ScalarEvolution.h revision 6c0866ca8373da318741cc90ad7afd1bda22bb1b
1//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The ScalarEvolution class is an LLVM pass which can be used to analyze and
11// catagorize scalar expressions in loops.  It specializes in recognizing
12// general induction variables, representing them with the abstract and opaque
13// SCEV class.  Given this analysis, trip counts of loops and other important
14// properties can be obtained.
15//
16// This analysis is primarily useful for induction variable substitution and
17// strength reduction.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
22#define LLVM_ANALYSIS_SCALAREVOLUTION_H
23
24#include "llvm/Pass.h"
25#include "llvm/Analysis/LoopInfo.h"
26#include "llvm/Support/DataTypes.h"
27#include "llvm/Support/ValueHandle.h"
28#include <iosfwd>
29
30namespace llvm {
31  class APInt;
32  class ConstantInt;
33  class Type;
34  class SCEVHandle;
35  class ScalarEvolution;
36  class TargetData;
37
38  /// SCEV - This class represents an analyzed expression in the program.  These
39  /// are reference-counted opaque objects that the client is not allowed to
40  /// do much with directly.
41  ///
42  class SCEV {
43    const unsigned SCEVType;      // The SCEV baseclass this node corresponds to
44    mutable unsigned RefCount;
45
46    friend class SCEVHandle;
47    void addRef() const { ++RefCount; }
48    void dropRef() const {
49      if (--RefCount == 0)
50        delete this;
51    }
52
53    SCEV(const SCEV &);            // DO NOT IMPLEMENT
54    void operator=(const SCEV &);  // DO NOT IMPLEMENT
55  protected:
56    virtual ~SCEV();
57  public:
58    explicit SCEV(unsigned SCEVTy) : SCEVType(SCEVTy), RefCount(0) {}
59
60    unsigned getSCEVType() const { return SCEVType; }
61
62    /// isLoopInvariant - Return true if the value of this SCEV is unchanging in
63    /// the specified loop.
64    virtual bool isLoopInvariant(const Loop *L) const = 0;
65
66    /// hasComputableLoopEvolution - Return true if this SCEV changes value in a
67    /// known way in the specified loop.  This property being true implies that
68    /// the value is variant in the loop AND that we can emit an expression to
69    /// compute the value of the expression at any particular loop iteration.
70    virtual bool hasComputableLoopEvolution(const Loop *L) const = 0;
71
72    /// getType - Return the LLVM type of this SCEV expression.
73    ///
74    virtual const Type *getType() const = 0;
75
76    /// isZero - Return true if the expression is a constant zero.
77    ///
78    bool isZero() const;
79
80    /// isOne - Return true if the expression is a constant one.
81    ///
82    bool isOne() const;
83
84    /// replaceSymbolicValuesWithConcrete - If this SCEV internally references
85    /// the symbolic value "Sym", construct and return a new SCEV that produces
86    /// the same value, but which uses the concrete value Conc instead of the
87    /// symbolic value.  If this SCEV does not use the symbolic value, it
88    /// returns itself.
89    virtual SCEVHandle
90    replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
91                                      const SCEVHandle &Conc,
92                                      ScalarEvolution &SE) const = 0;
93
94    /// dominates - Return true if elements that makes up this SCEV dominates
95    /// the specified basic block.
96    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const = 0;
97
98    /// print - Print out the internal representation of this scalar to the
99    /// specified stream.  This should really only be used for debugging
100    /// purposes.
101    virtual void print(raw_ostream &OS) const = 0;
102    void print(std::ostream &OS) const;
103    void print(std::ostream *OS) const { if (OS) print(*OS); }
104
105    /// dump - This method is used for debugging.
106    ///
107    void dump() const;
108  };
109
110  inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
111    S.print(OS);
112    return OS;
113  }
114
115  inline std::ostream &operator<<(std::ostream &OS, const SCEV &S) {
116    S.print(OS);
117    return OS;
118  }
119
120  /// SCEVCouldNotCompute - An object of this class is returned by queries that
121  /// could not be answered.  For example, if you ask for the number of
122  /// iterations of a linked-list traversal loop, you will get one of these.
123  /// None of the standard SCEV operations are valid on this class, it is just a
124  /// marker.
