ScalarEvolution.h revision 6de29f8d960505421d61c80cdb738e16720b6c0e
1//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The ScalarEvolution class is an LLVM pass which can be used to analyze and
11// catagorize scalar expressions in loops.  It specializes in recognizing
12// general induction variables, representing them with the abstract and opaque
13// SCEV class.  Given this analysis, trip counts of loops and other important
14// properties can be obtained.
15//
16// This analysis is primarily useful for induction variable substitution and
17// strength reduction.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
22#define LLVM_ANALYSIS_SCALAREVOLUTION_H
23
24#include "llvm/Pass.h"
25#include "llvm/Analysis/LoopInfo.h"
26#include "llvm/Support/DataTypes.h"
27#include "llvm/Support/ValueHandle.h"
28#include "llvm/ADT/DenseMap.h"
29#include <iosfwd>
30
31namespace llvm {
32  class APInt;
33  class ConstantInt;
34  class Type;
35  class SCEVHandle;
36  class ScalarEvolution;
37  class TargetData;
38  template<> struct DenseMapInfo<SCEVHandle>;
39
40  /// SCEV - This class represents an analyzed expression in the program.  These
41  /// are reference-counted opaque objects that the client is not allowed to
42  /// do much with directly.
43  ///
44  class SCEV {
45    const unsigned SCEVType;      // The SCEV baseclass this node corresponds to
46    mutable unsigned RefCount;
47
48    friend class SCEVHandle;
49    friend class DenseMapInfo<SCEVHandle>;
50    void addRef() const { ++RefCount; }
51    void dropRef() const {
52      if (--RefCount == 0)
53        delete this;
54    }
55
56    SCEV(const SCEV &);            // DO NOT IMPLEMENT
57    void operator=(const SCEV &);  // DO NOT IMPLEMENT
58  protected:
59    virtual ~SCEV();
60  public:
61    explicit SCEV(unsigned SCEVTy) : SCEVType(SCEVTy), RefCount(0) {}
62
63    unsigned getSCEVType() const { return SCEVType; }
64
65    /// isLoopInvariant - Return true if the value of this SCEV is unchanging in
66    /// the specified loop.
67    virtual bool isLoopInvariant(const Loop *L) const = 0;
68
69    /// hasComputableLoopEvolution - Return true if this SCEV changes value in a
70    /// known way in the specified loop.  This property being true implies that
71    /// the value is variant in the loop AND that we can emit an expression to
72    /// compute the value of the expression at any particular loop iteration.
73    virtual bool hasComputableLoopEvolution(const Loop *L) const = 0;
74
75    /// getType - Return the LLVM type of this SCEV expression.
76    ///
77    virtual const Type *getType() const = 0;
78
79    /// isZero - Return true if the expression is a constant zero.
80    ///
81    bool isZero() const;
82
83    /// isOne - Return true if the expression is a constant one.
84    ///
85    bool isOne() const;
86
87    /// replaceSymbolicValuesWithConcrete - If this SCEV internally references
88    /// the symbolic value "Sym", construct and return a new SCEV that produces
89    /// the same value, but which uses the concrete value Conc instead of the
90    /// symbolic value.  If this SCEV does not use the symbolic value, it
91    /// returns itself.
92    virtual SCEVHandle
93    replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
94                                      const SCEVHandle &Conc,
95                                      ScalarEvolution &SE) const = 0;
96
97    /// dominates - Return true if elements that makes up this SCEV dominates
98    /// the specified basic block.
99    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const = 0;
100
101    /// print - Print out the internal representation of this scalar to the
102    /// specified stream.  This should really only be used for debugging
103    /// purposes.
104    virtual void print(raw_ostream &OS) const = 0;
105    void print(std::ostream &OS) const;
106    void print(std::ostream *OS) const { if (OS) print(*OS); }
107
108    /// dump - This method is used for debugging.
109    ///
110    void dump() const;
111  };
112
113  inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
114    S.print(OS);
115    return OS;
116  }
117
118  inline std::ostream &operator<<(std::ostream &OS, const SCEV &S) {
119    S.print(OS);
120    return OS;
121  }
122
123  /// SCEVCouldNotCompute - An object of this class is returned by queries that
124  /// could not be answered.  For example, if you ask for the number of
125  /// iterations of a linked-list traversal loop, you will get one of these.
126  /// None of the standard SCEV operations are valid on this class, it is just a
127  /// marker.
128  struct SCEVCouldNotCompute : public SCEV {
129    SCEVCouldNotCompute();
130    ~SCEVCouldNotCompute();
131
132    // None of these methods are valid for this object.
