ScalarEvolution.h revision 5e915e6e364532ed00b4c5508e59b42f608b5244
1//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The ScalarEvolution class is an LLVM pass which can be used to analyze and
11// categorize scalar expressions in loops.  It specializes in recognizing
12// general induction variables, representing them with the abstract and opaque
13// SCEV class.  Given this analysis, trip counts of loops and other important
14// properties can be obtained.
15//
16// This analysis is primarily useful for induction variable substitution and
17// strength reduction.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
22#define LLVM_ANALYSIS_SCALAREVOLUTION_H
23
24#include "llvm/ADT/DenseSet.h"
25#include "llvm/ADT/FoldingSet.h"
26#include "llvm/IR/Function.h"
27#include "llvm/IR/Instructions.h"
28#include "llvm/IR/Operator.h"
29#include "llvm/Pass.h"
30#include "llvm/Support/Allocator.h"
31#include "llvm/Support/ConstantRange.h"
32#include "llvm/Support/DataTypes.h"
33#include "llvm/Support/ValueHandle.h"
34#include <map>
35
36namespace llvm {
37  class APInt;
38  class Constant;
39  class ConstantInt;
40  class DominatorTree;
41  class Type;
42  class ScalarEvolution;
43  class DataLayout;
44  class TargetLibraryInfo;
45  class LLVMContext;
46  class Loop;
47  class LoopInfo;
48  class Operator;
49  class SCEVUnknown;
50  class SCEV;
51  template<> struct FoldingSetTrait<SCEV>;
52
53  /// SCEV - This class represents an analyzed expression in the program.  These
54  /// are opaque objects that the client is not allowed to do much with
55  /// directly.
56  ///
57  class SCEV : public FoldingSetNode {
58    friend struct FoldingSetTrait<SCEV>;
59
60    /// FastID - A reference to an Interned FoldingSetNodeID for this node.
61    /// The ScalarEvolution's BumpPtrAllocator holds the data.
62    FoldingSetNodeIDRef FastID;
63
64    // The SCEV baseclass this node corresponds to
65    const unsigned short SCEVType;
66
67  protected:
68    /// SubclassData - This field is initialized to zero and may be used in
69    /// subclasses to store miscellaneous information.
70    unsigned short SubclassData;
71
72  private:
73    SCEV(const SCEV &) LLVM_DELETED_FUNCTION;
74    void operator=(const SCEV &) LLVM_DELETED_FUNCTION;
75
76  public:
77    /// NoWrapFlags are bitfield indices into SubclassData.
78    ///
79    /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
80    /// no-signed-wrap <NSW> properties, which are derived from the IR
81    /// operator. NSW is a misnomer that we use to mean no signed overflow or
82    /// underflow.
83    ///
84    /// AddRec expression may have a no-self-wraparound <NW> property if the
85    /// result can never reach the start value. This property is independent of
86    /// the actual start value and step direction. Self-wraparound is defined
87    /// purely in terms of the recurrence's loop, step size, and
88    /// bitwidth. Formally, a recurrence with no self-wraparound satisfies:
89    /// abs(step) * max-iteration(loop) <= unsigned-max(bitwidth).
90    ///
91    /// Note that NUW and NSW are also valid properties of a recurrence, and
92    /// either implies NW. For convenience, NW will be set for a recurrence
93    /// whenever either NUW or NSW are set.
94    enum NoWrapFlags { FlagAnyWrap = 0,          // No guarantee.
95                       FlagNW      = (1 << 0),   // No self-wrap.
96                       FlagNUW     = (1 << 1),   // No unsigned wrap.
97                       FlagNSW     = (1 << 2),   // No signed wrap.
98                       NoWrapMask  = (1 << 3) -1 };
99
100    explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) :
101      FastID(ID), SCEVType(SCEVTy), SubclassData(0) {}
102
103    unsigned getSCEVType() const { return SCEVType; }
104
105    /// getType - Return the LLVM type of this SCEV expression.
106    ///
107    Type *getType() const;
108
109    /// isZero - Return true if the expression is a constant zero.
110    ///
111    bool isZero() const;
112
113    /// isOne - Return true if the expression is a constant one.
114    ///
115    bool isOne() const;
116
117    /// isAllOnesValue - Return true if the expression is a constant
118    /// all-ones value.
