Because
151  /// client code (intentionally) can't do much with the SCEV objects directly,
152  /// they must ask this class for services.
153  ///
154  class ScalarEvolution : public FunctionPass {
155    /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
156    /// notified whenever a Value is deleted.
157    class SCEVCallbackVH : public CallbackVH {
158      ScalarEvolution *SE;
159      virtual void deleted();
160      virtual void allUsesReplacedWith(Value *New);
161    public:
162      SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0);
163    };
164
165    friend class SCEVCallbackVH;
166    friend class SCEVExpander;
167
168    /// F - The function we are analyzing.
169    ///
170    Function *F;
171
172    /// LI - The loop information for the function we are currently analyzing.
173    ///
174    LoopInfo *LI;
175
176    /// TD - The target data information for the target we are targetting.
177    ///
178    TargetData *TD;
179
180    /// CouldNotCompute - This SCEV is used to represent unknown trip
181    /// counts and things.
182    SCEVCouldNotCompute CouldNotCompute;
183
184    /// Scalars - This is a cache of the scalars we have analyzed so far.
185    ///
186    std::map<SCEVCallbackVH, const SCEV*> Scalars;
187
188    /// BackedgeTakenInfo - Information about the backedge-taken count
189    /// of a loop. This currently inclues an exact count and a maximum count.
190    ///
191    struct BackedgeTakenInfo {
192      /// Exact - An expression indicating the exact backedge-taken count of
193      /// the loop if it is known, or a SCEVCouldNotCompute otherwise.
194      const SCEV* Exact;
195
196      /// Exact - An expression indicating the least maximum backedge-taken
197      /// count of the loop that is known, or a SCEVCouldNotCompute.
198      const SCEV* Max;
199
200      /*implicit*/ BackedgeTakenInfo(const SCEV* exact) :
201        Exact(exact), Max(exact) {}
202
203      BackedgeTakenInfo(const SCEV* exact, const SCEV* max) :
204        Exact(exact), Max(max) {}
205
206      /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
207      /// computed information, or whether it's all SCEVCouldNotCompute
208      /// values.
209      bool hasAnyInfo() const {
210        return !isa<SCEVCouldNotCompute>(Exact) ||
211               !isa<SCEVCouldNotCompute>(Max);
212      }
213    };
214
215    /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
216    /// this function as they are computed.
217    std::map<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
218
219    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
220    /// the PHI instructions that we attempt to compute constant evolutions for.
221    /// This allows us to avoid potentially expensive recomputation of these
222    /// properties.  An instruction maps to null if we are unable to compute its
223    /// exit value.
224    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
225
226    /// ValuesAtScopes - This map contains entries for all the instructions
227    /// that we attempt to compute getSCEVAtScope information for without
228    /// using SCEV techniques, which can be expensive.
229    std::map<Instruction *, std::map<const Loop *, Constant *> > ValuesAtScopes;
230
231    /// createSCEV - We know that there is no SCEV for the specified value.
232    /// Analyze the expression.
233    const SCEV* createSCEV(Value *V);
234
235    /// createNodeForPHI - Provide the special handling we need to analyze PHI
236    /// SCEVs.
237    const SCEV* createNodeForPHI(PHINode *PN);
238
239    /// createNodeForGEP - Provide the special handling we need to analyze GEP
240    /// SCEVs.
241    const SCEV* createNodeForGEP(User *GEP);
242
243    /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
244    /// for the specified instruction and replaces any references to the
245    /// symbolic value SymName with the specified value.  This is used during
246    /// PHI resolution.
247    void ReplaceSymbolicValueWithConcrete(Instruction *I,
248                                          const SCEV* SymName,
249                                          const SCEV* NewVal);
250
251    /// getBECount - Subtract the end and start values and divide by the step,
252    /// rounding up, to get the number of times the backedge is executed. Return
253    /// CouldNotCompute if an intermediate computation overflows.
254    const SCEV* getBECount(const SCEV* Start,
255                          const SCEV* End,
256                          const SCEV* Step);
257
258    /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
259    /// loop, lazily computing new values if the loop hasn't been analyzed
260    /// yet.
261    const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
262
263    /// ComputeBackedgeTakenCount - Compute the number of times the specified
264    /// loop will iterate.
265    BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
266
267    /// ComputeBackedgeTakenCountFromExit - Compute the number of times the
268    /// backedge of the specified loop will execute if it exits via the
269    /// specified block.
270    BackedgeTakenInfo ComputeBackedgeTakenCountFromExit(const Loop *L,
271                                                      BasicBlock *ExitingBlock);
272
273    /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
274    /// backedge of the specified loop will execute if its exit condition
275    /// were a conditional branch of ExitCond, TBB, and FBB.
