ScalarEvolution.h revision 650919e8b0aa28d20b8ff11f42ba81fea8b336cc
1//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The ScalarEvolution class is an LLVM pass which can be used to analyze and
11// catagorize scalar expressions in loops.  It specializes in recognizing
12// general induction variables, representing them with the abstract and opaque
13// SCEV class.  Given this analysis, trip counts of loops and other important
14// properties can be obtained.
15//
16// This analysis is primarily useful for induction variable substitution and
17// strength reduction.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
22#define LLVM_ANALYSIS_SCALAREVOLUTION_H
23
24#include "llvm/Pass.h"
25#include "llvm/Analysis/LoopInfo.h"
26#include "llvm/Support/DataTypes.h"
27#include "llvm/Support/ValueHandle.h"
28#include "llvm/ADT/DenseMap.h"
29#include <iosfwd>
30
31namespace llvm {
32  class APInt;
33  class ConstantInt;
34  class Type;
35  class ScalarEvolution;
36  class TargetData;
37  class SCEVConstant;
38  class SCEVTruncateExpr;
39  class SCEVZeroExtendExpr;
40  class SCEVCommutativeExpr;
41  class SCEVUDivExpr;
42  class SCEVSignExtendExpr;
43  class SCEVAddRecExpr;
44  class SCEVUnknown;
45
46  /// SCEV - This class represents an analyzed expression in the program.  These
47  /// are opaque objects that the client is not allowed to do much with
48  /// directly.
49  ///
50  class SCEV {
51    const unsigned SCEVType;      // The SCEV baseclass this node corresponds to
52
53    SCEV(const SCEV &);            // DO NOT IMPLEMENT
54    void operator=(const SCEV &);  // DO NOT IMPLEMENT
55  protected:
56    virtual ~SCEV();
57  public:
58    explicit SCEV(unsigned SCEVTy) :
59      SCEVType(SCEVTy) {}
60
61    unsigned getSCEVType() const { return SCEVType; }
62
63    /// isLoopInvariant - Return true if the value of this SCEV is unchanging in
64    /// the specified loop.
65    virtual bool isLoopInvariant(const Loop *L) const = 0;
66
67    /// hasComputableLoopEvolution - Return true if this SCEV changes value in a
68    /// known way in the specified loop.  This property being true implies that
69    /// the value is variant in the loop AND that we can emit an expression to
70    /// compute the value of the expression at any particular loop iteration.
71    virtual bool hasComputableLoopEvolution(const Loop *L) const = 0;
72
73    /// getType - Return the LLVM type of this SCEV expression.
74    ///
75    virtual const Type *getType() const = 0;
76
77    /// isZero - Return true if the expression is a constant zero.
78    ///
79    bool isZero() const;
80
81    /// isOne - Return true if the expression is a constant one.
82    ///
83    bool isOne() const;
84
85    /// isAllOnesValue - Return true if the expression is a constant
86    /// all-ones value.
87    ///
88    bool isAllOnesValue() const;
89
90    /// replaceSymbolicValuesWithConcrete - If this SCEV internally references
91    /// the symbolic value "Sym", construct and return a new SCEV that produces
92    /// the same value, but which uses the concrete value Conc instead of the
93    /// symbolic value.  If this SCEV does not use the symbolic value, it
94    /// returns itself.
95    virtual const SCEV*
96    replaceSymbolicValuesWithConcrete(const SCEV* Sym,
97                                      const SCEV* Conc,
98                                      ScalarEvolution &SE) const = 0;
99
100    /// dominates - Return true if elements that makes up this SCEV dominates
101    /// the specified basic block.
102    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const = 0;
103
104    /// print - Print out the internal representation of this scalar to the
105    /// specified stream.  This should really only be used for debugging
106    /// purposes.
107    virtual void print(raw_ostream &OS) const = 0;
108    void print(std::ostream &OS) const;
109    void print(std::ostream *OS) const { if (OS) print(*OS); }
110
111    /// dump - This method is used for debugging.