119    ///
120    bool isAllOnesValue() const;
121
122    /// isNonConstantNegative - Return true if the specified scev is negated,
123    /// but not a constant.
124    bool isNonConstantNegative() const;
125
126    /// print - Print out the internal representation of this scalar to the
127    /// specified stream.  This should really only be used for debugging
128    /// purposes.
129    void print(raw_ostream &OS) const;
130
131    /// dump - This method is used for debugging.
132    ///
133    void dump() const;
134  };
135
136  // Specialize FoldingSetTrait for SCEV to avoid needing to compute
137  // temporary FoldingSetNodeID values.
138  template<> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
139    static void Profile(const SCEV &X, FoldingSetNodeID& ID) {
140      ID = X.FastID;
141    }
142    static bool Equals(const SCEV &X, const FoldingSetNodeID &ID,
143                       unsigned IDHash, FoldingSetNodeID &TempID) {
144      return ID == X.FastID;
145    }
146    static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
147      return X.FastID.ComputeHash();
148    }
149  };
150
151  inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
152    S.print(OS);
153    return OS;
154  }
155
156  /// SCEVCouldNotCompute - An object of this class is returned by queries that
157  /// could not be answered.  For example, if you ask for the number of
158  /// iterations of a linked-list traversal loop, you will get one of these.
159  /// None of the standard SCEV operations are valid on this class, it is just a
160  /// marker.
161  struct SCEVCouldNotCompute : public SCEV {
162    SCEVCouldNotCompute();
163
164    /// Methods for support type inquiry through isa, cast, and dyn_cast:
165    static bool classof(const SCEV *S);
166  };
167
168  /// ScalarEvolution - This class is the main scalar evolution driver.  Because
169  /// client code (intentionally) can't do much with the SCEV objects directly,
170  /// they must ask this class for services.
171  ///
172  class ScalarEvolution : public FunctionPass {
173  public:
174    /// LoopDisposition - An enum describing the relationship between a
175    /// SCEV and a loop.
176    enum LoopDisposition {
177      LoopVariant,    ///< The SCEV is loop-variant (unknown).
178      LoopInvariant,  ///< The SCEV is loop-invariant.
179      LoopComputable  ///< The SCEV varies predictably with the loop.
180    };
181
182    /// BlockDisposition - An enum describing the relationship between a
183    /// SCEV and a basic block.
184    enum BlockDisposition {
185      DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
186      DominatesBlock,        ///< The SCEV dominates the block.
187      ProperlyDominatesBlock ///< The SCEV properly dominates the block.
188    };
189
190    /// Convenient NoWrapFlags manipulation that hides enum casts and is
191    /// visible in the ScalarEvolution name space.
192    static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags, int Mask) {
193      return (SCEV::NoWrapFlags)(Flags & Mask);
194    }
195    static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags,
196                                      SCEV::NoWrapFlags OnFlags) {
197      return (SCEV::NoWrapFlags)(Flags | OnFlags);
198    }
199    static SCEV::NoWrapFlags clearFlags(SCEV::NoWrapFlags Flags,
200                                        SCEV::NoWrapFlags OffFlags) {
201      return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
202    }
203
204  private:
205    /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
206    /// notified whenever a Value is deleted.
207    class SCEVCallbackVH : public CallbackVH {
208      ScalarEvolution *SE;
209      virtual void deleted();
210      virtual void allUsesReplacedWith(Value *New);
211    public:
212      SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0);
213    };
214
215    friend class SCEVCallbackVH;
216    friend class SCEVExpander;
217    friend class SCEVUnknown;
218
219    /// F - The function we are analyzing.
220    ///
221    Function *F;
222
223    /// LI - The loop information for the function we are currently analyzing.
224    ///
225    LoopInfo *LI;
226
227    /// TD - The target data information for the target we are targeting.
228    ///
229    DataLayout *TD;
230
231    /// TLI - The target library information for the target we are targeting.
232    ///
233    TargetLibraryInfo *TLI;
234
235    /// DT - The dominator tree.
236    ///
237    DominatorTree *DT;
238
239    /// CouldNotCompute - This SCEV is used to represent unknown trip
240    /// counts and things.
241    SCEVCouldNotCompute CouldNotCompute;
242
243    /// ValueExprMapType - The typedef for ValueExprMap.