276    BackedgeTakenInfo
277      ComputeBackedgeTakenCountFromExitCond(const Loop *L,
278                                            Value *ExitCond,
279                                            BasicBlock *TBB,
280                                            BasicBlock *FBB);
281
282    /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of
283    /// times the backedge of the specified loop will execute if its exit
284    /// condition were a conditional branch of the ICmpInst ExitCond, TBB,
285    /// and FBB.
286    BackedgeTakenInfo
287      ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
288                                                ICmpInst *ExitCond,
289                                                BasicBlock *TBB,
290                                                BasicBlock *FBB);
291
292    /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition
293    /// of 'icmp op load X, cst', try to see if we can compute the trip count.
294    const SCEV*
295      ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI,
296                                                   Constant *RHS,
297                                                   const Loop *L,
298                                                   ICmpInst::Predicate p);
299
300    /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute
301    /// a constant number of times (the condition evolves only from constants),
302    /// try to evaluate a few iterations of the loop until we get the exit
303    /// condition gets a value of ExitWhen (true or false).  If we cannot
304    /// evaluate the trip count of the loop, return CouldNotCompute.
305    const SCEV* ComputeBackedgeTakenCountExhaustively(const Loop *L,
306                                                      Value *Cond,
307                                                      bool ExitWhen);
308
309    /// HowFarToZero - Return the number of times a backedge comparing the
310    /// specified value to zero will execute.  If not computable, return
311    /// CouldNotCompute.
312    const SCEV* HowFarToZero(const SCEV *V, const Loop *L);
313
314    /// HowFarToNonZero - Return the number of times a backedge checking the
315    /// specified value for nonzero will execute.  If not computable, return
316    /// CouldNotCompute.
317    const SCEV* HowFarToNonZero(const SCEV *V, const Loop *L);
318
319    /// HowManyLessThans - Return the number of times a backedge containing the
320    /// specified less-than comparison will execute.  If not computable, return
321    /// CouldNotCompute. isSigned specifies whether the less-than is signed.
322    BackedgeTakenInfo HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
323                                       const Loop *L, bool isSigned);
324
325    /// getLoopPredecessor - If the given loop's header has exactly one unique
326    /// predecessor outside the loop, return it. Otherwise return null.
327    BasicBlock *getLoopPredecessor(const Loop *L);
328
329    /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
330    /// (which may not be an immediate predecessor) which has exactly one
331    /// successor from which BB is reachable, or null if no such block is
332    /// found.
333    BasicBlock* getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
334
335    /// isNecessaryCond - Test whether the given CondValue value is a condition
336    /// which is at least as strict as the one described by Pred, LHS, and RHS.
337    bool isNecessaryCond(Value *Cond, ICmpInst::Predicate Pred,
338                         const SCEV *LHS, const SCEV *RHS,
339                         bool Inverse);
340
341    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
342    /// in the header of its containing loop, we know the loop executes a
343    /// constant number of times, and the PHI node is just a recurrence
344    /// involving constants, fold it.
345    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
346                                                const Loop *L);
347
348    /// forgetLoopPHIs - Delete the memoized SCEVs associated with the
349    /// PHI nodes in the given loop. This is used when the trip count of
350    /// the loop may have changed.
351    void forgetLoopPHIs(const Loop *L);
352
353  public:
354    static char ID; // Pass identification, replacement for typeid
355    ScalarEvolution();
356
357    /// isSCEVable - Test if values of the given type are analyzable within
358    /// the SCEV framework. This primarily includes integer types, and it
359    /// can optionally include pointer types if the ScalarEvolution class
360    /// has access to target-specific information.
361    bool isSCEVable(const Type *Ty) const;
362
363    /// getTypeSizeInBits - Return the size in bits of the specified type,
364    /// for which isSCEVable must return true.
365    uint64_t getTypeSizeInBits(const Type *Ty) const;
366
367    /// getEffectiveSCEVType - Return a type with the same bitwidth as
368    /// the given type and which represents how SCEV will treat the given
369    /// type, for which isSCEVable must return true. For pointer types,
370    /// this is the pointer-sized integer type.
371    const Type *getEffectiveSCEVType(const Type *Ty) const;
372
373    /// getSCEV - Return a SCEV expression handle for the full generality of the
374    /// specified expression.