112    ///
113    void dump() const;
114  };
115
116  inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
117    S.print(OS);
118    return OS;
119  }
120
121  inline std::ostream &operator<<(std::ostream &OS, const SCEV &S) {
122    S.print(OS);
123    return OS;
124  }
125
126  /// SCEVCouldNotCompute - An object of this class is returned by queries that
127  /// could not be answered.  For example, if you ask for the number of
128  /// iterations of a linked-list traversal loop, you will get one of these.
129  /// None of the standard SCEV operations are valid on this class, it is just a
130  /// marker.
131  struct SCEVCouldNotCompute : public SCEV {
132    SCEVCouldNotCompute();
133
134    // None of these methods are valid for this object.
135    virtual bool isLoopInvariant(const Loop *L) const;
136    virtual const Type *getType() const;
137    virtual bool hasComputableLoopEvolution(const Loop *L) const;
138    virtual void print(raw_ostream &OS) const;
139    virtual const SCEV*
140    replaceSymbolicValuesWithConcrete(const SCEV* Sym,
141                                      const SCEV* Conc,
142                                      ScalarEvolution &SE) const;
143
144    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const {
145      return true;
146    }
147
148    /// Methods for support type inquiry through isa, cast, and dyn_cast:
149    static inline bool classof(const SCEVCouldNotCompute *S) { return true; }
150    static bool classof(const SCEV *S);
151  };
152
153  /// ScalarEvolution - This class is the main scalar evolution driver.  Because
154  /// client code (intentionally) can't do much with the SCEV objects directly,
155  /// they must ask this class for services.
156  ///
157  class ScalarEvolution : public FunctionPass {
158    /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
159    /// notified whenever a Value is deleted.
160    class SCEVCallbackVH : public CallbackVH {
161      ScalarEvolution *SE;
162      virtual void deleted();
163      virtual void allUsesReplacedWith(Value *New);
164    public:
165      SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0);
166    };
167
168    friend class SCEVCallbackVH;
169    friend class SCEVExpander;
170
171    /// F - The function we are analyzing.
172    ///
173    Function *F;
174
175    /// LI - The loop information for the function we are currently analyzing.
176    ///
177    LoopInfo *LI;
178
179    /// TD - The target data information for the target we are targetting.
180    ///
181    TargetData *TD;
182
183    /// CouldNotCompute - This SCEV is used to represent unknown trip
184    /// counts and things.
185    const SCEV* CouldNotCompute;
186
187    /// Scalars - This is a cache of the scalars we have analyzed so far.
188    ///
189    std::map<SCEVCallbackVH, const SCEV*> Scalars;
190
191    /// BackedgeTakenInfo - Information about the backedge-taken count
192    /// of a loop. This currently inclues an exact count and a maximum count.
193    ///
194    struct BackedgeTakenInfo {
195      /// Exact - An expression indicating the exact backedge-taken count of
196      /// the loop if it is known, or a SCEVCouldNotCompute otherwise.
197      const SCEV* Exact;
198
199      /// Exact - An expression indicating the least maximum backedge-taken
200      /// count of the loop that is known, or a SCEVCouldNotCompute.
201      const SCEV* Max;
202
203      /*implicit*/ BackedgeTakenInfo(const SCEV* exact) :
204        Exact(exact), Max(exact) {}
205
206      BackedgeTakenInfo(const SCEV* exact, const SCEV* max) :
207        Exact(exact), Max(max) {}
208
209      /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
210      /// computed information, or whether it's all SCEVCouldNotCompute
211      /// values.
212      bool hasAnyInfo() const {
213        return !isa<SCEVCouldNotCompute>(Exact) ||
214               !isa<SCEVCouldNotCompute>(Max);
215      }
216    };
217
218    /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
219    /// this function as they are computed.
220    std::map<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
221
222    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
223    /// the PHI instructions that we attempt to compute constant evolutions for.
224    /// This allows us to avoid potentially expensive recomputation of these
225    /// properties.  An instruction maps to null if we are unable to compute its
226    /// exit value.
227    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
228
229    /// ValuesAtScopes - This map contains entries for all the instructions
230    /// that we attempt to compute getSCEVAtScope information for without
231    /// using SCEV techniques, which can be expensive.