244    ///
245    typedef DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *> >
246      ValueExprMapType;
247
248    /// ValueExprMap - This is a cache of the values we have analyzed so far.
249    ///
250    ValueExprMapType ValueExprMap;
251
252    /// Mark predicate values currently being processed by isImpliedCond.
253    DenseSet<Value*> PendingLoopPredicates;
254
255    /// ExitLimit - Information about the number of loop iterations for
256    /// which a loop exit's branch condition evaluates to the not-taken path.
257    /// This is a temporary pair of exact and max expressions that are
258    /// eventually summarized in ExitNotTakenInfo and BackedgeTakenInfo.
259    struct ExitLimit {
260      const SCEV *Exact;
261      const SCEV *Max;
262
263      /*implicit*/ ExitLimit(const SCEV *E) : Exact(E), Max(E) {}
264
265      ExitLimit(const SCEV *E, const SCEV *M) : Exact(E), Max(M) {}
266
267      /// hasAnyInfo - Test whether this ExitLimit contains any computed
268      /// information, or whether it's all SCEVCouldNotCompute values.
269      bool hasAnyInfo() const {
270        return !isa<SCEVCouldNotCompute>(Exact) ||
271          !isa<SCEVCouldNotCompute>(Max);
272      }
273    };
274
275    /// ExitNotTakenInfo - Information about the number of times a particular
276    /// loop exit may be reached before exiting the loop.
277    struct ExitNotTakenInfo {
278      AssertingVH<BasicBlock> ExitingBlock;
279      const SCEV *ExactNotTaken;
280      PointerIntPair<ExitNotTakenInfo*, 1> NextExit;
281
282      ExitNotTakenInfo() : ExitingBlock(0), ExactNotTaken(0) {}
283
284      /// isCompleteList - Return true if all loop exits are computable.
285      bool isCompleteList() const {
286        return NextExit.getInt() == 0;
287      }
288
289      void setIncomplete() { NextExit.setInt(1); }
290
291      /// getNextExit - Return a pointer to the next exit's not-taken info.
292      ExitNotTakenInfo *getNextExit() const {
293        return NextExit.getPointer();
294      }
295
296      void setNextExit(ExitNotTakenInfo *ENT) { NextExit.setPointer(ENT); }
297    };
298
299    /// BackedgeTakenInfo - Information about the backedge-taken count
300    /// of a loop. This currently includes an exact count and a maximum count.
301    ///
302    class BackedgeTakenInfo {
303      /// ExitNotTaken - A list of computable exits and their not-taken counts.
304      /// Loops almost never have more than one computable exit.
305      ExitNotTakenInfo ExitNotTaken;
306
307      /// Max - An expression indicating the least maximum backedge-taken
308      /// count of the loop that is known, or a SCEVCouldNotCompute.
309      const SCEV *Max;
310
311    public:
312      BackedgeTakenInfo() : Max(0) {}
313
314      /// Initialize BackedgeTakenInfo from a list of exact exit counts.
315      BackedgeTakenInfo(
316        SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
317        bool Complete, const SCEV *MaxCount);
318
319      /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
320      /// computed information, or whether it's all SCEVCouldNotCompute
321      /// values.
322      bool hasAnyInfo() const {
323        return ExitNotTaken.ExitingBlock || !isa<SCEVCouldNotCompute>(Max);
324      }
325
326      /// getExact - Return an expression indicating the exact backedge-taken
327      /// count of the loop if it is known, or SCEVCouldNotCompute
328      /// otherwise. This is the number of times the loop header can be
329      /// guaranteed to execute, minus one.
330      const SCEV *getExact(ScalarEvolution *SE) const;
331
332      /// getExact - Return the number of times this loop exit may fall through
333      /// to the back edge, or SCEVCouldNotCompute. The loop is guaranteed not
334      /// to exit via this block before this number of iterations, but may exit
335      /// via another block.
336      const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
337
338      /// getMax - Get the max backedge taken count for the loop.
339      const SCEV *getMax(ScalarEvolution *SE) const;
340
341      /// Return true if any backedge taken count expressions refer to the given
342      /// subexpression.
343      bool hasOperand(const SCEV *S, ScalarEvolution *SE) const;
344
345      /// clear - Invalidate this result and free associated memory.
346      void clear();
347    };
348
349    /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
350    /// this function as they are computed.