375    const SCEV* getSCEV(Value *V);
376
377    const SCEV* getConstant(ConstantInt *V);
378    const SCEV* getConstant(const APInt& Val);
379    const SCEV* getConstant(const Type *Ty, uint64_t V, bool isSigned = false);
380    const SCEV* getTruncateExpr(const SCEV* Op, const Type *Ty);
381    const SCEV* getZeroExtendExpr(const SCEV* Op, const Type *Ty);
382    const SCEV* getSignExtendExpr(const SCEV* Op, const Type *Ty);
383    const SCEV* getAnyExtendExpr(const SCEV* Op, const Type *Ty);
384    const SCEV* getAddExpr(SmallVectorImpl<const SCEV*> &Ops);
385    const SCEV* getAddExpr(const SCEV* LHS, const SCEV* RHS) {
386      SmallVector<const SCEV*, 2> Ops;
387      Ops.push_back(LHS);
388      Ops.push_back(RHS);
389      return getAddExpr(Ops);
390    }
391    const SCEV* getAddExpr(const SCEV* Op0, const SCEV* Op1,
392                          const SCEV* Op2) {
393      SmallVector<const SCEV*, 3> Ops;
394      Ops.push_back(Op0);
395      Ops.push_back(Op1);
396      Ops.push_back(Op2);
397      return getAddExpr(Ops);
398    }
399    const SCEV* getMulExpr(SmallVectorImpl<const SCEV*> &Ops);
400    const SCEV* getMulExpr(const SCEV* LHS, const SCEV* RHS) {
401      SmallVector<const SCEV*, 2> Ops;
402      Ops.push_back(LHS);
403      Ops.push_back(RHS);
404      return getMulExpr(Ops);
405    }
406    const SCEV* getUDivExpr(const SCEV* LHS, const SCEV* RHS);
407    const SCEV* getAddRecExpr(const SCEV* Start, const SCEV* Step,
408                             const Loop *L);
409    const SCEV* getAddRecExpr(SmallVectorImpl<const SCEV*> &Operands,
410                             const Loop *L);
411    const SCEV* getAddRecExpr(const SmallVectorImpl<const SCEV*> &Operands,
412                             const Loop *L) {
413      SmallVector<const SCEV*, 4> NewOp(Operands.begin(), Operands.end());
414      return getAddRecExpr(NewOp, L);
415    }
416    const SCEV* getSMaxExpr(const SCEV* LHS, const SCEV* RHS);
417    const SCEV* getSMaxExpr(SmallVectorImpl<const SCEV*> &Operands);
418    const SCEV* getUMaxExpr(const SCEV* LHS, const SCEV* RHS);
419    const SCEV* getUMaxExpr(SmallVectorImpl<const SCEV*> &Operands);
420    const SCEV* getSMinExpr(const SCEV* LHS, const SCEV* RHS);
421    const SCEV* getUMinExpr(const SCEV* LHS, const SCEV* RHS);
422    const SCEV* getUnknown(Value *V);
423    const SCEV* getCouldNotCompute();
424
425    /// getNegativeSCEV - Return the SCEV object corresponding to -V.
426    ///
427    const SCEV* getNegativeSCEV(const SCEV* V);
428
429    /// getNotSCEV - Return the SCEV object corresponding to ~V.
430    ///
431    const SCEV* getNotSCEV(const SCEV* V);
432
433    /// getMinusSCEV - Return LHS-RHS.
434    ///
435    const SCEV* getMinusSCEV(const SCEV* LHS,
436                            const SCEV* RHS);
437
438    /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
439    /// of the input value to the specified type.  If the type must be
440    /// extended, it is zero extended.
441    const SCEV* getTruncateOrZeroExtend(const SCEV* V, const Type *Ty);
442
443    /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
444    /// of the input value to the specified type.  If the type must be
445    /// extended, it is sign extended.
446    const SCEV* getTruncateOrSignExtend(const SCEV* V, const Type *Ty);
447
448    /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
449    /// the input value to the specified type.  If the type must be extended,
450    /// it is zero extended.  The conversion must not be narrowing.
451    const SCEV* getNoopOrZeroExtend(const SCEV* V, const Type *Ty);
452
453    /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
454    /// the input value to the specified type.  If the type must be extended,
455    /// it is sign extended.  The conversion must not be narrowing.
456    const SCEV* getNoopOrSignExtend(const SCEV* V, const Type *Ty);
457
458    /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
459    /// the input value to the specified type. If the type must be extended,
460    /// it is extended with unspecified bits. The conversion must not be
461    /// narrowing.
462    const SCEV* getNoopOrAnyExtend(const SCEV* V, const Type *Ty);
463
464    /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
465    /// input value to the specified type.  The conversion must not be
466    /// widening.