232    std::map<Instruction *, std::map<const Loop *, Constant *> > ValuesAtScopes;
233
234    /// createSCEV - We know that there is no SCEV for the specified value.
235    /// Analyze the expression.
236    const SCEV* createSCEV(Value *V);
237
238    /// createNodeForPHI - Provide the special handling we need to analyze PHI
239    /// SCEVs.
240    const SCEV* createNodeForPHI(PHINode *PN);
241
242    /// createNodeForGEP - Provide the special handling we need to analyze GEP
243    /// SCEVs.
244    const SCEV* createNodeForGEP(User *GEP);
245
246    /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
247    /// for the specified instruction and replaces any references to the
248    /// symbolic value SymName with the specified value.  This is used during
249    /// PHI resolution.
250    void ReplaceSymbolicValueWithConcrete(Instruction *I,
251                                          const SCEV* SymName,
252                                          const SCEV* NewVal);
253
254    /// getBECount - Subtract the end and start values and divide by the step,
255    /// rounding up, to get the number of times the backedge is executed. Return
256    /// CouldNotCompute if an intermediate computation overflows.
257    const SCEV* getBECount(const SCEV* Start,
258                          const SCEV* End,
259                          const SCEV* Step);
260
261    /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
262    /// loop, lazily computing new values if the loop hasn't been analyzed
263    /// yet.
264    const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
265
266    /// ComputeBackedgeTakenCount - Compute the number of times the specified
267    /// loop will iterate.
268    BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
269
270    /// ComputeBackedgeTakenCountFromExit - Compute the number of times the
271    /// backedge of the specified loop will execute if it exits via the
272    /// specified block.
273    BackedgeTakenInfo ComputeBackedgeTakenCountFromExit(const Loop *L,
274                                                      BasicBlock *ExitingBlock);
275
276    /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
277    /// backedge of the specified loop will execute if its exit condition
278    /// were a conditional branch of ExitCond, TBB, and FBB.
279    BackedgeTakenInfo
280      ComputeBackedgeTakenCountFromExitCond(const Loop *L,
281                                            Value *ExitCond,
282                                            BasicBlock *TBB,
283                                            BasicBlock *FBB);
284
285    /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of
286    /// times the backedge of the specified loop will execute if its exit
287    /// condition were a conditional branch of the ICmpInst ExitCond, TBB,
288    /// and FBB.
289    BackedgeTakenInfo
290      ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
291                                                ICmpInst *ExitCond,
292                                                BasicBlock *TBB,
293                                                BasicBlock *FBB);
294
295    /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition
296    /// of 'icmp op load X, cst', try to see if we can compute the trip count.
297    const SCEV*
298      ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI,
299                                                   Constant *RHS,
300                                                   const Loop *L,
301                                                   ICmpInst::Predicate p);
302
303    /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute
304    /// a constant number of times (the condition evolves only from constants),
305    /// try to evaluate a few iterations of the loop until we get the exit
306    /// condition gets a value of ExitWhen (true or false).  If we cannot
307    /// evaluate the trip count of the loop, return CouldNotCompute.
308    const SCEV* ComputeBackedgeTakenCountExhaustively(const Loop *L,
309                                                      Value *Cond,
310                                                      bool ExitWhen);
311
312    /// HowFarToZero - Return the number of times a backedge comparing the
313    /// specified value to zero will execute.  If not computable, return
314    /// CouldNotCompute.
315    const SCEV* HowFarToZero(const SCEV *V, const Loop *L);
316
317    /// HowFarToNonZero - Return the number of times a backedge checking the
318    /// specified value for nonzero will execute.  If not computable, return
319    /// CouldNotCompute.
320    const SCEV* HowFarToNonZero(const SCEV *V, const Loop *L);
321
322    /// HowManyLessThans - Return the number of times a backedge containing the
323    /// specified less-than comparison will execute.  If not computable, return
324    /// CouldNotCompute. isSigned specifies whether the less-than is signed.
325    BackedgeTakenInfo HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
326                                       const Loop *L, bool isSigned);
327
328    /// getLoopPredecessor - If the given loop's header has exactly one unique
329    /// predecessor outside the loop, return it. Otherwise return null.