125  struct SCEVCouldNotCompute : public SCEV {
126    SCEVCouldNotCompute();
127    ~SCEVCouldNotCompute();
128
129    // None of these methods are valid for this object.
130    virtual bool isLoopInvariant(const Loop *L) const;
131    virtual const Type *getType() const;
132    virtual bool hasComputableLoopEvolution(const Loop *L) const;
133    virtual void print(raw_ostream &OS) const;
134    virtual SCEVHandle
135    replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
136                                      const SCEVHandle &Conc,
137                                      ScalarEvolution &SE) const;
138
139    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const {
140      return true;
141    }
142
143    /// Methods for support type inquiry through isa, cast, and dyn_cast:
144    static inline bool classof(const SCEVCouldNotCompute *S) { return true; }
145    static bool classof(const SCEV *S);
146  };
147
148  /// SCEVHandle - This class is used to maintain the SCEV object's refcounts,
149  /// freeing the objects when the last reference is dropped.
150  class SCEVHandle {
151    const SCEV *S;
152    SCEVHandle();  // DO NOT IMPLEMENT
153  public:
154    SCEVHandle(const SCEV *s) : S(s) {
155      assert(S && "Cannot create a handle to a null SCEV!");
156      S->addRef();
157    }
158    SCEVHandle(const SCEVHandle &RHS) : S(RHS.S) {
159      S->addRef();
160    }
161    ~SCEVHandle() { S->dropRef(); }
162
163    operator const SCEV*() const { return S; }
164
165    const SCEV &operator*() const { return *S; }
166    const SCEV *operator->() const { return S; }
167
168    bool operator==(const SCEV *RHS) const { return S == RHS; }
169    bool operator!=(const SCEV *RHS) const { return S != RHS; }
170
171    const SCEVHandle &operator=(SCEV *RHS) {
172      if (S != RHS) {
173        S->dropRef();
174        S = RHS;
175        S->addRef();
176      }
177      return *this;
178    }
179
180    const SCEVHandle &operator=(const SCEVHandle &RHS) {
181      if (S != RHS.S) {
182        S->dropRef();
183        S = RHS.S;
184        S->addRef();
185      }
186      return *this;
187    }
188  };
189
190  template<typename From> struct simplify_type;
191  template<> struct simplify_type<const SCEVHandle> {
192    typedef const SCEV* SimpleType;
193    static SimpleType getSimplifiedValue(const SCEVHandle &Node) {
194      return Node;
195    }
196  };
197  template<> struct simplify_type<SCEVHandle>
198    : public simplify_type<const SCEVHandle> {};
199
200  /// ScalarEvolution - This class is the main scalar evolution driver.  Because
201  /// client code (intentionally) can't do much with the SCEV objects directly,
202  /// they must ask this class for services.
203  ///
204  class ScalarEvolution : public FunctionPass {
205    /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
206    /// notified whenever a Value is deleted.
207    class SCEVCallbackVH : public CallbackVH {
208      ScalarEvolution *SE;
209      virtual void deleted();
210      virtual void allUsesReplacedWith(Value *New);
211    public:
212      SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0);
213    };
214
215    friend class SCEVCallbackVH;
216    friend class SCEVExpander;
217
218    /// F - The function we are analyzing.
219    ///
220    Function *F;
221
222    /// LI - The loop information for the function we are currently analyzing.
223    ///
224    LoopInfo *LI;
225
226    /// TD - The target data information for the target we are targetting.
227    ///
228    TargetData *TD;
229
230    /// UnknownValue - This SCEV is used to represent unknown trip counts and
231    /// things.
232    SCEVHandle UnknownValue;
233
234    /// Scalars - This is a cache of the scalars we have analyzed so far.
235    ///
236    std::map<SCEVCallbackVH, SCEVHandle> Scalars;
237
238    /// BackedgeTakenInfo - Information about the backedge-taken count
239    /// of a loop. This currently inclues an exact count and a maximum count.
240    ///
241    struct BackedgeTakenInfo {
242      /// Exact - An expression indicating the exact backedge-taken count of
243      /// the loop if it is known, or a SCEVCouldNotCompute otherwise.
244      SCEVHandle Exact;
245
246      /// Exact - An expression indicating the least maximum backedge-taken
247      /// count of the loop that is known, or a SCEVCouldNotCompute.
