ScalarEvolution.h revision 2905440bdd9627f202398137aab5ded38f681fc9
1//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The ScalarEvolution class is an LLVM pass which can be used to analyze and
11// categorize scalar expressions in loops.  It specializes in recognizing
12// general induction variables, representing them with the abstract and opaque
13// SCEV class.  Given this analysis, trip counts of loops and other important
14// properties can be obtained.
15//
16// This analysis is primarily useful for induction variable substitution and
17// strength reduction.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
22#define LLVM_ANALYSIS_SCALAREVOLUTION_H
23
24#include "llvm/ADT/DenseSet.h"
25#include "llvm/ADT/FoldingSet.h"
26#include "llvm/IR/Function.h"
27#include "llvm/IR/Instructions.h"
28#include "llvm/IR/Operator.h"
29#include "llvm/Pass.h"
30#include "llvm/Support/Allocator.h"
31#include "llvm/Support/ConstantRange.h"
32#include "llvm/Support/DataTypes.h"
33#include "llvm/Support/ValueHandle.h"
34#include <map>
35
36namespace llvm {
37  class APInt;
38  class Constant;
39  class ConstantInt;
40  class DominatorTree;
41  class Type;
42  class ScalarEvolution;
43  class DataLayout;
44  class TargetLibraryInfo;
45  class LLVMContext;
46  class Loop;
47  class LoopInfo;
48  class Operator;
49  class SCEVUnknown;
50  class SCEV;
51  template<> struct FoldingSetTrait<SCEV>;
52
53  /// SCEV - This class represents an analyzed expression in the program.  These
54  /// are opaque objects that the client is not allowed to do much with
55  /// directly.
56  ///
57  class SCEV : public FoldingSetNode {
58    friend struct FoldingSetTrait<SCEV>;
59
60    /// FastID - A reference to an Interned FoldingSetNodeID for this node.
61    /// The ScalarEvolution's BumpPtrAllocator holds the data.
62    FoldingSetNodeIDRef FastID;
63
64    // The SCEV baseclass this node corresponds to
65    const unsigned short SCEVType;
66
67  protected:
68    /// SubclassData - This field is initialized to zero and may be used in
69    /// subclasses to store miscellaneous information.
70    unsigned short SubclassData;
71
72  private:
73    SCEV(const SCEV &) LLVM_DELETED_FUNCTION;
74    void operator=(const SCEV &) LLVM_DELETED_FUNCTION;
75
76  public:
77    /// NoWrapFlags are bitfield indices into SubclassData.
78    ///
79    /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
80    /// no-signed-wrap <NSW> properties, which are derived from the IR
81    /// operator. NSW is a misnomer that we use to mean no signed overflow or
82    /// underflow.
83    ///
84    /// AddRec expression may have a no-self-wraparound <NW> property if the
85    /// result can never reach the start value. This property is independent of
86    /// the actual start value and step direction. Self-wraparound is defined
87    /// purely in terms of the recurrence's loop, step size, and
88    /// bitwidth. Formally, a recurrence with no self-wraparound satisfies:
89    /// abs(step) * max-iteration(loop) <= unsigned-max(bitwidth).
90    ///
91    /// Note that NUW and NSW are also valid properties of a recurrence, and
92    /// either implies NW. For convenience, NW will be set for a recurrence
93    /// whenever either NUW or NSW are set.
94    enum NoWrapFlags { FlagAnyWrap = 0,          // No guarantee.
95                       FlagNW      = (1 << 0),   // No self-wrap.
96                       FlagNUW     = (1 << 1),   // No unsigned wrap.
97                       FlagNSW     = (1 << 2),   // No signed wrap.
98                       NoWrapMask  = (1 << 3) -1 };
99
100    explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) :
101      FastID(ID), SCEVType(SCEVTy), SubclassData(0) {}
102
103    unsigned getSCEVType() const { return SCEVType; }
104
105    /// getType - Return the LLVM type of this SCEV expression.
106    ///
107    Type *getType() const;
108
109    /// isZero - Return true if the expression is a constant zero.
110    ///
111    bool isZero() const;
112
113    /// isOne - Return true if the expression is a constant one.
114    ///
115    bool isOne() const;
116
117    /// isAllOnesValue - Return true if the expression is a constant
118    /// all-ones value.
