ScalarEvolution.h revision 6cf07a80ff5ee8ef7dc336f954aae17c7e8d83d4
15821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
25821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
35821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//                     The LLVM Compiler Infrastructure
45821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
5116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch// This file is distributed under the University of Illinois Open Source
6116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch// License. See LICENSE.TXT for details.
75821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
8116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch//===----------------------------------------------------------------------===//
9116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch//
10116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch// The ScalarEvolution class is an LLVM pass which can be used to analyze and
11116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch// categorize scalar expressions in loops.  It specializes in recognizing
125821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)// general induction variables, representing them with the abstract and opaque
13116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch// SCEV class.  Given this analysis, trip counts of loops and other important
1403b57e008b61dfcb1fbad3aea950ae0e001748b0Torne (Richard Coles)// properties can be obtained.
15116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch//
16116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch// This analysis is primarily useful for induction variable substitution and
175821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)// strength reduction.
18116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch//
19116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch//===----------------------------------------------------------------------===//
20116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
21116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
22116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#define LLVM_ANALYSIS_SCALAREVOLUTION_H
23116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
24116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/Pass.h"
25116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/Instructions.h"
26116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/Function.h"
27116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/Operator.h"
28116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/Support/DataTypes.h"
29116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/Support/ValueHandle.h"
30116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/Support/Allocator.h"
31116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/Support/ConstantRange.h"
32116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/ADT/FoldingSet.h"
33116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include "llvm/ADT/DenseSet.h"
34116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch#include <map>
35116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
36116680a4aac90f2aa7413d9095a592090648e557Ben Murdochnamespace llvm {
37116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  class APInt;
38116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  class Constant;
39116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  class ConstantInt;
40116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  class DominatorTree;
411320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci  class Type;
42116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  class ScalarEvolution;
43116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  class TargetData;
44116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  class TargetLibraryInfo;
45116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  class LLVMContext;
46116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  class Loop;
47116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  class LoopInfo;
48116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  class Operator;
49116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  class SCEVUnknown;
50116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  class SCEV;
51116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  template<> struct FoldingSetTrait<SCEV>;
52116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
53116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  /// SCEV - This class represents an analyzed expression in the program.  These
54116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  /// are opaque objects that the client is not allowed to do much with
55116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  /// directly.
56116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  ///
57116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  class SCEV : public FoldingSetNode {
58116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    friend struct FoldingSetTrait<SCEV>;
59116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
60116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    /// FastID - A reference to an Interned FoldingSetNodeID for this node.
61116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    /// The ScalarEvolution's BumpPtrAllocator holds the data.
62116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    FoldingSetNodeIDRef FastID;
63116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
64116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    // The SCEV baseclass this node corresponds to
65116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    const unsigned short SCEVType;
66116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
67116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  protected:
68116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    /// SubclassData - This field is initialized to zero and may be used in
69116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    /// subclasses to store miscellaneous information.
70116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    unsigned short SubclassData;
71116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
72116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  private:
73116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    SCEV(const SCEV &);            // DO NOT IMPLEMENT
74116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    void operator=(const SCEV &);  // DO NOT IMPLEMENT
7503b57e008b61dfcb1fbad3aea950ae0e001748b0Torne (Richard Coles)
76116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  public:
77116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    /// NoWrapFlags are bitfield indices into SubclassData.
781320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci    ///
79116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
80116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    /// no-signed-wrap <NSW> properties, which are derived from the IR
81116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    /// operator. NSW is a misnomer that we use to mean no signed overflow or
82116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    /// underflow.
83116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    ///
841320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci    /// AddRec expression may have a no-self-wraparound <NW> property if the
85116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    /// result can never reach the start value. This property is independent of
86116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    /// the actual start value and step direction. Self-wraparound is defined
87116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    /// purely in terms of the recurrence's loop, step size, and
88116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    /// bitwidth. Formally, a recurrence with no self-wraparound satisfies:
89116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    /// abs(step) * max-iteration(loop) <= unsigned-max(bitwidth).
901320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci    ///
91116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    /// Note that NUW and NSW are also valid properties of a recurrence, and
92116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    /// either implies NW. For convenience, NW will be set for a recurrence
93116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    /// whenever either NUW or NSW are set.
94116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    enum NoWrapFlags { FlagAnyWrap = 0,          // No guarantee.
95116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch                       FlagNW      = (1 << 0),   // No self-wrap.