330    BasicBlock *getLoopPredecessor(const Loop *L);
331
332    /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
333    /// (which may not be an immediate predecessor) which has exactly one
334    /// successor from which BB is reachable, or null if no such block is
335    /// found.
336    BasicBlock* getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
337
338    /// isNecessaryCond - Test whether the given CondValue value is a condition
339    /// which is at least as strict as the one described by Pred, LHS, and RHS.
340    bool isNecessaryCond(Value *Cond, ICmpInst::Predicate Pred,
341                         const SCEV *LHS, const SCEV *RHS,
342                         bool Inverse);
343
344    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
345    /// in the header of its containing loop, we know the loop executes a
346    /// constant number of times, and the PHI node is just a recurrence
347    /// involving constants, fold it.
348    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
349                                                const Loop *L);
350
351    /// forgetLoopPHIs - Delete the memoized SCEVs associated with the
352    /// PHI nodes in the given loop. This is used when the trip count of
353    /// the loop may have changed.
354    void forgetLoopPHIs(const Loop *L);
355
356  public:
357    static char ID; // Pass identification, replacement for typeid
358    ScalarEvolution();
359
360    /// isSCEVable - Test if values of the given type are analyzable within
361    /// the SCEV framework. This primarily includes integer types, and it
362    /// can optionally include pointer types if the ScalarEvolution class
363    /// has access to target-specific information.
364    bool isSCEVable(const Type *Ty) const;
365
366    /// getTypeSizeInBits - Return the size in bits of the specified type,
367    /// for which isSCEVable must return true.
368    uint64_t getTypeSizeInBits(const Type *Ty) const;
369
370    /// getEffectiveSCEVType - Return a type with the same bitwidth as
371    /// the given type and which represents how SCEV will treat the given
372    /// type, for which isSCEVable must return true. For pointer types,
373    /// this is the pointer-sized integer type.
374    const Type *getEffectiveSCEVType(const Type *Ty) const;
375
376    /// getSCEV - Return a SCEV expression handle for the full generality of the
377    /// specified expression.
378    const SCEV* getSCEV(Value *V);
379
380    const SCEV* getConstant(ConstantInt *V);
381    const SCEV* getConstant(const APInt& Val);
382    const SCEV* getConstant(const Type *Ty, uint64_t V, bool isSigned = false);
383    const SCEV* getTruncateExpr(const SCEV* Op, const Type *Ty);
384    const SCEV* getZeroExtendExpr(const SCEV* Op, const Type *Ty);
385    const SCEV* getSignExtendExpr(const SCEV* Op, const Type *Ty);
386    const SCEV* getAnyExtendExpr(const SCEV* Op, const Type *Ty);
387    const SCEV* getAddExpr(SmallVectorImpl<const SCEV*> &Ops);
388    const SCEV* getAddExpr(const SCEV* LHS, const SCEV* RHS) {
389      SmallVector<const SCEV*, 2> Ops;
390      Ops.push_back(LHS);
391      Ops.push_back(RHS);
392      return getAddExpr(Ops);
393    }
394    const SCEV* getAddExpr(const SCEV* Op0, const SCEV* Op1,
395                          const SCEV* Op2) {
396      SmallVector<const SCEV*, 3> Ops;
397      Ops.push_back(Op0);
398      Ops.push_back(Op1);
399      Ops.push_back(Op2);
400      return getAddExpr(Ops);
401    }
402    const SCEV* getMulExpr(SmallVectorImpl<const SCEV*> &Ops);
403    const SCEV* getMulExpr(const SCEV* LHS, const SCEV* RHS) {
404      SmallVector<const SCEV*, 2> Ops;
405      Ops.push_back(LHS);
406      Ops.push_back(RHS);
407      return getMulExpr(Ops);
408    }
409    const SCEV* getUDivExpr(const SCEV* LHS, const SCEV* RHS);
410    const SCEV* getAddRecExpr(const SCEV* Start, const SCEV* Step,
411                             const Loop *L);
412    const SCEV* getAddRecExpr(SmallVectorImpl<const SCEV*> &Operands,
413                             const Loop *L);
414    const SCEV* getAddRecExpr(const SmallVectorImpl<const SCEV*> &Operands,
415                             const Loop *L) {
416      SmallVector<const SCEV*, 4> NewOp(Operands.begin(), Operands.end());
417      return getAddRecExpr(NewOp, L);
418    }
419    const SCEV* getSMaxExpr(const SCEV* LHS, const SCEV* RHS);
420    const SCEV* getSMaxExpr(SmallVectorImpl<const SCEV*> &Operands);
421    const SCEV* getUMaxExpr(const SCEV* LHS, const SCEV* RHS);
422    const SCEV* getUMaxExpr(SmallVectorImpl<const SCEV*> &Operands);
423    const SCEV* getSMinExpr(const SCEV* LHS, const SCEV* RHS);
424    const SCEV* getUMinExpr(const SCEV* LHS, const SCEV* RHS);
425    const SCEV* getUnknown(Value *V);
426    const SCEV* getCouldNotCompute();
427
428    /// getNegativeSCEV - Return the SCEV object corresponding to -V.