119    ///
120    bool isAllOnesValue() const;
121
122    /// isNonConstantNegative - Return true if the specified scev is negated,
123    /// but not a constant.
124    bool isNonConstantNegative() const;
125
126    /// print - Print out the internal representation of this scalar to the
127    /// specified stream.  This should really only be used for debugging
128    /// purposes.
129    void print(raw_ostream &OS) const;
130
131    /// dump - This method is used for debugging.
132    ///
133    void dump() const;
134  };
135
136  // Specialize FoldingSetTrait for SCEV to avoid needing to compute
137  // temporary FoldingSetNodeID values.
138  template<> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
139    static void Profile(const SCEV &X, FoldingSetNodeID& ID) {
140      ID = X.FastID;
141    }
142    static bool Equals(const SCEV &X, const FoldingSetNodeID &ID,
143                       unsigned IDHash, FoldingSetNodeID &TempID) {
144      return ID == X.FastID;
145    }
146    static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
147      return X.FastID.ComputeHash();
148    }
149  };
150
151  inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
152    S.print(OS);
153    return OS;
154  }
155
156  /// SCEVCouldNotCompute - An object of this class is returned by queries that
157  /// could not be answered.  For example, if you ask for the number of
158  /// iterations of a linked-list traversal loop, you will get one of these.
159  /// None of the standard SCEV operations are valid on this class, it is just a
160  /// marker.
161  struct SCEVCouldNotCompute : public SCEV {
162    SCEVCouldNotCompute();
163
164    /// Methods for support type inquiry through isa, cast, and dyn_cast:
165    static bool classof(const SCEV *S);
166  };
167
168  /// ScalarEvolution - This class is the main scalar evolution driver.  Because
169  /// client code (intentionally) can't do much with the SCEV objects directly,
170  /// they must ask this class for services.
171  ///
172  class ScalarEvolution : public FunctionPass {
173  public:
174    /// LoopDisposition - An enum describing the relationship between a
175    /// SCEV and a loop.
176    enum LoopDisposition {
177      LoopVariant,    ///< The SCEV is loop-variant (unknown).
178      LoopInvariant,  ///< The SCEV is loop-invariant.
179      LoopComputable  ///< The SCEV varies predictably with the loop.
180    };
181
182    /// BlockDisposition - An enum describing the relationship between a
183    /// SCEV and a basic block.
184    enum BlockDisposition {
185      DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
186      DominatesBlock,        ///< The SCEV dominates the block.
187      ProperlyDominatesBlock ///< The SCEV properly dominates the block.
188    };
189
190    /// Convenient NoWrapFlags manipulation that hides enum casts and is
191    /// visible in the ScalarEvolution name space.
192    static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
193    maskFlags(SCEV::NoWrapFlags Flags, int Mask) {
194      return (SCEV::NoWrapFlags)(Flags & Mask);
195    }
196    static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
197    setFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OnFlags) {
198      return (SCEV::NoWrapFlags)(Flags | OnFlags);
199    }
200    static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
201    clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
202      return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
203    }
204
205  private:
206    /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
207    /// notified whenever a Value is deleted.
208    class SCEVCallbackVH : public CallbackVH {
209      ScalarEvolution *SE;
210      virtual void deleted();
211      virtual void allUsesReplacedWith(Value *New);
212    public:
213      SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0);
214    };
215
216    friend class SCEVCallbackVH;
217    friend class SCEVExpander;
218    friend class SCEVUnknown;
219
220    /// F - The function we are analyzing.
221    ///
222    Function *F;
223
224    /// LI - The loop information for the function we are currently analyzing.
225    ///
226    LoopInfo *LI;
227
228    /// TD - The target data information for the target we are targeting.
229    ///
230    DataLayout *TD;
231
232    /// TLI - The target library information for the target we are targeting.
233    ///
234    TargetLibraryInfo *TLI;
235
236    /// DT - The dominator tree.
237    ///
238    DominatorTree *DT;
239
240    /// CouldNotCompute - This SCEV is used to represent unknown trip
241    /// counts and things.
242    SCEVCouldNotCompute CouldNotCompute;
243
244    /// ValueExprMapType - The typedef for ValueExprMap.
245    ///
246    typedef DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *> >
247      ValueExprMapType;
248
249    /// ValueExprMap - This is a cache of the values we have analyzed so far.