133    virtual bool isLoopInvariant(const Loop *L) const;
134    virtual const Type *getType() const;
135    virtual bool hasComputableLoopEvolution(const Loop *L) const;
136    virtual void print(raw_ostream &OS) const;
137    virtual SCEVHandle
138    replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
139                                      const SCEVHandle &Conc,
140                                      ScalarEvolution &SE) const;
141
142    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const {
143      return true;
144    }
145
146    /// Methods for support type inquiry through isa, cast, and dyn_cast:
147    static inline bool classof(const SCEVCouldNotCompute *S) { return true; }
148    static bool classof(const SCEV *S);
149  };
150
151  /// SCEVHandle - This class is used to maintain the SCEV object's refcounts,
152  /// freeing the objects when the last reference is dropped.
153  class SCEVHandle {
154    const SCEV *S;
155    SCEVHandle();  // DO NOT IMPLEMENT
156  public:
157    SCEVHandle(const SCEV *s) : S(s) {
158      assert(S && "Cannot create a handle to a null SCEV!");
159      S->addRef();
160    }
161    SCEVHandle(const SCEVHandle &RHS) : S(RHS.S) {
162      S->addRef();
163    }
164    ~SCEVHandle() { S->dropRef(); }
165
166    operator const SCEV*() const { return S; }
167
168    const SCEV &operator*() const { return *S; }
169    const SCEV *operator->() const { return S; }
170
171    bool operator==(const SCEV *RHS) const { return S == RHS; }
172    bool operator!=(const SCEV *RHS) const { return S != RHS; }
173
174    const SCEVHandle &operator=(SCEV *RHS) {
175      if (S != RHS) {
176        S->dropRef();
177        S = RHS;
178        S->addRef();
179      }
180      return *this;
181    }
182
183    const SCEVHandle &operator=(const SCEVHandle &RHS) {
184      if (S != RHS.S) {
185        S->dropRef();
186        S = RHS.S;
187        S->addRef();
188      }
189      return *this;
190    }
191  };
192
193  template<typename From> struct simplify_type;
194  template<> struct simplify_type<const SCEVHandle> {
195    typedef const SCEV* SimpleType;
196    static SimpleType getSimplifiedValue(const SCEVHandle &Node) {
197      return Node;
198    }
199  };
200  template<> struct simplify_type<SCEVHandle>
201    : public simplify_type<const SCEVHandle> {};
202
203  // Specialize DenseMapInfo for SCEVHandle so that SCEVHandle may be used
204  // as a key in DenseMaps.
205  template<>
206  struct DenseMapInfo<SCEVHandle> {
207    static inline SCEVHandle getEmptyKey() {
208      static SCEVCouldNotCompute Empty;
209      if (Empty.RefCount == 0)
210        Empty.addRef();
211      return &Empty;
212    }
213    static inline SCEVHandle getTombstoneKey() {
214      static SCEVCouldNotCompute Tombstone;
215      if (Tombstone.RefCount == 0)
216        Tombstone.addRef();
217      return &Tombstone;
218    }
219    static unsigned getHashValue(const SCEVHandle &Val) {
220      return DenseMapInfo<const SCEV *>::getHashValue(Val);
221    }
222    static bool isEqual(const SCEVHandle &LHS, const SCEVHandle &RHS) {
223      return LHS == RHS;
224    }
225    static bool isPod() { return false; }
226  };
227
228  /// ScalarEvolution - This class is the main scalar evolution driver.  Because
229  /// client code (intentionally) can't do much with the SCEV objects directly,
230  /// they must ask this class for services.
231  ///
232  class ScalarEvolution : public FunctionPass {
233    /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
234    /// notified whenever a Value is deleted.
235    class SCEVCallbackVH : public CallbackVH {
236      ScalarEvolution *SE;
237      virtual void deleted();
238      virtual void allUsesReplacedWith(Value *New);
239    public:
240      SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0);
241    };
242
243    friend class SCEVCallbackVH;
244    friend class SCEVExpander;
245
246    /// F - The function we are analyzing.
247    ///
248    Function *F;
249
250    /// LI - The loop information for the function we are currently analyzing.
251    ///
252    LoopInfo *LI;
253
254    /// TD - The target data information for the target we are targetting.
255    ///
256    TargetData *TD;
257
258    /// CouldNotCompute - This SCEV is used to represent unknown trip
259    /// counts and things.
260    SCEVHandle CouldNotCompute;
261
262    /// Scalars - This is a cache of the scalars we have analyzed so far.
263    ///
264    std::map<SCEVCallbackVH, SCEVHandle> Scalars;
265
266    /// BackedgeTakenInfo - Information about the backedge-taken count
267    /// of a loop. This currently inclues an exact count and a maximum count.