248      SCEVHandle Max;
249
250      /*implicit*/ BackedgeTakenInfo(SCEVHandle exact) :
251        Exact(exact), Max(exact) {}
252
253      /*implicit*/ BackedgeTakenInfo(const SCEV *exact) :
254        Exact(exact), Max(exact) {}
255
256      BackedgeTakenInfo(SCEVHandle exact, SCEVHandle max) :
257        Exact(exact), Max(max) {}
258
259      /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
260      /// computed information, or whether it's all SCEVCouldNotCompute
261      /// values.
262      bool hasAnyInfo() const {
263        return !isa<SCEVCouldNotCompute>(Exact) ||
264               !isa<SCEVCouldNotCompute>(Max);
265      }
266    };
267
268    /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
269    /// this function as they are computed.
270    std::map<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
271
272    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
273    /// the PHI instructions that we attempt to compute constant evolutions for.
274    /// This allows us to avoid potentially expensive recomputation of these
275    /// properties.  An instruction maps to null if we are unable to compute its
276    /// exit value.
277    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
278
279    /// ValuesAtScopes - This map contains entries for all the instructions
280    /// that we attempt to compute getSCEVAtScope information for without
281    /// using SCEV techniques, which can be expensive.
282    std::map<Instruction *, std::map<const Loop *, Constant *> > ValuesAtScopes;
283
284    /// createSCEV - We know that there is no SCEV for the specified value.
285    /// Analyze the expression.
286    SCEVHandle createSCEV(Value *V);
287
288    /// createNodeForPHI - Provide the special handling we need to analyze PHI
289    /// SCEVs.
290    SCEVHandle createNodeForPHI(PHINode *PN);
291
292    /// createNodeForGEP - Provide the special handling we need to analyze GEP
293    /// SCEVs.
294    SCEVHandle createNodeForGEP(User *GEP);
295
296    /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
297    /// for the specified instruction and replaces any references to the
298    /// symbolic value SymName with the specified value.  This is used during
299    /// PHI resolution.
300    void ReplaceSymbolicValueWithConcrete(Instruction *I,
301                                          const SCEVHandle &SymName,
302                                          const SCEVHandle &NewVal);
303
304    /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
305    /// loop, lazily computing new values if the loop hasn't been analyzed
306    /// yet.
307    const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
308
309    /// ComputeBackedgeTakenCount - Compute the number of times the specified
310    /// loop will iterate.
311    BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
312
313    /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition
314    /// of 'icmp op load X, cst', try to see if we can compute the trip count.
315    SCEVHandle
316      ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI,
317                                                   Constant *RHS,
318                                                   const Loop *L,
319                                                   ICmpInst::Predicate p);
320
321    /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute
322    /// a constant number of times (the condition evolves only from constants),
323    /// try to evaluate a few iterations of the loop until we get the exit
324    /// condition gets a value of ExitWhen (true or false).  If we cannot
325    /// evaluate the trip count of the loop, return UnknownValue.
326    SCEVHandle ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond,
327                                                     bool ExitWhen);
328
329    /// HowFarToZero - Return the number of times a backedge comparing the
330    /// specified value to zero will execute.  If not computable, return
331    /// UnknownValue.
332    SCEVHandle HowFarToZero(const SCEV *V, const Loop *L);
333
334    /// HowFarToNonZero - Return the number of times a backedge checking the
335    /// specified value for nonzero will execute.  If not computable, return
336    /// UnknownValue.
337    SCEVHandle HowFarToNonZero(const SCEV *V, const Loop *L);
338
339    /// HowManyLessThans - Return the number of times a backedge containing the
340    /// specified less-than comparison will execute.  If not computable, return
341    /// UnknownValue. isSigned specifies whether the less-than is signed.
342    BackedgeTakenInfo HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
343                                       const Loop *L, bool isSigned);
344
345    /// getLoopPredecessor - If the given loop's header has exactly one unique
346    /// predecessor outside the loop, return it. Otherwise return null.
347    BasicBlock *getLoopPredecessor(const Loop *L);
348
349    /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
350    /// (which may not be an immediate predecessor) which has exactly one
351    /// successor from which BB is reachable, or null if no such block is
352    /// found.
353    BasicBlock* getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
354
355    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
356    /// in the header of its containing loop, we know the loop executes a
357    /// constant number of times, and the PHI node is just a recurrence
358    /// involving constants, fold it.