351    DenseMap<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
352
353    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
354    /// the PHI instructions that we attempt to compute constant evolutions for.
355    /// This allows us to avoid potentially expensive recomputation of these
356    /// properties.  An instruction maps to null if we are unable to compute its
357    /// exit value.
358    DenseMap<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
359
360    /// ValuesAtScopes - This map contains entries for all the expressions
361    /// that we attempt to compute getSCEVAtScope information for, which can
362    /// be expensive in extreme cases.
363    DenseMap<const SCEV *,
364             std::map<const Loop *, const SCEV *> > ValuesAtScopes;
365
366    /// LoopDispositions - Memoized computeLoopDisposition results.
367    DenseMap<const SCEV *,
368             std::map<const Loop *, LoopDisposition> > LoopDispositions;
369
370    /// computeLoopDisposition - Compute a LoopDisposition value.
371    LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
372
373    /// BlockDispositions - Memoized computeBlockDisposition results.
374    DenseMap<const SCEV *,
375             std::map<const BasicBlock *, BlockDisposition> > BlockDispositions;
376
377    /// computeBlockDisposition - Compute a BlockDisposition value.
378    BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
379
380    /// UnsignedRanges - Memoized results from getUnsignedRange
381    DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
382
383    /// SignedRanges - Memoized results from getSignedRange
384    DenseMap<const SCEV *, ConstantRange> SignedRanges;
385
386    /// setUnsignedRange - Set the memoized unsigned range for the given SCEV.
387    const ConstantRange &setUnsignedRange(const SCEV *S,
388                                          const ConstantRange &CR) {
389      std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
390        UnsignedRanges.insert(std::make_pair(S, CR));
391      if (!Pair.second)
392        Pair.first->second = CR;
393      return Pair.first->second;
394    }
395
396    /// setUnsignedRange - Set the memoized signed range for the given SCEV.
397    const ConstantRange &setSignedRange(const SCEV *S,
398                                        const ConstantRange &CR) {
399      std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
400        SignedRanges.insert(std::make_pair(S, CR));
401      if (!Pair.second)
402        Pair.first->second = CR;
403      return Pair.first->second;
404    }
405
406    /// createSCEV - We know that there is no SCEV for the specified value.
407    /// Analyze the expression.
408    const SCEV *createSCEV(Value *V);
409
410    /// createNodeForPHI - Provide the special handling we need to analyze PHI
411    /// SCEVs.
412    const SCEV *createNodeForPHI(PHINode *PN);
413
414    /// createNodeForGEP - Provide the special handling we need to analyze GEP
415    /// SCEVs.
416    const SCEV *createNodeForGEP(GEPOperator *GEP);
417
418    /// computeSCEVAtScope - Implementation code for getSCEVAtScope; called
419    /// at most once for each SCEV+Loop pair.
420    ///
421    const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
422
423    /// ForgetSymbolicValue - This looks up computed SCEV values for all
424    /// instructions that depend on the given instruction and removes them from
425    /// the ValueExprMap map if they reference SymName. This is used during PHI
426    /// resolution.
427    void ForgetSymbolicName(Instruction *I, const SCEV *SymName);
428
429    /// getBECount - Subtract the end and start values and divide by the step,
430    /// rounding up, to get the number of times the backedge is executed. Return
431    /// CouldNotCompute if an intermediate computation overflows.
432    const SCEV *getBECount(const SCEV *Start,
433                           const SCEV *End,
434                           const SCEV *Step,
435                           bool NoWrap);
436
437    /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
438    /// loop, lazily computing new values if the loop hasn't been analyzed
439    /// yet.
440    const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
441
442    /// ComputeBackedgeTakenCount - Compute the number of times the specified
443    /// loop will iterate.
444    BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
445
446    /// ComputeExitLimit - Compute the number of times the backedge of the
447    /// specified loop will execute if it exits via the specified block.
448    ExitLimit ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock);
449
450    /// ComputeExitLimitFromCond - Compute the number of times the backedge of
451    /// the specified loop will execute if its exit condition were a conditional
452    /// branch of ExitCond, TBB, and FBB.
453    ExitLimit ComputeExitLimitFromCond(const Loop *L,
454                                       Value *ExitCond,
455                                       BasicBlock *TBB,
456                                       BasicBlock *FBB,
457                                       bool IsSubExpr);
458
459    /// ComputeExitLimitFromICmp - Compute the number of times the backedge of
460    /// the specified loop will execute if its exit condition were a conditional
461    /// branch of the ICmpInst ExitCond, TBB, and FBB.