268    ///
269    struct BackedgeTakenInfo {
270      /// Exact - An expression indicating the exact backedge-taken count of
271      /// the loop if it is known, or a SCEVCouldNotCompute otherwise.
272      SCEVHandle Exact;
273
274      /// Exact - An expression indicating the least maximum backedge-taken
275      /// count of the loop that is known, or a SCEVCouldNotCompute.
276      SCEVHandle Max;
277
278      /*implicit*/ BackedgeTakenInfo(SCEVHandle exact) :
279        Exact(exact), Max(exact) {}
280
281      /*implicit*/ BackedgeTakenInfo(const SCEV *exact) :
282        Exact(exact), Max(exact) {}
283
284      BackedgeTakenInfo(SCEVHandle exact, SCEVHandle max) :
285        Exact(exact), Max(max) {}
286
287      /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
288      /// computed information, or whether it's all SCEVCouldNotCompute
289      /// values.
290      bool hasAnyInfo() const {
291        return !isa<SCEVCouldNotCompute>(Exact) ||
292               !isa<SCEVCouldNotCompute>(Max);
293      }
294    };
295
296    /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
297    /// this function as they are computed.
298    std::map<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
299
300    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
301    /// the PHI instructions that we attempt to compute constant evolutions for.
302    /// This allows us to avoid potentially expensive recomputation of these
303    /// properties.  An instruction maps to null if we are unable to compute its
304    /// exit value.
305    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
306
307    /// ValuesAtScopes - This map contains entries for all the instructions
308    /// that we attempt to compute getSCEVAtScope information for without
309    /// using SCEV techniques, which can be expensive.
310    std::map<Instruction *, std::map<const Loop *, Constant *> > ValuesAtScopes;
311
312    /// createSCEV - We know that there is no SCEV for the specified value.
313    /// Analyze the expression.
314    SCEVHandle createSCEV(Value *V);
315
316    /// createNodeForPHI - Provide the special handling we need to analyze PHI
317    /// SCEVs.
318    SCEVHandle createNodeForPHI(PHINode *PN);
319
320    /// createNodeForGEP - Provide the special handling we need to analyze GEP
321    /// SCEVs.
322    SCEVHandle createNodeForGEP(User *GEP);
323
324    /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
325    /// for the specified instruction and replaces any references to the
326    /// symbolic value SymName with the specified value.  This is used during
327    /// PHI resolution.
328    void ReplaceSymbolicValueWithConcrete(Instruction *I,
329                                          const SCEVHandle &SymName,
330                                          const SCEVHandle &NewVal);
331
332    /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
333    /// loop, lazily computing new values if the loop hasn't been analyzed
334    /// yet.
335    const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
336
337    /// ComputeBackedgeTakenCount - Compute the number of times the specified
338    /// loop will iterate.
339    BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
340
341    /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition
342    /// of 'icmp op load X, cst', try to see if we can compute the trip count.
343    SCEVHandle
344      ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI,
345                                                   Constant *RHS,
346                                                   const Loop *L,
347                                                   ICmpInst::Predicate p);
348
349    /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute
350    /// a constant number of times (the condition evolves only from constants),
351    /// try to evaluate a few iterations of the loop until we get the exit
352    /// condition gets a value of ExitWhen (true or false).  If we cannot
353    /// evaluate the trip count of the loop, return CouldNotCompute.
354    SCEVHandle ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond,
355                                                     bool ExitWhen);
356
357    /// HowFarToZero - Return the number of times a backedge comparing the
358    /// specified value to zero will execute.  If not computable, return
359    /// CouldNotCompute.
360    SCEVHandle HowFarToZero(const SCEV *V, const Loop *L);
361
362    /// HowFarToNonZero - Return the number of times a backedge checking the
363    /// specified value for nonzero will execute.  If not computable, return
364    /// CouldNotCompute.
365    SCEVHandle HowFarToNonZero(const SCEV *V, const Loop *L);
366
367    /// HowManyLessThans - Return the number of times a backedge containing the
368    /// specified less-than comparison will execute.  If not computable, return
369    /// CouldNotCompute. isSigned specifies whether the less-than is signed.
370    BackedgeTakenInfo HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
371                                       const Loop *L, bool isSigned);
372
373    /// getLoopPredecessor - If the given loop's header has exactly one unique
374    /// predecessor outside the loop, return it. Otherwise return null.
375    BasicBlock *getLoopPredecessor(const Loop *L);
376
377    /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
378    /// (which may not be an immediate predecessor) which has exactly one
379    /// successor from which BB is reachable, or null if no such block is
380    /// found.