250    ///
251    ValueExprMapType ValueExprMap;
252
253    /// Mark predicate values currently being processed by isImpliedCond.
254    DenseSet<Value*> PendingLoopPredicates;
255
256    /// ExitLimit - Information about the number of loop iterations for
257    /// which a loop exit's branch condition evaluates to the not-taken path.
258    /// This is a temporary pair of exact and max expressions that are
259    /// eventually summarized in ExitNotTakenInfo and BackedgeTakenInfo.
260    struct ExitLimit {
261      const SCEV *Exact;
262      const SCEV *Max;
263
264      /*implicit*/ ExitLimit(const SCEV *E) : Exact(E), Max(E) {}
265
266      ExitLimit(const SCEV *E, const SCEV *M) : Exact(E), Max(M) {}
267
268      /// hasAnyInfo - Test whether this ExitLimit contains any computed
269      /// information, or whether it's all SCEVCouldNotCompute values.
270      bool hasAnyInfo() const {
271        return !isa<SCEVCouldNotCompute>(Exact) ||
272          !isa<SCEVCouldNotCompute>(Max);
273      }
274    };
275
276    /// ExitNotTakenInfo - Information about the number of times a particular
277    /// loop exit may be reached before exiting the loop.
278    struct ExitNotTakenInfo {
279      AssertingVH<BasicBlock> ExitingBlock;
280      const SCEV *ExactNotTaken;
281      PointerIntPair<ExitNotTakenInfo*, 1> NextExit;
282
283      ExitNotTakenInfo() : ExitingBlock(0), ExactNotTaken(0) {}
284
285      /// isCompleteList - Return true if all loop exits are computable.
286      bool isCompleteList() const {
287        return NextExit.getInt() == 0;
288      }
289
290      void setIncomplete() { NextExit.setInt(1); }
291
292      /// getNextExit - Return a pointer to the next exit's not-taken info.
293      ExitNotTakenInfo *getNextExit() const {
294        return NextExit.getPointer();
295      }
296
297      void setNextExit(ExitNotTakenInfo *ENT) { NextExit.setPointer(ENT); }
298    };
299
300    /// BackedgeTakenInfo - Information about the backedge-taken count
301    /// of a loop. This currently includes an exact count and a maximum count.
302    ///
303    class BackedgeTakenInfo {
304      /// ExitNotTaken - A list of computable exits and their not-taken counts.
305      /// Loops almost never have more than one computable exit.
306      ExitNotTakenInfo ExitNotTaken;
307
308      /// Max - An expression indicating the least maximum backedge-taken
309      /// count of the loop that is known, or a SCEVCouldNotCompute.
310      const SCEV *Max;
311
312    public:
313      BackedgeTakenInfo() : Max(0) {}
314
315      /// Initialize BackedgeTakenInfo from a list of exact exit counts.
316      BackedgeTakenInfo(
317        SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
318        bool Complete, const SCEV *MaxCount);
319
320      /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
321      /// computed information, or whether it's all SCEVCouldNotCompute
322      /// values.
323      bool hasAnyInfo() const {
324        return ExitNotTaken.ExitingBlock || !isa<SCEVCouldNotCompute>(Max);
325      }
326
327      /// getExact - Return an expression indicating the exact backedge-taken
328      /// count of the loop if it is known, or SCEVCouldNotCompute
329      /// otherwise. This is the number of times the loop header can be
330      /// guaranteed to execute, minus one.
331      const SCEV *getExact(ScalarEvolution *SE) const;
332
333      /// getExact - Return the number of times this loop exit may fall through
334      /// to the back edge, or SCEVCouldNotCompute. The loop is guaranteed not
335      /// to exit via this block before this number of iterations, but may exit
336      /// via another block.
337      const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
338
339      /// getMax - Get the max backedge taken count for the loop.
340      const SCEV *getMax(ScalarEvolution *SE) const;
341
342      /// Return true if any backedge taken count expressions refer to the given
343      /// subexpression.
344      bool hasOperand(const SCEV *S, ScalarEvolution *SE) const;
345
346      /// clear - Invalidate this result and free associated memory.
347      void clear();
348    };
349
350    /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
351    /// this function as they are computed.
352    DenseMap<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
353
354    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
355    /// the PHI instructions that we attempt to compute constant evolutions for.