429    ///
430    const SCEV* getNegativeSCEV(const SCEV* V);
431
432    /// getNotSCEV - Return the SCEV object corresponding to ~V.
433    ///
434    const SCEV* getNotSCEV(const SCEV* V);
435
436    /// getMinusSCEV - Return LHS-RHS.
437    ///
438    const SCEV* getMinusSCEV(const SCEV* LHS,
439                            const SCEV* RHS);
440
441    /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
442    /// of the input value to the specified type.  If the type must be
443    /// extended, it is zero extended.
444    const SCEV* getTruncateOrZeroExtend(const SCEV* V, const Type *Ty);
445
446    /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
447    /// of the input value to the specified type.  If the type must be
448    /// extended, it is sign extended.
449    const SCEV* getTruncateOrSignExtend(const SCEV* V, const Type *Ty);
450
451    /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
452    /// the input value to the specified type.  If the type must be extended,
453    /// it is zero extended.  The conversion must not be narrowing.
454    const SCEV* getNoopOrZeroExtend(const SCEV* V, const Type *Ty);
455
456    /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
457    /// the input value to the specified type.  If the type must be extended,
458    /// it is sign extended.  The conversion must not be narrowing.
459    const SCEV* getNoopOrSignExtend(const SCEV* V, const Type *Ty);
460
461    /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
462    /// the input value to the specified type. If the type must be extended,
463    /// it is extended with unspecified bits. The conversion must not be
464    /// narrowing.
465    const SCEV* getNoopOrAnyExtend(const SCEV* V, const Type *Ty);
466
467    /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
468    /// input value to the specified type.  The conversion must not be
469    /// widening.
470    const SCEV* getTruncateOrNoop(const SCEV* V, const Type *Ty);
471
472    /// getIntegerSCEV - Given a SCEVable type, create a constant for the
473    /// specified signed integer value and return a SCEV for the constant.
474    const SCEV* getIntegerSCEV(int Val, const Type *Ty);
475
476    /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
477    /// the types using zero-extension, and then perform a umax operation
478    /// with them.
479    const SCEV* getUMaxFromMismatchedTypes(const SCEV* LHS,
480                                          const SCEV* RHS);
481
482    /// getUMinFromMismatchedTypes - Promote the operands to the wider of
483    /// the types using zero-extension, and then perform a umin operation
484    /// with them.
485    const SCEV* getUMinFromMismatchedTypes(const SCEV* LHS,
486                                           const SCEV* RHS);
487
488    /// hasSCEV - Return true if the SCEV for this value has already been
489    /// computed.
490    bool hasSCEV(Value *V) const;
491
492    /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
493    /// the specified value.
494    void setSCEV(Value *V, const SCEV* H);
495
496    /// getSCEVAtScope - Return a SCEV expression handle for the specified value
497    /// at the specified scope in the program.  The L value specifies a loop
498    /// nest to evaluate the expression at, where null is the top-level or a
499    /// specified loop is immediately inside of the loop.
500    ///
501    /// This method can be used to compute the exit value for a variable defined
502    /// in a loop by querying what the value will hold in the parent loop.