381    BasicBlock* getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
382
383    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
384    /// in the header of its containing loop, we know the loop executes a
385    /// constant number of times, and the PHI node is just a recurrence
386    /// involving constants, fold it.
387    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
388                                                const Loop *L);
389
390    /// forgetLoopPHIs - Delete the memoized SCEVs associated with the
391    /// PHI nodes in the given loop. This is used when the trip count of
392    /// the loop may have changed.
393    void forgetLoopPHIs(const Loop *L);
394
395  public:
396    static char ID; // Pass identification, replacement for typeid
397    ScalarEvolution();
398
399    /// isSCEVable - Test if values of the given type are analyzable within
400    /// the SCEV framework. This primarily includes integer types, and it
401    /// can optionally include pointer types if the ScalarEvolution class
402    /// has access to target-specific information.
403    bool isSCEVable(const Type *Ty) const;
404
405    /// getTypeSizeInBits - Return the size in bits of the specified type,
406    /// for which isSCEVable must return true.
407    uint64_t getTypeSizeInBits(const Type *Ty) const;
408
409    /// getEffectiveSCEVType - Return a type with the same bitwidth as
410    /// the given type and which represents how SCEV will treat the given
411    /// type, for which isSCEVable must return true. For pointer types,
412    /// this is the pointer-sized integer type.
413    const Type *getEffectiveSCEVType(const Type *Ty) const;
414
415    /// getSCEV - Return a SCEV expression handle for the full generality of the
416    /// specified expression.
417    SCEVHandle getSCEV(Value *V);
418
419    SCEVHandle getConstant(ConstantInt *V);
420    SCEVHandle getConstant(const APInt& Val);
421    SCEVHandle getConstant(const Type *Ty, uint64_t V, bool isSigned = false);
422    SCEVHandle getTruncateExpr(const SCEVHandle &Op, const Type *Ty);
423    SCEVHandle getZeroExtendExpr(const SCEVHandle &Op, const Type *Ty);
424    SCEVHandle getSignExtendExpr(const SCEVHandle &Op, const Type *Ty);
425    SCEVHandle getAnyExtendExpr(const SCEVHandle &Op, const Type *Ty);
426    SCEVHandle getAddExpr(SmallVectorImpl<SCEVHandle> &Ops);
427    SCEVHandle getAddExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) {
428      SmallVector<SCEVHandle, 2> Ops;
429      Ops.push_back(LHS);
430      Ops.push_back(RHS);
431      return getAddExpr(Ops);
432    }
433    SCEVHandle getAddExpr(const SCEVHandle &Op0, const SCEVHandle &Op1,
434                          const SCEVHandle &Op2) {
435      SmallVector<SCEVHandle, 3> Ops;
436      Ops.push_back(Op0);
437      Ops.push_back(Op1);
438      Ops.push_back(Op2);
439      return getAddExpr(Ops);
440    }
441    SCEVHandle getMulExpr(SmallVectorImpl<SCEVHandle> &Ops);
442    SCEVHandle getMulExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) {
443      SmallVector<SCEVHandle, 2> Ops;
444      Ops.push_back(LHS);
445      Ops.push_back(RHS);
446      return getMulExpr(Ops);
447    }
448    SCEVHandle getUDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS);
449    SCEVHandle getAddRecExpr(const SCEVHandle &Start, const SCEVHandle &Step,
450                             const Loop *L);
451    SCEVHandle getAddRecExpr(SmallVectorImpl<SCEVHandle> &Operands,
452                             const Loop *L);
453    SCEVHandle getAddRecExpr(const SmallVectorImpl<SCEVHandle> &Operands,
454                             const Loop *L) {
455      SmallVector<SCEVHandle, 4> NewOp(Operands.begin(), Operands.end());
456      return getAddRecExpr(NewOp, L);
457    }
458    SCEVHandle getSMaxExpr(const SCEVHandle &LHS, const SCEVHandle &RHS);
459    SCEVHandle getSMaxExpr(SmallVectorImpl<SCEVHandle> &Operands);
460    SCEVHandle getUMaxExpr(const SCEVHandle &LHS, const SCEVHandle &RHS);
461    SCEVHandle getUMaxExpr(SmallVectorImpl<SCEVHandle> &Operands);
462    SCEVHandle getUnknown(Value *V);
463    SCEVHandle getCouldNotCompute();
464
465    /// getNegativeSCEV - Return the SCEV object corresponding to -V.
466    ///
467    SCEVHandle getNegativeSCEV(const SCEVHandle &V);
468
469    /// getNotSCEV - Return the SCEV object corresponding to ~V.