96116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch                       FlagNUW     = (1 << 1),   // No unsigned wrap.
97116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch                       FlagNSW     = (1 << 2),   // No signed wrap.
98116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch                       NoWrapMask  = (1 << 3) -1 };
99116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
100116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) :
1011320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci      FastID(ID), SCEVType(SCEVTy), SubclassData(0) {}
1021320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci
103116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    unsigned getSCEVType() const { return SCEVType; }
104116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
105116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    /// getType - Return the LLVM type of this SCEV expression.
106116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    ///
107116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    Type *getType() const;
108116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
109116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    /// isZero - Return true if the expression is a constant zero.
110116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    ///
111116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    bool isZero() const;
1125821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
113f8ee788a64d60abd8f2d742a5fdedde054ecd910Torne (Richard Coles)    /// isOne - Return true if the expression is a constant one.
1145821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    ///
1155821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    bool isOne() const;
116116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
117116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    /// isAllOnesValue - Return true if the expression is a constant
118116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    /// all-ones value.
119116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    ///
120116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    bool isAllOnesValue() const;
121116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
122116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    /// isNonConstantNegative - Return true if the specified scev is negated,
123116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    /// but not a constant.
124116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    bool isNonConstantNegative() const;
125116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
126116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    /// print - Print out the internal representation of this scalar to the
127116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    /// specified stream.  This should really only be used for debugging
128116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    /// purposes.
129116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    void print(raw_ostream &OS) const;
130116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
131116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    /// dump - This method is used for debugging.
132116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    ///
133116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    void dump() const;
134116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  };
135116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
136116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  // Specialize FoldingSetTrait for SCEV to avoid needing to compute
137116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  // temporary FoldingSetNodeID values.
138116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  template<> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
139116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    static void Profile(const SCEV &X, FoldingSetNodeID& ID) {
140116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch      ID = X.FastID;
141116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    }
142116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    static bool Equals(const SCEV &X, const FoldingSetNodeID &ID,
143116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch                       unsigned IDHash, FoldingSetNodeID &TempID) {
144116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch      return ID == X.FastID;
145116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    }
146116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
147      return X.FastID.ComputeHash();
148    }
149  };
150
151  inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
152    S.print(OS);
153    return OS;
154  }
155
156  /// SCEVCouldNotCompute - An object of this class is returned by queries that
157  /// could not be answered.  For example, if you ask for the number of
158  /// iterations of a linked-list traversal loop, you will get one of these.
159  /// None of the standard SCEV operations are valid on this class, it is just a
160  /// marker.
161  struct SCEVCouldNotCompute : public SCEV {
162    SCEVCouldNotCompute();
163
164    /// Methods for support type inquiry through isa, cast, and dyn_cast:
165    static inline bool classof(const SCEVCouldNotCompute *S) { return true; }
166    static bool classof(const SCEV *S);
167  };
168
169  /// ScalarEvolution - This class is the main scalar evolution driver.  Because
170  /// client code (intentionally) can't do much with the SCEV objects directly,
171  /// they must ask this class for services.
172  ///
173  class ScalarEvolution : public FunctionPass {
174  public:
175    /// LoopDisposition - An enum describing the relationship between a
176    /// SCEV and a loop.
177    enum LoopDisposition {
178      LoopVariant,    ///< The SCEV is loop-variant (unknown).
179      LoopInvariant,  ///< The SCEV is loop-invariant.
180      LoopComputable  ///< The SCEV varies predictably with the loop.
181    };
182
183    /// BlockDisposition - An enum describing the relationship between a
184    /// SCEV and a basic block.
185    enum BlockDisposition {
186      DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
187      DominatesBlock,        ///< The SCEV dominates the block.
188      ProperlyDominatesBlock ///< The SCEV properly dominates the block.
189    };
190
191    /// Convenient NoWrapFlags manipulation that hides enum casts and is
192    /// visible in the ScalarEvolution name space.
193    static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags, int Mask) {
194      return (SCEV::NoWrapFlags)(Flags & Mask);
195    }
196    static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags,
197                                      SCEV::NoWrapFlags OnFlags) {
198      return (SCEV::NoWrapFlags)(Flags | OnFlags);
199    }
200    static SCEV::NoWrapFlags clearFlags(SCEV::NoWrapFlags Flags,
201                                        SCEV::NoWrapFlags OffFlags) {
202      return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
203    }
204
205  private:
206    /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
207    /// notified whenever a Value is deleted.