467    const SCEV* getTruncateOrNoop(const SCEV* V, const Type *Ty);
468
469    /// getIntegerSCEV - Given a SCEVable type, create a constant for the
470    /// specified signed integer value and return a SCEV for the constant.
471    const SCEV* getIntegerSCEV(int Val, const Type *Ty);
472
473    /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
474    /// the types using zero-extension, and then perform a umax operation
475    /// with them.
476    const SCEV* getUMaxFromMismatchedTypes(const SCEV* LHS,
477                                          const SCEV* RHS);
478
479    /// getUMinFromMismatchedTypes - Promote the operands to the wider of
480    /// the types using zero-extension, and then perform a umin operation
481    /// with them.
482    const SCEV* getUMinFromMismatchedTypes(const SCEV* LHS,
483                                           const SCEV* RHS);
484
485    /// hasSCEV - Return true if the SCEV for this value has already been
486    /// computed.
487    bool hasSCEV(Value *V) const;
488
489    /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
490    /// the specified value.
491    void setSCEV(Value *V, const SCEV* H);
492
493    /// getSCEVAtScope - Return a SCEV expression handle for the specified value
494    /// at the specified scope in the program.  The L value specifies a loop
495    /// nest to evaluate the expression at, where null is the top-level or a
496    /// specified loop is immediately inside of the loop.
497    ///
498    /// This method can be used to compute the exit value for a variable defined
499    /// in a loop by querying what the value will hold in the parent loop.
500    ///
501    /// In the case that a relevant loop exit value cannot be computed, the
502    /// original value V is returned.
503    const SCEV* getSCEVAtScope(const SCEV *S, const Loop *L);
504
505    /// getSCEVAtScope - This is a convenience function which does
506    /// getSCEVAtScope(getSCEV(V), L).
507    const SCEV* getSCEVAtScope(Value *V, const Loop *L);
508
509    /// isLoopGuardedByCond - Test whether entry to the loop is protected by
510    /// a conditional between LHS and RHS.  This is used to help avoid max
511    /// expressions in loop trip counts.
512    bool isLoopGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
513                             const SCEV *LHS, const SCEV *RHS);
514
515    /// getBackedgeTakenCount - If the specified loop has a predictable
516    /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
517    /// object. The backedge-taken count is the number of times the loop header
518    /// will be branched to from within the loop. This is one less than the
519    /// trip count of the loop, since it doesn't count the first iteration,
520    /// when the header is branched to from outside the loop.
521    ///
522    /// Note that it is not valid to call this method on a loop without a
523    /// loop-invariant backedge-taken count (see
524    /// hasLoopInvariantBackedgeTakenCount).
525    ///
526    const SCEV* getBackedgeTakenCount(const Loop *L);
527
528    /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
529    /// return the least SCEV value that is known never to be less than the
530    /// actual backedge taken count.
531    const SCEV* getMaxBackedgeTakenCount(const Loop *L);
532
533    /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
534    /// has an analyzable loop-invariant backedge-taken count.
535    bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
536
537    /// forgetLoopBackedgeTakenCount - This method should be called by the
538    /// client when it has changed a loop in a way that may effect
539    /// ScalarEvolution's ability to compute a trip count, or if the loop
540    /// is deleted.
541    void forgetLoopBackedgeTakenCount(const Loop *L);
542
543    /// GetMinTrailingZeros - Determine the minimum number of zero bits that S
544    /// is guaranteed to end in (at every loop iteration).  It is, at the same
545    /// time, the minimum number of times S is divisible by 2.  For example,
546    /// given {4,+,8} it returns 2.  If S is guaranteed to be 0, it returns the
547    /// bitwidth of S.
548    uint32_t GetMinTrailingZeros(const SCEV* S);
549
550    /// GetMinLeadingZeros - Determine the minimum number of zero bits that S is
551    /// guaranteed to begin with (at every loop iteration).
552    uint32_t GetMinLeadingZeros(const SCEV* S);
553
554    /// GetMinSignBits - Determine the minimum number of sign bits that S is
555    /// guaranteed to begin with.
556    uint32_t GetMinSignBits(const SCEV* S);
557
558    virtual bool runOnFunction(Function &F);
559    virtual void releaseMemory();
560    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
561    void print(raw_ostream &OS, const Module* = 0) const;
562    virtual void print(std::ostream &OS, const Module* = 0) const;
563    void print(std::ostream *OS, const Module* M = 0) const {
564      if (OS) print(*OS, M);
565    }
566
567  private:
568    FoldingSet<SCEV> UniqueSCEVs;
569    BumpPtrAllocator SCEVAllocator;
570  };
571}
572
573#endif
574