462    ExitLimit ComputeExitLimitFromICmp(const Loop *L,
463                                       ICmpInst *ExitCond,
464                                       BasicBlock *TBB,
465                                       BasicBlock *FBB,
466                                       bool IsSubExpr);
467
468    /// ComputeLoadConstantCompareExitLimit - Given an exit condition
469    /// of 'icmp op load X, cst', try to see if we can compute the
470    /// backedge-taken count.
471    ExitLimit ComputeLoadConstantCompareExitLimit(LoadInst *LI,
472                                                  Constant *RHS,
473                                                  const Loop *L,
474                                                  ICmpInst::Predicate p);
475
476    /// ComputeExitCountExhaustively - If the loop is known to execute a
477    /// constant number of times (the condition evolves only from constants),
478    /// try to evaluate a few iterations of the loop until we get the exit
479    /// condition gets a value of ExitWhen (true or false).  If we cannot
480    /// evaluate the exit count of the loop, return CouldNotCompute.
481    const SCEV *ComputeExitCountExhaustively(const Loop *L,
482                                             Value *Cond,
483                                             bool ExitWhen);
484
485    /// HowFarToZero - Return the number of times an exit condition comparing
486    /// the specified value to zero will execute.  If not computable, return
487    /// CouldNotCompute.
488    ExitLimit HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr);
489
490    /// HowFarToNonZero - Return the number of times an exit condition checking
491    /// the specified value for nonzero will execute.  If not computable, return
492    /// CouldNotCompute.
493    ExitLimit HowFarToNonZero(const SCEV *V, const Loop *L);
494
495    /// HowManyLessThans - Return the number of times an exit condition
496    /// containing the specified less-than comparison will execute.  If not
497    /// computable, return CouldNotCompute. isSigned specifies whether the
498    /// less-than is signed.
499    ExitLimit HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
500                               const Loop *L, bool isSigned, bool IsSubExpr);
501
502    /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
503    /// (which may not be an immediate predecessor) which has exactly one
504    /// successor from which BB is reachable, or null if no such block is
505    /// found.
506    std::pair<BasicBlock *, BasicBlock *>
507    getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
508
509    /// isImpliedCond - Test whether the condition described by Pred, LHS, and
510    /// RHS is true whenever the given FoundCondValue value evaluates to true.
511    bool isImpliedCond(ICmpInst::Predicate Pred,
512                       const SCEV *LHS, const SCEV *RHS,
513                       Value *FoundCondValue,
514                       bool Inverse);
515
516    /// isImpliedCondOperands - Test whether the condition described by Pred,
517    /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
518    /// and FoundRHS is true.
519    bool isImpliedCondOperands(ICmpInst::Predicate Pred,
520                               const SCEV *LHS, const SCEV *RHS,
521                               const SCEV *FoundLHS, const SCEV *FoundRHS);
522
523    /// isImpliedCondOperandsHelper - Test whether the condition described by
524    /// Pred, LHS, and RHS is true whenever the condition described by Pred,
525    /// FoundLHS, and FoundRHS is true.
526    bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
527                                     const SCEV *LHS, const SCEV *RHS,
528                                     const SCEV *FoundLHS,
529                                     const SCEV *FoundRHS);
530
531    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
532    /// in the header of its containing loop, we know the loop executes a
533    /// constant number of times, and the PHI node is just a recurrence
534    /// involving constants, fold it.
535    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
536                                                const Loop *L);
537
538    /// isKnownPredicateWithRanges - Test if the given expression is known to
539    /// satisfy the condition described by Pred and the known constant ranges
540    /// of LHS and RHS.
541    ///
542    bool isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
543                                    const SCEV *LHS, const SCEV *RHS);
544
545    /// forgetMemoizedResults - Drop memoized information computed for S.
546    void forgetMemoizedResults(const SCEV *S);
547
548    /// return false iff given SCEV contains a SCEVUnknown with NULL value-
549    /// pointer.