356    /// This allows us to avoid potentially expensive recomputation of these
357    /// properties.  An instruction maps to null if we are unable to compute its
358    /// exit value.
359    DenseMap<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
360
361    /// ValuesAtScopes - This map contains entries for all the expressions
362    /// that we attempt to compute getSCEVAtScope information for, which can
363    /// be expensive in extreme cases.
364    DenseMap<const SCEV *,
365             SmallVector<std::pair<const Loop *, const SCEV *>, 2> > ValuesAtScopes;
366
367    /// LoopDispositions - Memoized computeLoopDisposition results.
368    DenseMap<const SCEV *,
369             SmallVector<std::pair<const Loop *, LoopDisposition>, 2> > LoopDispositions;
370
371    /// computeLoopDisposition - Compute a LoopDisposition value.
372    LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
373
374    /// BlockDispositions - Memoized computeBlockDisposition results.
375    DenseMap<const SCEV *,
376             SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> > BlockDispositions;
377
378    /// computeBlockDisposition - Compute a BlockDisposition value.
379    BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
380
381    /// UnsignedRanges - Memoized results from getUnsignedRange
382    DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
383
384    /// SignedRanges - Memoized results from getSignedRange
385    DenseMap<const SCEV *, ConstantRange> SignedRanges;
386
387    /// setUnsignedRange - Set the memoized unsigned range for the given SCEV.
388    const ConstantRange &setUnsignedRange(const SCEV *S,
389                                          const ConstantRange &CR) {
390      std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
391        UnsignedRanges.insert(std::make_pair(S, CR));
392      if (!Pair.second)
393        Pair.first->second = CR;
394      return Pair.first->second;
395    }
396
397    /// setUnsignedRange - Set the memoized signed range for the given SCEV.
398    const ConstantRange &setSignedRange(const SCEV *S,
399                                        const ConstantRange &CR) {
400      std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
401        SignedRanges.insert(std::make_pair(S, CR));
402      if (!Pair.second)
403        Pair.first->second = CR;
404      return Pair.first->second;
405    }
406
407    /// createSCEV - We know that there is no SCEV for the specified value.
408    /// Analyze the expression.
409    const SCEV *createSCEV(Value *V);
410
411    /// createNodeForPHI - Provide the special handling we need to analyze PHI
412    /// SCEVs.
413    const SCEV *createNodeForPHI(PHINode *PN);
414
415    /// createNodeForGEP - Provide the special handling we need to analyze GEP
416    /// SCEVs.
417    const SCEV *createNodeForGEP(GEPOperator *GEP);
418
419    /// computeSCEVAtScope - Implementation code for getSCEVAtScope; called
420    /// at most once for each SCEV+Loop pair.
421    ///
422    const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
423
424    /// ForgetSymbolicValue - This looks up computed SCEV values for all
425    /// instructions that depend on the given instruction and removes them from
426    /// the ValueExprMap map if they reference SymName. This is used during PHI
427    /// resolution.
428    void ForgetSymbolicName(Instruction *I, const SCEV *SymName);
429
430    /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
431    /// loop, lazily computing new values if the loop hasn't been analyzed
432    /// yet.
433    const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
434
435    /// ComputeBackedgeTakenCount - Compute the number of times the specified
436    /// loop will iterate.
437    BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
438
439    /// ComputeExitLimit - Compute the number of times the backedge of the
440    /// specified loop will execute if it exits via the specified block.
441    ExitLimit ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock);
442
443    /// ComputeExitLimitFromCond - Compute the number of times the backedge of
444    /// the specified loop will execute if its exit condition were a conditional
445    /// branch of ExitCond, TBB, and FBB.
446    ExitLimit ComputeExitLimitFromCond(const Loop *L,
447                                       Value *ExitCond,
448                                       BasicBlock *TBB,
449                                       BasicBlock *FBB,
450                                       bool IsSubExpr);
451
452    /// ComputeExitLimitFromICmp - Compute the number of times the backedge of
453    /// the specified loop will execute if its exit condition were a conditional
454    /// branch of the ICmpInst ExitCond, TBB, and FBB.
455    ExitLimit ComputeExitLimitFromICmp(const Loop *L,
456                                       ICmpInst *ExitCond,
457                                       BasicBlock *TBB,
458                                       BasicBlock *FBB,
459                                       bool IsSubExpr);
460
461    /// ComputeLoadConstantCompareExitLimit - Given an exit condition
462    /// of 'icmp op load X, cst', try to see if we can compute the
463    /// backedge-taken count.