470    ///
471    SCEVHandle getNotSCEV(const SCEVHandle &V);
472
473    /// getMinusSCEV - Return LHS-RHS.
474    ///
475    SCEVHandle getMinusSCEV(const SCEVHandle &LHS,
476                            const SCEVHandle &RHS);
477
478    /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
479    /// of the input value to the specified type.  If the type must be
480    /// extended, it is zero extended.
481    SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty);
482
483    /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
484    /// of the input value to the specified type.  If the type must be
485    /// extended, it is sign extended.
486    SCEVHandle getTruncateOrSignExtend(const SCEVHandle &V, const Type *Ty);
487
488    /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
489    /// the input value to the specified type.  If the type must be extended,
490    /// it is zero extended.  The conversion must not be narrowing.
491    SCEVHandle getNoopOrZeroExtend(const SCEVHandle &V, const Type *Ty);
492
493    /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
494    /// the input value to the specified type.  If the type must be extended,
495    /// it is sign extended.  The conversion must not be narrowing.
496    SCEVHandle getNoopOrSignExtend(const SCEVHandle &V, const Type *Ty);
497
498    /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
499    /// the input value to the specified type. If the type must be extended,
500    /// it is extended with unspecified bits. The conversion must not be
501    /// narrowing.
502    SCEVHandle getNoopOrAnyExtend(const SCEVHandle &V, const Type *Ty);
503
504    /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
505    /// input value to the specified type.  The conversion must not be
506    /// widening.
507    SCEVHandle getTruncateOrNoop(const SCEVHandle &V, const Type *Ty);
508
509    /// getIntegerSCEV - Given an integer or FP type, create a constant for the
510    /// specified signed integer value and return a SCEV for the constant.
511    SCEVHandle getIntegerSCEV(int Val, const Type *Ty);
512
513    /// hasSCEV - Return true if the SCEV for this value has already been
514    /// computed.
515    bool hasSCEV(Value *V) const;
516
517    /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
518    /// the specified value.
519    void setSCEV(Value *V, const SCEVHandle &H);
520
521    /// getSCEVAtScope - Return a SCEV expression handle for the specified value
522    /// at the specified scope in the program.  The L value specifies a loop
523    /// nest to evaluate the expression at, where null is the top-level or a
524    /// specified loop is immediately inside of the loop.
525    ///
526    /// This method can be used to compute the exit value for a variable defined
527    /// in a loop by querying what the value will hold in the parent loop.
528    ///
529    /// In the case that a relevant loop exit value cannot be computed, the
530    /// original value V is returned.
531    SCEVHandle getSCEVAtScope(const SCEV *S, const Loop *L);
532
533    /// getSCEVAtScope - This is a convenience function which does
534    /// getSCEVAtScope(getSCEV(V), L).
535    SCEVHandle getSCEVAtScope(Value *V, const Loop *L);
536
537    /// isLoopGuardedByCond - Test whether entry to the loop is protected by
538    /// a conditional between LHS and RHS.  This is used to help avoid max
539    /// expressions in loop trip counts.
540    bool isLoopGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
541                             const SCEV *LHS, const SCEV *RHS);
542
543    /// getBackedgeTakenCount - If the specified loop has a predictable
544    /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
545    /// object. The backedge-taken count is the number of times the loop header
546    /// will be branched to from within the loop. This is one less than the
547    /// trip count of the loop, since it doesn't count the first iteration,
548    /// when the header is branched to from outside the loop.
549    ///
550    /// Note that it is not valid to call this method on a loop without a
551    /// loop-invariant backedge-taken count (see
552    /// hasLoopInvariantBackedgeTakenCount).
553    ///
554    SCEVHandle getBackedgeTakenCount(const Loop *L);
555
556    /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
557    /// return the least SCEV value that is known never to be less than the
558    /// actual backedge taken count.
559    SCEVHandle getMaxBackedgeTakenCount(const Loop *L);
560
561    /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
562    /// has an analyzable loop-invariant backedge-taken count.
563    bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
564
565    /// forgetLoopBackedgeTakenCount - This method should be called by the
566    /// client when it has changed a loop in a way that may effect
567    /// ScalarEvolution's ability to compute a trip count, or if the loop
568    /// is deleted.
569    void forgetLoopBackedgeTakenCount(const Loop *L);
570
571    virtual bool runOnFunction(Function &F);
572    virtual void releaseMemory();
573    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
574    void print(raw_ostream &OS, const Module* = 0) const;
575    virtual void print(std::ostream &OS, const Module* = 0) const;
576    void print(std::ostream *OS, const Module* M = 0) const {
577      if (OS) print(*OS, M);
578    }
579  };
580}
581
582#endif
583