550    bool checkValidity(const SCEV *S) const;
551
552  public:
553    static char ID; // Pass identification, replacement for typeid
554    ScalarEvolution();
555
556    LLVMContext &getContext() const { return F->getContext(); }
557
558    /// isSCEVable - Test if values of the given type are analyzable within
559    /// the SCEV framework. This primarily includes integer types, and it
560    /// can optionally include pointer types if the ScalarEvolution class
561    /// has access to target-specific information.
562    bool isSCEVable(Type *Ty) const;
563
564    /// getTypeSizeInBits - Return the size in bits of the specified type,
565    /// for which isSCEVable must return true.
566    uint64_t getTypeSizeInBits(Type *Ty) const;
567
568    /// getEffectiveSCEVType - Return a type with the same bitwidth as
569    /// the given type and which represents how SCEV will treat the given
570    /// type, for which isSCEVable must return true. For pointer types,
571    /// this is the pointer-sized integer type.
572    Type *getEffectiveSCEVType(Type *Ty) const;
573
574    /// getSCEV - Return a SCEV expression for the full generality of the
575    /// specified expression.
576    const SCEV *getSCEV(Value *V);
577
578    const SCEV *getConstant(ConstantInt *V);
579    const SCEV *getConstant(const APInt& Val);
580    const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
581    const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty);
582    const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty);
583    const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty);
584    const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
585    const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
586                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
587    const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
588                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
589      SmallVector<const SCEV *, 2> Ops;
590      Ops.push_back(LHS);
591      Ops.push_back(RHS);
592      return getAddExpr(Ops, Flags);
593    }
594    const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
595                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
596      SmallVector<const SCEV *, 3> Ops;
597      Ops.push_back(Op0);
598      Ops.push_back(Op1);
599      Ops.push_back(Op2);
600      return getAddExpr(Ops, Flags);
601    }
602    const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
603                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
604    const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
605                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap)
606    {
607      SmallVector<const SCEV *, 2> Ops;
608      Ops.push_back(LHS);
609      Ops.push_back(RHS);
610      return getMulExpr(Ops, Flags);
611    }
612    const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
613                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
614      SmallVector<const SCEV *, 3> Ops;
615      Ops.push_back(Op0);
616      Ops.push_back(Op1);
617      Ops.push_back(Op2);
618      return getMulExpr(Ops, Flags);
619    }
620    const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
621    const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
622                              const Loop *L, SCEV::NoWrapFlags Flags);
623    const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
624                              const Loop *L, SCEV::NoWrapFlags Flags);
625    const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
626                              const Loop *L, SCEV::NoWrapFlags Flags) {
627      SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
628      return getAddRecExpr(NewOp, L, Flags);
629    }
630    const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
631    const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
632    const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
633    const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
634    const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
635    const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
636    const SCEV *getUnknown(Value *V);
637    const SCEV *getCouldNotCompute();
638
639    /// getSizeOfExpr - Return an expression for sizeof on the given type.
640    ///
641    const SCEV *getSizeOfExpr(Type *AllocTy);
642
643    /// getAlignOfExpr - Return an expression for alignof on the given type.
644    ///
645    const SCEV *getAlignOfExpr(Type *AllocTy);
646
647    /// getOffsetOfExpr - Return an expression for offsetof on the given field.
648    ///
649    const SCEV *getOffsetOfExpr(StructType *STy, unsigned FieldNo);
650
651    /// getOffsetOfExpr - Return an expression for offsetof on the given field.
652    ///
653    const SCEV *getOffsetOfExpr(Type *CTy, Constant *FieldNo);
654
655    /// getNegativeSCEV - Return the SCEV object corresponding to -V.
656    ///
657    const SCEV *getNegativeSCEV(const SCEV *V);
658
659    /// getNotSCEV - Return the SCEV object corresponding to ~V.
660    ///
661    const SCEV *getNotSCEV(const SCEV *V);
662
663    /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
664    const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
665                             SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
666
667    /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
668    /// of the input value to the specified type.  If the type must be
669    /// extended, it is zero extended.
670    const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty);
671
672    /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
673    /// of the input value to the specified type.  If the type must be
674    /// extended, it is sign extended.
675    const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty);
676
677    /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
678    /// the input value to the specified type.  If the type must be extended,
679    /// it is zero extended.  The conversion must not be narrowing.
680    const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
681
682    /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
683    /// the input value to the specified type.  If the type must be extended,
684    /// it is sign extended.  The conversion must not be narrowing.