464    ExitLimit ComputeLoadConstantCompareExitLimit(LoadInst *LI,
465                                                  Constant *RHS,
466                                                  const Loop *L,
467                                                  ICmpInst::Predicate p);
468
469    /// ComputeExitCountExhaustively - If the loop is known to execute a
470    /// constant number of times (the condition evolves only from constants),
471    /// try to evaluate a few iterations of the loop until we get the exit
472    /// condition gets a value of ExitWhen (true or false).  If we cannot
473    /// evaluate the exit count of the loop, return CouldNotCompute.
474    const SCEV *ComputeExitCountExhaustively(const Loop *L,
475                                             Value *Cond,
476                                             bool ExitWhen);
477
478    /// HowFarToZero - Return the number of times an exit condition comparing
479    /// the specified value to zero will execute.  If not computable, return
480    /// CouldNotCompute.
481    ExitLimit HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr);
482
483    /// HowFarToNonZero - Return the number of times an exit condition checking
484    /// the specified value for nonzero will execute.  If not computable, return
485    /// CouldNotCompute.
486    ExitLimit HowFarToNonZero(const SCEV *V, const Loop *L);
487
488    /// HowManyLessThans - Return the number of times an exit condition
489    /// containing the specified less-than comparison will execute.  If not
490    /// computable, return CouldNotCompute. isSigned specifies whether the
491    /// less-than is signed.
492    ExitLimit HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
493                               const Loop *L, bool isSigned, bool IsSubExpr);
494    ExitLimit HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
495                                  const Loop *L, bool isSigned, bool IsSubExpr);
496
497    /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
498    /// (which may not be an immediate predecessor) which has exactly one
499    /// successor from which BB is reachable, or null if no such block is
500    /// found.
501    std::pair<BasicBlock *, BasicBlock *>
502    getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
503
504    /// isImpliedCond - Test whether the condition described by Pred, LHS, and
505    /// RHS is true whenever the given FoundCondValue value evaluates to true.
506    bool isImpliedCond(ICmpInst::Predicate Pred,
507                       const SCEV *LHS, const SCEV *RHS,
508                       Value *FoundCondValue,
509                       bool Inverse);
510
511    /// isImpliedCondOperands - Test whether the condition described by Pred,
512    /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
513    /// and FoundRHS is true.
514    bool isImpliedCondOperands(ICmpInst::Predicate Pred,
515                               const SCEV *LHS, const SCEV *RHS,
516                               const SCEV *FoundLHS, const SCEV *FoundRHS);
517
518    /// isImpliedCondOperandsHelper - Test whether the condition described by
519    /// Pred, LHS, and RHS is true whenever the condition described by Pred,
520    /// FoundLHS, and FoundRHS is true.
521    bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
522                                     const SCEV *LHS, const SCEV *RHS,
523                                     const SCEV *FoundLHS,
524                                     const SCEV *FoundRHS);
525
526    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
527    /// in the header of its containing loop, we know the loop executes a
528    /// constant number of times, and the PHI node is just a recurrence
529    /// involving constants, fold it.
530    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
531                                                const Loop *L);
532
533    /// isKnownPredicateWithRanges - Test if the given expression is known to
534    /// satisfy the condition described by Pred and the known constant ranges
535    /// of LHS and RHS.
536    ///
537    bool isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
538                                    const SCEV *LHS, const SCEV *RHS);
539
540    /// forgetMemoizedResults - Drop memoized information computed for S.
541    void forgetMemoizedResults(const SCEV *S);
542
543    /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
544    /// pointer.
545    bool checkValidity(const SCEV *S) const;
546
547  public:
548    static char ID; // Pass identification, replacement for typeid
549    ScalarEvolution();
550
551    LLVMContext &getContext() const { return F->getContext(); }
552
553    /// isSCEVable - Test if values of the given type are analyzable within
554    /// the SCEV framework. This primarily includes integer types, and it
555    /// can optionally include pointer types if the ScalarEvolution class
556    /// has access to target-specific information.
557    bool isSCEVable(Type *Ty) const;
558
559    /// getTypeSizeInBits - Return the size in bits of the specified type,
560    /// for which isSCEVable must return true.