208    class SCEVCallbackVH : public CallbackVH {
209      ScalarEvolution *SE;
210      virtual void deleted();
211      virtual void allUsesReplacedWith(Value *New);
212    public:
213      SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0);
214    };
215
216    friend class SCEVCallbackVH;
217    friend class SCEVExpander;
218    friend class SCEVUnknown;
219
220    /// F - The function we are analyzing.
221    ///
222    Function *F;
223
224    /// LI - The loop information for the function we are currently analyzing.
225    ///
226    LoopInfo *LI;
227
228    /// TD - The target data information for the target we are targeting.
229    ///
230    TargetData *TD;
231
232    /// TLI - The target library information for the target we are targeting.
233    ///
234    TargetLibraryInfo *TLI;
235
236    /// DT - The dominator tree.
237    ///
238    DominatorTree *DT;
239
240    /// CouldNotCompute - This SCEV is used to represent unknown trip
241    /// counts and things.
242    SCEVCouldNotCompute CouldNotCompute;
243
244    /// ValueExprMapType - The typedef for ValueExprMap.
245    ///
246    typedef DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *> >
247      ValueExprMapType;
248
249    /// ValueExprMap - This is a cache of the values we have analyzed so far.
250    ///
251    ValueExprMapType ValueExprMap;
252
253    /// Mark predicate values currently being processed by isImpliedCond.
254    DenseSet<Value*> PendingLoopPredicates;
255
256    /// ExitLimit - Information about the number of loop iterations for
257    /// which a loop exit's branch condition evaluates to the not-taken path.
258    /// This is a temporary pair of exact and max expressions that are
259    /// eventually summarized in ExitNotTakenInfo and BackedgeTakenInfo.
260    struct ExitLimit {
261      const SCEV *Exact;
262      const SCEV *Max;
263
264      /*implicit*/ ExitLimit(const SCEV *E) : Exact(E), Max(E) {}
265
266      ExitLimit(const SCEV *E, const SCEV *M) : Exact(E), Max(M) {}
267
268      /// hasAnyInfo - Test whether this ExitLimit contains any computed
269      /// information, or whether it's all SCEVCouldNotCompute values.
270      bool hasAnyInfo() const {
271        return !isa<SCEVCouldNotCompute>(Exact) ||
272          !isa<SCEVCouldNotCompute>(Max);
273      }
274    };
275
276    /// ExitNotTakenInfo - Information about the number of times a particular
277    /// loop exit may be reached before exiting the loop.
278    struct ExitNotTakenInfo {
279      AssertingVH<BasicBlock> ExitingBlock;
280      const SCEV *ExactNotTaken;
281      PointerIntPair<ExitNotTakenInfo*, 1> NextExit;
282
283      ExitNotTakenInfo() : ExitingBlock(0), ExactNotTaken(0) {}
284
285      /// isCompleteList - Return true if all loop exits are computable.
286      bool isCompleteList() const {
287        return NextExit.getInt() == 0;
288      }
289
290      void setIncomplete() { NextExit.setInt(1); }
291
292      /// getNextExit - Return a pointer to the next exit's not-taken info.
293      ExitNotTakenInfo *getNextExit() const {
294        return NextExit.getPointer();
295      }
296
297      void setNextExit(ExitNotTakenInfo *ENT) { NextExit.setPointer(ENT); }
298    };
299
300    /// BackedgeTakenInfo - Information about the backedge-taken count
301    /// of a loop. This currently includes an exact count and a maximum count.
302    ///
303    class BackedgeTakenInfo {
304      /// ExitNotTaken - A list of computable exits and their not-taken counts.
305      /// Loops almost never have more than one computable exit.
306      ExitNotTakenInfo ExitNotTaken;
307
308      /// Max - An expression indicating the least maximum backedge-taken
309      /// count of the loop that is known, or a SCEVCouldNotCompute.
310      const SCEV *Max;
311
312    public:
313      BackedgeTakenInfo() : Max(0) {}
314
315      /// Initialize BackedgeTakenInfo from a list of exact exit counts.
316      BackedgeTakenInfo(
317        SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
318        bool Complete, const SCEV *MaxCount);
319
320      /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
321      /// computed information, or whether it's all SCEVCouldNotCompute
322      /// values.