685    const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
686
687    /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
688    /// the input value to the specified type. If the type must be extended,
689    /// it is extended with unspecified bits. The conversion must not be
690    /// narrowing.
691    const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
692
693    /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
694    /// input value to the specified type.  The conversion must not be
695    /// widening.
696    const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
697
698    /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
699    /// the types using zero-extension, and then perform a umax operation
700    /// with them.
701    const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
702                                           const SCEV *RHS);
703
704    /// getUMinFromMismatchedTypes - Promote the operands to the wider of
705    /// the types using zero-extension, and then perform a umin operation
706    /// with them.
707    const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
708                                           const SCEV *RHS);
709
710    /// getPointerBase - Transitively follow the chain of pointer-type operands
711    /// until reaching a SCEV that does not have a single pointer operand. This
712    /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
713    /// but corner cases do exist.
714    const SCEV *getPointerBase(const SCEV *V);
715
716    /// getSCEVAtScope - Return a SCEV expression for the specified value
717    /// at the specified scope in the program.  The L value specifies a loop
718    /// nest to evaluate the expression at, where null is the top-level or a
719    /// specified loop is immediately inside of the loop.
720    ///
721    /// This method can be used to compute the exit value for a variable defined
722    /// in a loop by querying what the value will hold in the parent loop.
723    ///
724    /// In the case that a relevant loop exit value cannot be computed, the
725    /// original value V is returned.
726    const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
727
728    /// getSCEVAtScope - This is a convenience function which does
729    /// getSCEVAtScope(getSCEV(V), L).
730    const SCEV *getSCEVAtScope(Value *V, const Loop *L);
731
732    /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
733    /// by a conditional between LHS and RHS.  This is used to help avoid max
734    /// expressions in loop trip counts, and to eliminate casts.
735    bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
736                                  const SCEV *LHS, const SCEV *RHS);
737
738    /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
739    /// protected by a conditional between LHS and RHS.  This is used to
740    /// to eliminate casts.
741    bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
742                                     const SCEV *LHS, const SCEV *RHS);
743
744    /// getSmallConstantTripCount - Returns the maximum trip count of this loop
745    /// as a normal unsigned value. Returns 0 if the trip count is unknown or
746    /// not constant. This "trip count" assumes that control exits via
747    /// ExitingBlock. More precisely, it is the number of times that control may
748    /// reach ExitingBlock before taking the branch. For loops with multiple
749    /// exits, it may not be the number times that the loop header executes if
750    /// the loop exits prematurely via another branch.
751    unsigned getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock);
752
753    /// getSmallConstantTripMultiple - Returns the largest constant divisor of
754    /// the trip count of this loop as a normal unsigned value, if
755    /// possible. This means that the actual trip count is always a multiple of
756    /// the returned value (don't forget the trip count could very well be zero
757    /// as well!). As explained in the comments for getSmallConstantTripCount,
758    /// this assumes that control exits the loop via ExitingBlock.
759    unsigned getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock);
760
761    // getExitCount - Get the expression for the number of loop iterations for
762    // which this loop is guaranteed not to exit via ExitingBlock. Otherwise
763    // return SCEVCouldNotCompute.
764    const SCEV *getExitCount(Loop *L, BasicBlock *ExitingBlock);
765
766    /// getBackedgeTakenCount - If the specified loop has a predictable
767    /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
768    /// object. The backedge-taken count is the number of times the loop header
769    /// will be branched to from within the loop. This is one less than the
770    /// trip count of the loop, since it doesn't count the first iteration,
771    /// when the header is branched to from outside the loop.
772    ///
773    /// Note that it is not valid to call this method on a loop without a
774    /// loop-invariant backedge-taken count (see
775    /// hasLoopInvariantBackedgeTakenCount).
776    ///
777    const SCEV *getBackedgeTakenCount(const Loop *L);
778
779    /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
780    /// return the least SCEV value that is known never to be less than the
781    /// actual backedge taken count.
782    const SCEV *getMaxBackedgeTakenCount(const Loop *L);
783
784    /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
785    /// has an analyzable loop-invariant backedge-taken count.
786    bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
787
788    /// forgetLoop - This method should be called by the client when it has
789    /// changed a loop in a way that may effect ScalarEvolution's ability to
790    /// compute a trip count, or if the loop is deleted.