503    ///
504    /// In the case that a relevant loop exit value cannot be computed, the
505    /// original value V is returned.
506    const SCEV* getSCEVAtScope(const SCEV *S, const Loop *L);
507
508    /// getSCEVAtScope - This is a convenience function which does
509    /// getSCEVAtScope(getSCEV(V), L).
510    const SCEV* getSCEVAtScope(Value *V, const Loop *L);
511
512    /// isLoopGuardedByCond - Test whether entry to the loop is protected by
513    /// a conditional between LHS and RHS.  This is used to help avoid max
514    /// expressions in loop trip counts.
515    bool isLoopGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
516                             const SCEV *LHS, const SCEV *RHS);
517
518    /// getBackedgeTakenCount - If the specified loop has a predictable
519    /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
520    /// object. The backedge-taken count is the number of times the loop header
521    /// will be branched to from within the loop. This is one less than the
522    /// trip count of the loop, since it doesn't count the first iteration,
523    /// when the header is branched to from outside the loop.
524    ///
525    /// Note that it is not valid to call this method on a loop without a
526    /// loop-invariant backedge-taken count (see
527    /// hasLoopInvariantBackedgeTakenCount).
528    ///
529    const SCEV* getBackedgeTakenCount(const Loop *L);
530
531    /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
532    /// return the least SCEV value that is known never to be less than the
533    /// actual backedge taken count.
534    const SCEV* getMaxBackedgeTakenCount(const Loop *L);
535
536    /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
537    /// has an analyzable loop-invariant backedge-taken count.
538    bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
539
540    /// forgetLoopBackedgeTakenCount - This method should be called by the
541    /// client when it has changed a loop in a way that may effect
542    /// ScalarEvolution's ability to compute a trip count, or if the loop
543    /// is deleted.
544    void forgetLoopBackedgeTakenCount(const Loop *L);
545
546    /// GetMinTrailingZeros - Determine the minimum number of zero bits that S
547    /// is guaranteed to end in (at every loop iteration).  It is, at the same
548    /// time, the minimum number of times S is divisible by 2.  For example,
549    /// given {4,+,8} it returns 2.  If S is guaranteed to be 0, it returns the
550    /// bitwidth of S.
551    uint32_t GetMinTrailingZeros(const SCEV* S);
552
553    /// GetMinLeadingZeros - Determine the minimum number of zero bits that S is
554    /// guaranteed to begin with (at every loop iteration).
555    uint32_t GetMinLeadingZeros(const SCEV* S);
556
557    /// GetMinSignBits - Determine the minimum number of sign bits that S is
558    /// guaranteed to begin with.
559    uint32_t GetMinSignBits(const SCEV* S);
560
561    virtual bool runOnFunction(Function &F);
562    virtual void releaseMemory();
563    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
564    void print(raw_ostream &OS, const Module* = 0) const;
565    virtual void print(std::ostream &OS, const Module* = 0) const;
566    void print(std::ostream *OS, const Module* M = 0) const {
567      if (OS) print(*OS, M);
568    }
569
570  private:
571    // Uniquing tables.
572    std::map<ConstantInt*, SCEVConstant*> SCEVConstants;
573    std::map<std::pair<const SCEV*, const Type*>,
574             SCEVTruncateExpr*> SCEVTruncates;
575    std::map<std::pair<const SCEV*, const Type*>,
576             SCEVZeroExtendExpr*> SCEVZeroExtends;
577    std::map<std::pair<unsigned, std::vector<const SCEV*> >,
578             SCEVCommutativeExpr*> SCEVCommExprs;
579    std::map<std::pair<const SCEV*, const SCEV*>,
580             SCEVUDivExpr*> SCEVUDivs;
581    std::map<std::pair<const SCEV*, const Type*>,
582             SCEVSignExtendExpr*> SCEVSignExtends;
583    std::map<std::pair<const Loop *, std::vector<const SCEV*> >,
584             SCEVAddRecExpr*> SCEVAddRecExprs;
585    std::map<Value*, SCEVUnknown*> SCEVUnknowns;
586  };
587}
588
589#endif
590