323      bool hasAnyInfo() const {
324        return ExitNotTaken.ExitingBlock || !isa<SCEVCouldNotCompute>(Max);
325      }
326
327      /// getExact - Return an expression indicating the exact backedge-taken
328      /// count of the loop if it is known, or SCEVCouldNotCompute
329      /// otherwise. This is the number of times the loop header can be
330      /// guaranteed to execute, minus one.
331      const SCEV *getExact(ScalarEvolution *SE) const;
332
333      /// getExact - Return the number of times this loop exit may fall through
334      /// to the back edge, or SCEVCouldNotCompute. The loop is guaranteed not
335      /// to exit via this block before this number of iterations, but may exit
336      /// via another block.
337      const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
338
339      /// getMax - Get the max backedge taken count for the loop.
340      const SCEV *getMax(ScalarEvolution *SE) const;
341
342      /// clear - Invalidate this result and free associated memory.
343      void clear();
344    };
345
346    /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
347    /// this function as they are computed.
348    DenseMap<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
349
350    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
351    /// the PHI instructions that we attempt to compute constant evolutions for.
352    /// This allows us to avoid potentially expensive recomputation of these
353    /// properties.  An instruction maps to null if we are unable to compute its
354    /// exit value.
355    DenseMap<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
356
357    /// ValuesAtScopes - This map contains entries for all the expressions
358    /// that we attempt to compute getSCEVAtScope information for, which can
359    /// be expensive in extreme cases.
360    DenseMap<const SCEV *,
361             std::map<const Loop *, const SCEV *> > ValuesAtScopes;
362
363    /// LoopDispositions - Memoized computeLoopDisposition results.
364    DenseMap<const SCEV *,
365             std::map<const Loop *, LoopDisposition> > LoopDispositions;
366
367    /// computeLoopDisposition - Compute a LoopDisposition value.
368    LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
369
370    /// BlockDispositions - Memoized computeBlockDisposition results.
371    DenseMap<const SCEV *,
372             std::map<const BasicBlock *, BlockDisposition> > BlockDispositions;
373
374    /// computeBlockDisposition - Compute a BlockDisposition value.
375    BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
376
377    /// UnsignedRanges - Memoized results from getUnsignedRange
378    DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
379
380    /// SignedRanges - Memoized results from getSignedRange
381    DenseMap<const SCEV *, ConstantRange> SignedRanges;
382
383    /// setUnsignedRange - Set the memoized unsigned range for the given SCEV.
384    const ConstantRange &setUnsignedRange(const SCEV *S,
385                                          const ConstantRange &CR) {
386      std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
387        UnsignedRanges.insert(std::make_pair(S, CR));
388      if (!Pair.second)
389        Pair.first->second = CR;
390      return Pair.first->second;
391    }
392
393    /// setUnsignedRange - Set the memoized signed range for the given SCEV.
394    const ConstantRange &setSignedRange(const SCEV *S,
395                                        const ConstantRange &CR) {
396      std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
397        SignedRanges.insert(std::make_pair(S, CR));
398      if (!Pair.second)
399        Pair.first->second = CR;
400      return Pair.first->second;
401    }
402
403    /// createSCEV - We know that there is no SCEV for the specified value.
404    /// Analyze the expression.
405    const SCEV *createSCEV(Value *V);
406
407    /// createNodeForPHI - Provide the special handling we need to analyze PHI
408    /// SCEVs.
409    const SCEV *createNodeForPHI(PHINode *PN);
410
411    /// createNodeForGEP - Provide the special handling we need to analyze GEP
412    /// SCEVs.
413    const SCEV *createNodeForGEP(GEPOperator *GEP);
414
415    /// computeSCEVAtScope - Implementation code for getSCEVAtScope; called
416    /// at most once for each SCEV+Loop pair.
417    ///
418    const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
419
420    /// ForgetSymbolicValue - This looks up computed SCEV values for all
421    /// instructions that depend on the given instruction and removes them from
422    /// the ValueExprMap map if they reference SymName. This is used during PHI
423    /// resolution.
424    void ForgetSymbolicName(Instruction *I, const SCEV *SymName);
425
426    /// getBECount - Subtract the end and start values and divide by the step,
427    /// rounding up, to get the number of times the backedge is executed. Return
428    /// CouldNotCompute if an intermediate computation overflows.
429    const SCEV *getBECount(const SCEV *Start,
430                           const SCEV *End,
431                           const SCEV *Step,
432                           bool NoWrap);
433
434    /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
435    /// loop, lazily computing new values if the loop hasn't been analyzed
436    /// yet.