561    uint64_t getTypeSizeInBits(Type *Ty) const;
562
563    /// getEffectiveSCEVType - Return a type with the same bitwidth as
564    /// the given type and which represents how SCEV will treat the given
565    /// type, for which isSCEVable must return true. For pointer types,
566    /// this is the pointer-sized integer type.
567    Type *getEffectiveSCEVType(Type *Ty) const;
568
569    /// getSCEV - Return a SCEV expression for the full generality of the
570    /// specified expression.
571    const SCEV *getSCEV(Value *V);
572
573    const SCEV *getConstant(ConstantInt *V);
574    const SCEV *getConstant(const APInt& Val);
575    const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
576    const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty);
577    const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty);
578    const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty);
579    const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
580    const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
581                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
582    const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
583                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
584      SmallVector<const SCEV *, 2> Ops;
585      Ops.push_back(LHS);
586      Ops.push_back(RHS);
587      return getAddExpr(Ops, Flags);
588    }
589    const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
590                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
591      SmallVector<const SCEV *, 3> Ops;
592      Ops.push_back(Op0);
593      Ops.push_back(Op1);
594      Ops.push_back(Op2);
595      return getAddExpr(Ops, Flags);
596    }
597    const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
598                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
599    const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
600                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap)
601    {
602      SmallVector<const SCEV *, 2> Ops;
603      Ops.push_back(LHS);
604      Ops.push_back(RHS);
605      return getMulExpr(Ops, Flags);
606    }
607    const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
608                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
609      SmallVector<const SCEV *, 3> Ops;
610      Ops.push_back(Op0);
611      Ops.push_back(Op1);
612      Ops.push_back(Op2);
613      return getMulExpr(Ops, Flags);
614    }
615    const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
616    const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
617                              const Loop *L, SCEV::NoWrapFlags Flags);
618    const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
619                              const Loop *L, SCEV::NoWrapFlags Flags);
620    const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
621                              const Loop *L, SCEV::NoWrapFlags Flags) {
622      SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
623      return getAddRecExpr(NewOp, L, Flags);
624    }
625    const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
626    const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
627    const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
628    const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
629    const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
630    const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
631    const SCEV *getUnknown(Value *V);
632    const SCEV *getCouldNotCompute();
633
634    /// getSizeOfExpr - Return an expression for sizeof AllocTy that is type
635    /// IntTy
636    ///
637    const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
638
639    /// getOffsetOfExpr - Return an expression for offsetof on the given field
640    /// with type IntTy
641    ///
642    const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);
643
644    /// getNegativeSCEV - Return the SCEV object corresponding to -V.
645    ///
646    const SCEV *getNegativeSCEV(const SCEV *V);
647
648    /// getNotSCEV - Return the SCEV object corresponding to ~V.
649    ///
650    const SCEV *getNotSCEV(const SCEV *V);
651
652    /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
653    const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
654                             SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
655
656    /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
657    /// of the input value to the specified type.  If the type must be
658    /// extended, it is zero extended.
659    const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty);
660
661    /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
662    /// of the input value to the specified type.  If the type must be
663    /// extended, it is sign extended.
664    const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty);
665
666    /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
667    /// the input value to the specified type.  If the type must be extended,
668    /// it is zero extended.  The conversion must not be narrowing.
669    const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
670
671    /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
672    /// the input value to the specified type.  If the type must be extended,
673    /// it is sign extended.  The conversion must not be narrowing.
674    const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
675
676    /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
677    /// the input value to the specified type. If the type must be extended,
678    /// it is extended with unspecified bits. The conversion must not be
679    /// narrowing.
680    const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
681
682    /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
683    /// input value to the specified type.  The conversion must not be
684    /// widening.
685    const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
686
687    /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
688    /// the types using zero-extension, and then perform a umax operation
689    /// with them.
690    const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
691                                           const SCEV *RHS);
692
693    /// getUMinFromMismatchedTypes - Promote the operands to the wider of
694    /// the types using zero-extension, and then perform a umin operation
695    /// with them.
696    const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
697                                           const SCEV *RHS);
698
699    /// getPointerBase - Transitively follow the chain of pointer-type operands
700    /// until reaching a SCEV that does not have a single pointer operand. This
701    /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
702    /// but corner cases do exist.