359    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
360                                                const Loop *L);
361
362    /// forgetLoopPHIs - Delete the memoized SCEVs associated with the
363    /// PHI nodes in the given loop. This is used when the trip count of
364    /// the loop may have changed.
365    void forgetLoopPHIs(const Loop *L);
366
367  public:
368    static char ID; // Pass identification, replacement for typeid
369    ScalarEvolution();
370
371    /// isSCEVable - Test if values of the given type are analyzable within
372    /// the SCEV framework. This primarily includes integer types, and it
373    /// can optionally include pointer types if the ScalarEvolution class
374    /// has access to target-specific information.
375    bool isSCEVable(const Type *Ty) const;
376
377    /// getTypeSizeInBits - Return the size in bits of the specified type,
378    /// for which isSCEVable must return true.
379    uint64_t getTypeSizeInBits(const Type *Ty) const;
380
381    /// getEffectiveSCEVType - Return a type with the same bitwidth as
382    /// the given type and which represents how SCEV will treat the given
383    /// type, for which isSCEVable must return true. For pointer types,
384    /// this is the pointer-sized integer type.
385    const Type *getEffectiveSCEVType(const Type *Ty) const;
386
387    /// getSCEV - Return a SCEV expression handle for the full generality of the
388    /// specified expression.
389    SCEVHandle getSCEV(Value *V);
390
391    SCEVHandle getConstant(ConstantInt *V);
392    SCEVHandle getConstant(const APInt& Val);
393    SCEVHandle getTruncateExpr(const SCEVHandle &Op, const Type *Ty);
394    SCEVHandle getZeroExtendExpr(const SCEVHandle &Op, const Type *Ty);
395    SCEVHandle getSignExtendExpr(const SCEVHandle &Op, const Type *Ty);
396    SCEVHandle getAddExpr(std::vector<SCEVHandle> &Ops);
397    SCEVHandle getAddExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) {
398      std::vector<SCEVHandle> Ops;
399      Ops.push_back(LHS);
400      Ops.push_back(RHS);
401      return getAddExpr(Ops);
402    }
403    SCEVHandle getAddExpr(const SCEVHandle &Op0, const SCEVHandle &Op1,
404                          const SCEVHandle &Op2) {
405      std::vector<SCEVHandle> Ops;
406      Ops.push_back(Op0);
407      Ops.push_back(Op1);
408      Ops.push_back(Op2);
409      return getAddExpr(Ops);
410    }
411    SCEVHandle getMulExpr(std::vector<SCEVHandle> &Ops);
412    SCEVHandle getMulExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) {
413      std::vector<SCEVHandle> Ops;
414      Ops.push_back(LHS);
415      Ops.push_back(RHS);
416      return getMulExpr(Ops);
417    }
418    SCEVHandle getUDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS);
419    SCEVHandle getAddRecExpr(const SCEVHandle &Start, const SCEVHandle &Step,
420                             const Loop *L);
421    SCEVHandle getAddRecExpr(std::vector<SCEVHandle> &Operands,
422                             const Loop *L);
423    SCEVHandle getAddRecExpr(const std::vector<SCEVHandle> &Operands,
424                             const Loop *L) {
425      std::vector<SCEVHandle> NewOp(Operands);
426      return getAddRecExpr(NewOp, L);
427    }
428    SCEVHandle getSMaxExpr(const SCEVHandle &LHS, const SCEVHandle &RHS);
429    SCEVHandle getSMaxExpr(std::vector<SCEVHandle> Operands);
430    SCEVHandle getUMaxExpr(const SCEVHandle &LHS, const SCEVHandle &RHS);
431    SCEVHandle getUMaxExpr(std::vector<SCEVHandle> Operands);
432    SCEVHandle getUnknown(Value *V);
433    SCEVHandle getCouldNotCompute();
434
435    /// getNegativeSCEV - Return the SCEV object corresponding to -V.
436    ///
437    SCEVHandle getNegativeSCEV(const SCEVHandle &V);
438
439    /// getNotSCEV - Return the SCEV object corresponding to ~V.
440    ///
441    SCEVHandle getNotSCEV(const SCEVHandle &V);
442
443    /// getMinusSCEV - Return LHS-RHS.