437    const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
438
439    /// ComputeBackedgeTakenCount - Compute the number of times the specified
440    /// loop will iterate.
441    BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
442
443    /// ComputeExitLimit - Compute the number of times the backedge of the
444    /// specified loop will execute if it exits via the specified block.
445    ExitLimit ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock);
446
447    /// ComputeExitLimitFromCond - Compute the number of times the backedge of
448    /// the specified loop will execute if its exit condition were a conditional
449    /// branch of ExitCond, TBB, and FBB.
450    ExitLimit ComputeExitLimitFromCond(const Loop *L,
451                                       Value *ExitCond,
452                                       BasicBlock *TBB,
453                                       BasicBlock *FBB);
454
455    /// ComputeExitLimitFromICmp - Compute the number of times the backedge of
456    /// the specified loop will execute if its exit condition were a conditional
457    /// branch of the ICmpInst ExitCond, TBB, and FBB.
458    ExitLimit ComputeExitLimitFromICmp(const Loop *L,
459                                       ICmpInst *ExitCond,
460                                       BasicBlock *TBB,
461                                       BasicBlock *FBB);
462
463    /// ComputeLoadConstantCompareExitLimit - Given an exit condition
464    /// of 'icmp op load X, cst', try to see if we can compute the
465    /// backedge-taken count.
466    ExitLimit ComputeLoadConstantCompareExitLimit(LoadInst *LI,
467                                                  Constant *RHS,
468                                                  const Loop *L,
469                                                  ICmpInst::Predicate p);
470
471    /// ComputeExitCountExhaustively - If the loop is known to execute a
472    /// constant number of times (the condition evolves only from constants),
473    /// try to evaluate a few iterations of the loop until we get the exit
474    /// condition gets a value of ExitWhen (true or false).  If we cannot
475    /// evaluate the exit count of the loop, return CouldNotCompute.
476    const SCEV *ComputeExitCountExhaustively(const Loop *L,
477                                             Value *Cond,
478                                             bool ExitWhen);
479
480    /// HowFarToZero - Return the number of times an exit condition comparing
481    /// the specified value to zero will execute.  If not computable, return
482    /// CouldNotCompute.
483    ExitLimit HowFarToZero(const SCEV *V, const Loop *L);
484
485    /// HowFarToNonZero - Return the number of times an exit condition checking
486    /// the specified value for nonzero will execute.  If not computable, return
487    /// CouldNotCompute.
488    ExitLimit HowFarToNonZero(const SCEV *V, const Loop *L);
489
490    /// HowManyLessThans - Return the number of times an exit condition
491    /// containing the specified less-than comparison will execute.  If not
492    /// computable, return CouldNotCompute. isSigned specifies whether the
493    /// less-than is signed.
494    ExitLimit HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
495                               const Loop *L, bool isSigned);
496
497    /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
498    /// (which may not be an immediate predecessor) which has exactly one
499    /// successor from which BB is reachable, or null if no such block is
500    /// found.
501    std::pair<BasicBlock *, BasicBlock *>
502    getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
503
504    /// isImpliedCond - Test whether the condition described by Pred, LHS, and
505    /// RHS is true whenever the given FoundCondValue value evaluates to true.
506    bool isImpliedCond(ICmpInst::Predicate Pred,
507                       const SCEV *LHS, const SCEV *RHS,
508                       Value *FoundCondValue,
509                       bool Inverse);
510
511    /// isImpliedCondOperands - Test whether the condition described by Pred,
512    /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
513    /// and FoundRHS is true.
514    bool isImpliedCondOperands(ICmpInst::Predicate Pred,
515                               const SCEV *LHS, const SCEV *RHS,
516                               const SCEV *FoundLHS, const SCEV *FoundRHS);
517
518    /// isImpliedCondOperandsHelper - Test whether the condition described by
519    /// Pred, LHS, and RHS is true whenever the condition described by Pred,
520    /// FoundLHS, and FoundRHS is true.
521    bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
522                                     const SCEV *LHS, const SCEV *RHS,
523                                     const SCEV *FoundLHS,
524                                     const SCEV *FoundRHS);
525
526    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
527    /// in the header of its containing loop, we know the loop executes a
528    /// constant number of times, and the PHI node is just a recurrence
529    /// involving constants, fold it.
530    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
531                                                const Loop *L);
532
533    /// isKnownPredicateWithRanges - Test if the given expression is known to
534    /// satisfy the condition described by Pred and the known constant ranges
535    /// of LHS and RHS.