703    const SCEV *getPointerBase(const SCEV *V);
704
705    /// getSCEVAtScope - Return a SCEV expression for the specified value
706    /// at the specified scope in the program.  The L value specifies a loop
707    /// nest to evaluate the expression at, where null is the top-level or a
708    /// specified loop is immediately inside of the loop.
709    ///
710    /// This method can be used to compute the exit value for a variable defined
711    /// in a loop by querying what the value will hold in the parent loop.
712    ///
713    /// In the case that a relevant loop exit value cannot be computed, the
714    /// original value V is returned.
715    const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
716
717    /// getSCEVAtScope - This is a convenience function which does
718    /// getSCEVAtScope(getSCEV(V), L).
719    const SCEV *getSCEVAtScope(Value *V, const Loop *L);
720
721    /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
722    /// by a conditional between LHS and RHS.  This is used to help avoid max
723    /// expressions in loop trip counts, and to eliminate casts.
724    bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
725                                  const SCEV *LHS, const SCEV *RHS);
726
727    /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
728    /// protected by a conditional between LHS and RHS.  This is used to
729    /// to eliminate casts.
730    bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
731                                     const SCEV *LHS, const SCEV *RHS);
732
733    /// getSmallConstantTripCount - Returns the maximum trip count of this loop
734    /// as a normal unsigned value. Returns 0 if the trip count is unknown or
735    /// not constant. This "trip count" assumes that control exits via
736    /// ExitingBlock. More precisely, it is the number of times that control may
737    /// reach ExitingBlock before taking the branch. For loops with multiple
738    /// exits, it may not be the number times that the loop header executes if
739    /// the loop exits prematurely via another branch.
740    unsigned getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock);
741
742    /// getSmallConstantTripMultiple - Returns the largest constant divisor of
743    /// the trip count of this loop as a normal unsigned value, if
744    /// possible. This means that the actual trip count is always a multiple of
745    /// the returned value (don't forget the trip count could very well be zero
746    /// as well!). As explained in the comments for getSmallConstantTripCount,
747    /// this assumes that control exits the loop via ExitingBlock.
748    unsigned getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock);
749
750    // getExitCount - Get the expression for the number of loop iterations for
751    // which this loop is guaranteed not to exit via ExitingBlock. Otherwise
752    // return SCEVCouldNotCompute.
753    const SCEV *getExitCount(Loop *L, BasicBlock *ExitingBlock);
754
755    /// getBackedgeTakenCount - If the specified loop has a predictable
756    /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
757    /// object. The backedge-taken count is the number of times the loop header
758    /// will be branched to from within the loop. This is one less than the
759    /// trip count of the loop, since it doesn't count the first iteration,
760    /// when the header is branched to from outside the loop.
761    ///
762    /// Note that it is not valid to call this method on a loop without a
763    /// loop-invariant backedge-taken count (see
764    /// hasLoopInvariantBackedgeTakenCount).
765    ///
766    const SCEV *getBackedgeTakenCount(const Loop *L);
767
768    /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
769    /// return the least SCEV value that is known never to be less than the
770    /// actual backedge taken count.
771    const SCEV *getMaxBackedgeTakenCount(const Loop *L);
772
773    /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
774    /// has an analyzable loop-invariant backedge-taken count.
775    bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
776
777    /// forgetLoop - This method should be called by the client when it has
778    /// changed a loop in a way that may effect ScalarEvolution's ability to
779    /// compute a trip count, or if the loop is deleted.
780    void forgetLoop(const Loop *L);
781
782    /// forgetValue - This method should be called by the client when it has
783    /// changed a value in a way that may effect its value, or which may
784    /// disconnect it from a def-use chain linking it to a loop.
785    void forgetValue(Value *V);
786
787    /// GetMinTrailingZeros - Determine the minimum number of zero bits that S
788    /// is guaranteed to end in (at every loop iteration).  It is, at the same
789    /// time, the minimum number of times S is divisible by 2.  For example,
790    /// given {4,+,8} it returns 2.  If S is guaranteed to be 0, it returns the
791    /// bitwidth of S.
792    uint32_t GetMinTrailingZeros(const SCEV *S);
793
794    /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
795    ///
796    ConstantRange getUnsignedRange(const SCEV *S);
797
798    /// getSignedRange - Determine the signed range for a particular SCEV.