444    ///
445    SCEVHandle getMinusSCEV(const SCEVHandle &LHS,
446                            const SCEVHandle &RHS);
447
448    /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
449    /// of the input value to the specified type.  If the type must be
450    /// extended, it is zero extended.
451    SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty);
452
453    /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
454    /// of the input value to the specified type.  If the type must be
455    /// extended, it is sign extended.
456    SCEVHandle getTruncateOrSignExtend(const SCEVHandle &V, const Type *Ty);
457
458    /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
459    /// the input value to the specified type.  If the type must be extended,
460    /// it is zero extended.  The conversion must not be narrowing.
461    SCEVHandle getNoopOrZeroExtend(const SCEVHandle &V, const Type *Ty);
462
463    /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
464    /// the input value to the specified type.  If the type must be extended,
465    /// it is sign extended.  The conversion must not be narrowing.
466    SCEVHandle getNoopOrSignExtend(const SCEVHandle &V, const Type *Ty);
467
468    /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
469    /// input value to the specified type.  The conversion must not be
470    /// widening.
471    SCEVHandle getTruncateOrNoop(const SCEVHandle &V, const Type *Ty);
472
473    /// getIntegerSCEV - Given an integer or FP type, create a constant for the
474    /// specified signed integer value and return a SCEV for the constant.
475    SCEVHandle getIntegerSCEV(int Val, const Type *Ty);
476
477    /// hasSCEV - Return true if the SCEV for this value has already been
478    /// computed.
479    bool hasSCEV(Value *V) const;
480
481    /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
482    /// the specified value.
483    void setSCEV(Value *V, const SCEVHandle &H);
484
485    /// getSCEVAtScope - Return a SCEV expression handle for the specified value
486    /// at the specified scope in the program.  The L value specifies a loop
487    /// nest to evaluate the expression at, where null is the top-level or a
488    /// specified loop is immediately inside of the loop.
489    ///
490    /// This method can be used to compute the exit value for a variable defined
491    /// in a loop by querying what the value will hold in the parent loop.
492    ///
493    /// In the case that a relevant loop exit value cannot be computed, the
494    /// original value V is returned.
495    SCEVHandle getSCEVAtScope(const SCEV *S, const Loop *L);
496
497    /// getSCEVAtScope - This is a convenience function which does
498    /// getSCEVAtScope(getSCEV(V), L).
499    SCEVHandle getSCEVAtScope(Value *V, const Loop *L);
500
501    /// isLoopGuardedByCond - Test whether entry to the loop is protected by
502    /// a conditional between LHS and RHS.  This is used to help avoid max
503    /// expressions in loop trip counts.
504    bool isLoopGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
505                             const SCEV *LHS, const SCEV *RHS);
506
507    /// getBackedgeTakenCount - If the specified loop has a predictable
508    /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
509    /// object. The backedge-taken count is the number of times the loop header
510    /// will be branched to from within the loop. This is one less than the
511    /// trip count of the loop, since it doesn't count the first iteration,
512    /// when the header is branched to from outside the loop.
513    ///
514    /// Note that it is not valid to call this method on a loop without a
515    /// loop-invariant backedge-taken count (see
516    /// hasLoopInvariantBackedgeTakenCount).
517    ///
518    SCEVHandle getBackedgeTakenCount(const Loop *L);
519
520    /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
521    /// return the least SCEV value that is known never to be less than the
522    /// actual backedge taken count.
523    SCEVHandle getMaxBackedgeTakenCount(const Loop *L);
524
525    /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
526    /// has an analyzable loop-invariant backedge-taken count.
527    bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
528
529    /// forgetLoopBackedgeTakenCount - This method should be called by the
530    /// client when it has changed a loop in a way that may effect
531    /// ScalarEvolution's ability to compute a trip count, or if the loop
532    /// is deleted.
533    void forgetLoopBackedgeTakenCount(const Loop *L);
534
535    virtual bool runOnFunction(Function &F);
536    virtual void releaseMemory();
537    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
538    void print(raw_ostream &OS, const Module* = 0) const;
539    virtual void print(std::ostream &OS, const Module* = 0) const;
540    void print(std::ostream *OS, const Module* M = 0) const {
541      if (OS) print(*OS, M);
542    }
543  };
544}
545
546#endif
547