536    ///
537    bool isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
538                                    const SCEV *LHS, const SCEV *RHS);
539
540    /// forgetMemoizedResults - Drop memoized information computed for S.
541    void forgetMemoizedResults(const SCEV *S);
542
543  public:
544    static char ID; // Pass identification, replacement for typeid
545    ScalarEvolution();
546
547    LLVMContext &getContext() const { return F->getContext(); }
548
549    /// isSCEVable - Test if values of the given type are analyzable within
550    /// the SCEV framework. This primarily includes integer types, and it
551    /// can optionally include pointer types if the ScalarEvolution class
552    /// has access to target-specific information.
553    bool isSCEVable(Type *Ty) const;
554
555    /// getTypeSizeInBits - Return the size in bits of the specified type,
556    /// for which isSCEVable must return true.
557    uint64_t getTypeSizeInBits(Type *Ty) const;
558
559    /// getEffectiveSCEVType - Return a type with the same bitwidth as
560    /// the given type and which represents how SCEV will treat the given
561    /// type, for which isSCEVable must return true. For pointer types,
562    /// this is the pointer-sized integer type.
563    Type *getEffectiveSCEVType(Type *Ty) const;
564
565    /// getSCEV - Return a SCEV expression for the full generality of the
566    /// specified expression.
567    const SCEV *getSCEV(Value *V);
568
569    const SCEV *getConstant(ConstantInt *V);
570    const SCEV *getConstant(const APInt& Val);
571    const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
572    const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty);
573    const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty);
574    const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty);
575    const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
576    const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
577                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
578    const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
579                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
580      SmallVector<const SCEV *, 2> Ops;
581      Ops.push_back(LHS);
582      Ops.push_back(RHS);
583      return getAddExpr(Ops, Flags);
584    }
585    const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
586                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
587      SmallVector<const SCEV *, 3> Ops;
588      Ops.push_back(Op0);
589      Ops.push_back(Op1);
590      Ops.push_back(Op2);
591      return getAddExpr(Ops, Flags);
592    }
593    const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
594                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
595    const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
596                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap)
597    {
598      SmallVector<const SCEV *, 2> Ops;
599      Ops.push_back(LHS);
600      Ops.push_back(RHS);
601      return getMulExpr(Ops, Flags);
602    }
603    const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
604                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
605      SmallVector<const SCEV *, 3> Ops;
606      Ops.push_back(Op0);
607      Ops.push_back(Op1);
608      Ops.push_back(Op2);
609      return getMulExpr(Ops, Flags);
610    }
611    const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
612    const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
613                              const Loop *L, SCEV::NoWrapFlags Flags);
614    const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
615                              const Loop *L, SCEV::NoWrapFlags Flags);
616    const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
617                              const Loop *L, SCEV::NoWrapFlags Flags) {
618      SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
619      return getAddRecExpr(NewOp, L, Flags);
620    }
621    const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
622    const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
623    const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
624    const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
625    const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
626    const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
627    const SCEV *getUnknown(Value *V);
628    const SCEV *getCouldNotCompute();
629
630    /// getSizeOfExpr - Return an expression for sizeof on the given type.
631    ///
632    const SCEV *getSizeOfExpr(Type *AllocTy);
633
634    /// getAlignOfExpr - Return an expression for alignof on the given type.
635    ///
636    const SCEV *getAlignOfExpr(Type *AllocTy);
637
638    /// getOffsetOfExpr - Return an expression for offsetof on the given field.
639    ///
640    const SCEV *getOffsetOfExpr(StructType *STy, unsigned FieldNo);
641
642    /// getOffsetOfExpr - Return an expression for offsetof on the given field.
643    ///
644    const SCEV *getOffsetOfExpr(Type *CTy, Constant *FieldNo);
645
646    /// getNegativeSCEV - Return the SCEV object corresponding to -V.
647    ///
648    const SCEV *getNegativeSCEV(const SCEV *V);
649
650    /// getNotSCEV - Return the SCEV object corresponding to ~V.
651    ///
652    const SCEV *getNotSCEV(const SCEV *V);
653
654    /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
655    const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
656                             SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
657
658    /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
659    /// of the input value to the specified type.  If the type must be
660    /// extended, it is zero extended.
661    const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty);
662
663    /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
664    /// of the input value to the specified type.  If the type must be
665    /// extended, it is sign extended.