799    ///
800    ConstantRange getSignedRange(const SCEV *S);
801
802    /// isKnownNegative - Test if the given expression is known to be negative.
803    ///
804    bool isKnownNegative(const SCEV *S);
805
806    /// isKnownPositive - Test if the given expression is known to be positive.
807    ///
808    bool isKnownPositive(const SCEV *S);
809
810    /// isKnownNonNegative - Test if the given expression is known to be
811    /// non-negative.
812    ///
813    bool isKnownNonNegative(const SCEV *S);
814
815    /// isKnownNonPositive - Test if the given expression is known to be
816    /// non-positive.
817    ///
818    bool isKnownNonPositive(const SCEV *S);
819
820    /// isKnownNonZero - Test if the given expression is known to be
821    /// non-zero.
822    ///
823    bool isKnownNonZero(const SCEV *S);
824
825    /// isKnownPredicate - Test if the given expression is known to satisfy
826    /// the condition described by Pred, LHS, and RHS.
827    ///
828    bool isKnownPredicate(ICmpInst::Predicate Pred,
829                          const SCEV *LHS, const SCEV *RHS);
830
831    /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
832    /// predicate Pred. Return true iff any changes were made. If the
833    /// operands are provably equal or unequal, LHS and RHS are set to
834    /// the same value and Pred is set to either ICMP_EQ or ICMP_NE.
835    ///
836    bool SimplifyICmpOperands(ICmpInst::Predicate &Pred,
837                              const SCEV *&LHS,
838                              const SCEV *&RHS,
839                              unsigned Depth = 0);
840
841    /// getLoopDisposition - Return the "disposition" of the given SCEV with
842    /// respect to the given loop.
843    LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
844
845    /// isLoopInvariant - Return true if the value of the given SCEV is
846    /// unchanging in the specified loop.
847    bool isLoopInvariant(const SCEV *S, const Loop *L);
848
849    /// hasComputableLoopEvolution - Return true if the given SCEV changes value
850    /// in a known way in the specified loop.  This property being true implies
851    /// that the value is variant in the loop AND that we can emit an expression
852    /// to compute the value of the expression at any particular loop iteration.
853    bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
854
855    /// getLoopDisposition - Return the "disposition" of the given SCEV with
856    /// respect to the given block.
857    BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
858
859    /// dominates - Return true if elements that makes up the given SCEV
860    /// dominate the specified basic block.
861    bool dominates(const SCEV *S, const BasicBlock *BB);
862
863    /// properlyDominates - Return true if elements that makes up the given SCEV
864    /// properly dominate the specified basic block.
865    bool properlyDominates(const SCEV *S, const BasicBlock *BB);
866
867    /// hasOperand - Test whether the given SCEV has Op as a direct or
868    /// indirect operand.
869    bool hasOperand(const SCEV *S, const SCEV *Op) const;
870
871    virtual bool runOnFunction(Function &F);
872    virtual void releaseMemory();
873    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
874    virtual void print(raw_ostream &OS, const Module* = 0) const;
875    virtual void verifyAnalysis() const;
876
877  private:
878    /// Compute the backedge taken count knowing the interval difference, the
879    /// stride and presence of the equality in the comparison.
880    const SCEV *computeBECount(const SCEV *Delta, const SCEV *Stride,
881                               bool Equality);
882
883    /// Verify if an linear IV with positive stride can overflow when in a
884    /// less-than comparison, knowing the invariant term of the comparison,
885    /// the stride and the knowledge of NSW/NUW flags on the recurrence.
886    bool doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
887                            bool IsSigned, bool NoWrap);
888
889    /// Verify if an linear IV with negative stride can overflow when in a
890    /// greater-than comparison, knowing the invariant term of the comparison,
891    /// the stride and the knowledge of NSW/NUW flags on the recurrence.
892    bool doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
893                            bool IsSigned, bool NoWrap);
894
895  private:
896    FoldingSet<SCEV> UniqueSCEVs;
897    BumpPtrAllocator SCEVAllocator;
898
899    /// FirstUnknown - The head of a linked list of all SCEVUnknown
900    /// values that have been allocated. This is used by releaseMemory
901    /// to locate them all and call their destructors.
902    SCEVUnknown *FirstUnknown;
903  };
904}
905
906#endif
907