791    void forgetLoop(const Loop *L);
792
793    /// forgetValue - This method should be called by the client when it has
794    /// changed a value in a way that may effect its value, or which may
795    /// disconnect it from a def-use chain linking it to a loop.
796    void forgetValue(Value *V);
797
798    /// GetMinTrailingZeros - Determine the minimum number of zero bits that S
799    /// is guaranteed to end in (at every loop iteration).  It is, at the same
800    /// time, the minimum number of times S is divisible by 2.  For example,
801    /// given {4,+,8} it returns 2.  If S is guaranteed to be 0, it returns the
802    /// bitwidth of S.
803    uint32_t GetMinTrailingZeros(const SCEV *S);
804
805    /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
806    ///
807    ConstantRange getUnsignedRange(const SCEV *S);
808
809    /// getSignedRange - Determine the signed range for a particular SCEV.
810    ///
811    ConstantRange getSignedRange(const SCEV *S);
812
813    /// isKnownNegative - Test if the given expression is known to be negative.
814    ///
815    bool isKnownNegative(const SCEV *S);
816
817    /// isKnownPositive - Test if the given expression is known to be positive.
818    ///
819    bool isKnownPositive(const SCEV *S);
820
821    /// isKnownNonNegative - Test if the given expression is known to be
822    /// non-negative.
823    ///
824    bool isKnownNonNegative(const SCEV *S);
825
826    /// isKnownNonPositive - Test if the given expression is known to be
827    /// non-positive.
828    ///
829    bool isKnownNonPositive(const SCEV *S);
830
831    /// isKnownNonZero - Test if the given expression is known to be
832    /// non-zero.
833    ///
834    bool isKnownNonZero(const SCEV *S);
835
836    /// isKnownPredicate - Test if the given expression is known to satisfy
837    /// the condition described by Pred, LHS, and RHS.
838    ///
839    bool isKnownPredicate(ICmpInst::Predicate Pred,
840                          const SCEV *LHS, const SCEV *RHS);
841
842    /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
843    /// predicate Pred. Return true iff any changes were made. If the
844    /// operands are provably equal or unequal, LHS and RHS are set to
845    /// the same value and Pred is set to either ICMP_EQ or ICMP_NE.
846    ///
847    bool SimplifyICmpOperands(ICmpInst::Predicate &Pred,
848                              const SCEV *&LHS,
849                              const SCEV *&RHS,
850                              unsigned Depth = 0);
851
852    /// getLoopDisposition - Return the "disposition" of the given SCEV with
853    /// respect to the given loop.
854    LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
855
856    /// isLoopInvariant - Return true if the value of the given SCEV is
857    /// unchanging in the specified loop.
858    bool isLoopInvariant(const SCEV *S, const Loop *L);
859
860    /// hasComputableLoopEvolution - Return true if the given SCEV changes value
861    /// in a known way in the specified loop.  This property being true implies
862    /// that the value is variant in the loop AND that we can emit an expression
863    /// to compute the value of the expression at any particular loop iteration.
864    bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
865
866    /// getLoopDisposition - Return the "disposition" of the given SCEV with
867    /// respect to the given block.
868    BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
869
870    /// dominates - Return true if elements that makes up the given SCEV
871    /// dominate the specified basic block.
872    bool dominates(const SCEV *S, const BasicBlock *BB);
873
874    /// properlyDominates - Return true if elements that makes up the given SCEV
875    /// properly dominate the specified basic block.
876    bool properlyDominates(const SCEV *S, const BasicBlock *BB);
877
878    /// hasOperand - Test whether the given SCEV has Op as a direct or
879    /// indirect operand.
880    bool hasOperand(const SCEV *S, const SCEV *Op) const;
881
882    virtual bool runOnFunction(Function &F);
883    virtual void releaseMemory();
884    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
885    virtual void print(raw_ostream &OS, const Module* = 0) const;
886    virtual void verifyAnalysis() const;
887
888  private:
889    FoldingSet<SCEV> UniqueSCEVs;
890    BumpPtrAllocator SCEVAllocator;
891
892    /// FirstUnknown - The head of a linked list of all SCEVUnknown
893    /// values that have been allocated. This is used by releaseMemory
894    /// to locate them all and call their destructors.
895    SCEVUnknown *FirstUnknown;
896  };
897}
898
899#endif
900