666    const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty);
667
668    /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
669    /// the input value to the specified type.  If the type must be extended,
670    /// it is zero extended.  The conversion must not be narrowing.
671    const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
672
673    /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
674    /// the input value to the specified type.  If the type must be extended,
675    /// it is sign extended.  The conversion must not be narrowing.
676    const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
677
678    /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
679    /// the input value to the specified type. If the type must be extended,
680    /// it is extended with unspecified bits. The conversion must not be
681    /// narrowing.
682    const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
683
684    /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
685    /// input value to the specified type.  The conversion must not be
686    /// widening.
687    const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
688
689    /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
690    /// the types using zero-extension, and then perform a umax operation
691    /// with them.
692    const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
693                                           const SCEV *RHS);
694
695    /// getUMinFromMismatchedTypes - Promote the operands to the wider of
696    /// the types using zero-extension, and then perform a umin operation
697    /// with them.
698    const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
699                                           const SCEV *RHS);
700
701    /// getPointerBase - Transitively follow the chain of pointer-type operands
702    /// until reaching a SCEV that does not have a single pointer operand. This
703    /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
704    /// but corner cases do exist.
705    const SCEV *getPointerBase(const SCEV *V);
706
707    /// getSCEVAtScope - Return a SCEV expression for the specified value
708    /// at the specified scope in the program.  The L value specifies a loop
709    /// nest to evaluate the expression at, where null is the top-level or a
710    /// specified loop is immediately inside of the loop.
711    ///
712    /// This method can be used to compute the exit value for a variable defined
713    /// in a loop by querying what the value will hold in the parent loop.
714    ///
715    /// In the case that a relevant loop exit value cannot be computed, the
716    /// original value V is returned.
717    const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
718
719    /// getSCEVAtScope - This is a convenience function which does
720    /// getSCEVAtScope(getSCEV(V), L).
721    const SCEV *getSCEVAtScope(Value *V, const Loop *L);
722
723    /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
724    /// by a conditional between LHS and RHS.  This is used to help avoid max
725    /// expressions in loop trip counts, and to eliminate casts.
726    bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
727                                  const SCEV *LHS, const SCEV *RHS);
728
729    /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
730    /// protected by a conditional between LHS and RHS.  This is used to
731    /// to eliminate casts.
732    bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
733                                     const SCEV *LHS, const SCEV *RHS);
734
735    /// getSmallConstantTripCount - Returns the maximum trip count of this loop
736    /// as a normal unsigned value. Returns 0 if the trip count is unknown or
737    /// not constant. This "trip count" assumes that control exits via
738    /// ExitingBlock. More precisely, it is the number of times that control may
739    /// reach ExitingBlock before taking the branch. For loops with multiple
740    /// exits, it may not be the number times that the loop header executes if
741    /// the loop exits prematurely via another branch.
742    unsigned getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock);
743
744    /// getSmallConstantTripMultiple - Returns the largest constant divisor of
745    /// the trip count of this loop as a normal unsigned value, if
746    /// possible. This means that the actual trip count is always a multiple of
747    /// the returned value (don't forget the trip count could very well be zero
748    /// as well!). As explained in the comments for getSmallConstantTripCount,
749    /// this assumes that control exits the loop via ExitingBlock.
750    unsigned getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock);
751
752    // getExitCount - Get the expression for the number of loop iterations for
753    // which this loop is guaranteed not to exit via ExitingBlock. Otherwise
754    // return SCEVCouldNotCompute.
755    const SCEV *getExitCount(Loop *L, BasicBlock *ExitingBlock);
756
757    /// getBackedgeTakenCount - If the specified loop has a predictable
758    /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
759    /// object. The backedge-taken count is the number of times the loop header
760    /// will be branched to from within the loop. This is one less than the
761    /// trip count of the loop, since it doesn't count the first iteration,
762    /// when the header is branched to from outside the loop.
763    ///
764    /// Note that it is not valid to call this method on a loop without a
765    /// loop-invariant backedge-taken count (see
766    /// hasLoopInvariantBackedgeTakenCount).
767    ///
768    const SCEV *getBackedgeTakenCount(const Loop *L);
769
770    /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
771    /// return the least SCEV value that is known never to be less than the
772    /// actual backedge taken count.
773    const SCEV *getMaxBackedgeTakenCount(const Loop *L);
774
775    /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
776    /// has an analyzable loop-invariant backedge-taken count.
777    bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
778
779    /// forgetLoop - This method should be called by the client when it has
780    /// changed a loop in a way that may effect ScalarEvolution's ability to
781    /// compute a trip count, or if the loop is deleted.
782    void forgetLoop(const Loop *L);
783
784    /// forgetValue - This method should be called by the client when it has
785    /// changed a value in a way that may effect its value, or which may
786    /// disconnect it from a def-use chain linking it to a loop.
787    void forgetValue(Value *V);
788
789    /// GetMinTrailingZeros - Determine the minimum number of zero bits that S
790    /// is guaranteed to end in (at every loop iteration).  It is, at the same
791    /// time, the minimum number of times S is divisible by 2.  For example,
792    /// given {4,+,8} it returns 2.  If S is guaranteed to be 0, it returns the
793    /// bitwidth of S.
794    uint32_t GetMinTrailingZeros(const SCEV *S);
795
796    /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
797    ///
798    ConstantRange getUnsignedRange(const SCEV *S);
799
800    /// getSignedRange - Determine the signed range for a particular SCEV.
801    ///
802    ConstantRange getSignedRange(const SCEV *S);
803
804    /// isKnownNegative - Test if the given expression is known to be negative.
805    ///
806    bool isKnownNegative(const SCEV *S);
807
808    /// isKnownPositive - Test if the given expression is known to be positive.
809    ///
810    bool isKnownPositive(const SCEV *S);
811
812    /// isKnownNonNegative - Test if the given expression is known to be
813    /// non-negative.
814    ///
815    bool isKnownNonNegative(const SCEV *S);
816
817    /// isKnownNonPositive - Test if the given expression is known to be
818    /// non-positive.
819    ///
820    bool isKnownNonPositive(const SCEV *S);
821
822    /// isKnownNonZero - Test if the given expression is known to be
823    /// non-zero.
824    ///
825    bool isKnownNonZero(const SCEV *S);
826
827    /// isKnownPredicate - Test if the given expression is known to satisfy
828    /// the condition described by Pred, LHS, and RHS.
829    ///
830    bool isKnownPredicate(ICmpInst::Predicate Pred,
831                          const SCEV *LHS, const SCEV *RHS);
832
833    /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
834    /// predicate Pred. Return true iff any changes were made. If the
835    /// operands are provably equal or inequal, LHS and RHS are set to
836    /// the same value and Pred is set to either ICMP_EQ or ICMP_NE.
837    ///
838    bool SimplifyICmpOperands(ICmpInst::Predicate &Pred,
839                              const SCEV *&LHS,
840                              const SCEV *&RHS,
841                              unsigned Depth = 0);
842
843    /// getLoopDisposition - Return the "disposition" of the given SCEV with
844    /// respect to the given loop.
845    LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
846
847    /// isLoopInvariant - Return true if the value of the given SCEV is
848    /// unchanging in the specified loop.
849    bool isLoopInvariant(const SCEV *S, const Loop *L);
850
851    /// hasComputableLoopEvolution - Return true if the given SCEV changes value
852    /// in a known way in the specified loop.  This property being true implies
853    /// that the value is variant in the loop AND that we can emit an expression
854    /// to compute the value of the expression at any particular loop iteration.
855    bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
856
857    /// getLoopDisposition - Return the "disposition" of the given SCEV with
858    /// respect to the given block.
859    BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
860
861    /// dominates - Return true if elements that makes up the given SCEV
862    /// dominate the specified basic block.
863    bool dominates(const SCEV *S, const BasicBlock *BB);
864
865    /// properlyDominates - Return true if elements that makes up the given SCEV
866    /// properly dominate the specified basic block.
867    bool properlyDominates(const SCEV *S, const BasicBlock *BB);
868
869    /// hasOperand - Test whether the given SCEV has Op as a direct or
870    /// indirect operand.
871    bool hasOperand(const SCEV *S, const SCEV *Op) const;
872
873    virtual bool runOnFunction(Function &F);
874    virtual void releaseMemory();
875    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
876    virtual void print(raw_ostream &OS, const Module* = 0) const;
877
878  private:
879    FoldingSet<SCEV> UniqueSCEVs;
880    BumpPtrAllocator SCEVAllocator;
881
882    /// FirstUnknown - The head of a linked list of all SCEVUnknown
883    /// values that have been allocated. This is used by releaseMemory
884    /// to locate them all and call their destructors.
885    SCEVUnknown *FirstUnknown;
886  };
887}
888
889#endif
890