ScalarEvolution.h revision 70a1fe704831f9b842be0b2a2af5f7082b0e540c
1//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The ScalarEvolution class is an LLVM pass which can be used to analyze and
11// catagorize scalar expressions in loops.  It specializes in recognizing
12// general induction variables, representing them with the abstract and opaque
13// SCEV class.  Given this analysis, trip counts of loops and other important
14// properties can be obtained.
15//
16// This analysis is primarily useful for induction variable substitution and
17// strength reduction.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
22#define LLVM_ANALYSIS_SCALAREVOLUTION_H
23
24#include "llvm/Pass.h"
25#include "llvm/Analysis/LoopInfo.h"
26#include "llvm/Support/DataTypes.h"
27#include "llvm/Support/ValueHandle.h"
28#include <iosfwd>
29
30namespace llvm {
31  class APInt;
32  class ConstantInt;
33  class Type;
34  class SCEVHandle;
35  class ScalarEvolution;
36  class TargetData;
37
38  /// SCEV - This class represent an analyzed expression in the program.  These
39  /// are reference counted opaque objects that the client is not allowed to
40  /// do much with directly.
41  ///
42  class SCEV {
43    const unsigned SCEVType;      // The SCEV baseclass this node corresponds to
44    mutable unsigned RefCount;
45
46    friend class SCEVHandle;
47    void addRef() const { ++RefCount; }
48    void dropRef() const {
49      if (--RefCount == 0)
50        delete this;
51    }
52
53    SCEV(const SCEV &);            // DO NOT IMPLEMENT
54    void operator=(const SCEV &);  // DO NOT IMPLEMENT
55  protected:
56    virtual ~SCEV();
57  public:
58    explicit SCEV(unsigned SCEVTy) : SCEVType(SCEVTy), RefCount(0) {}
59
60    unsigned getSCEVType() const { return SCEVType; }
61
62    /// isLoopInvariant - Return true if the value of this SCEV is unchanging in
63    /// the specified loop.
64    virtual bool isLoopInvariant(const Loop *L) const = 0;
65
66    /// hasComputableLoopEvolution - Return true if this SCEV changes value in a
67    /// known way in the specified loop.  This property being true implies that
68    /// the value is variant in the loop AND that we can emit an expression to
69    /// compute the value of the expression at any particular loop iteration.
70    virtual bool hasComputableLoopEvolution(const Loop *L) const = 0;
71
72    /// getType - Return the LLVM type of this SCEV expression.
73    ///
74    virtual const Type *getType() const = 0;
75
76    /// isZero - Return true if the expression is a constant zero.
77    ///
78    bool isZero() const;
79
80    /// isOne - Return true if the expression is a constant one.
81    ///
82    bool isOne() const;
83
84    /// replaceSymbolicValuesWithConcrete - If this SCEV internally references
85    /// the symbolic value "Sym", construct and return a new SCEV that produces
86    /// the same value, but which uses the concrete value Conc instead of the
87    /// symbolic value.  If this SCEV does not use the symbolic value, it
88    /// returns itself.
89    virtual SCEVHandle
90    replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
91                                      const SCEVHandle &Conc,
92                                      ScalarEvolution &SE) const = 0;
93
94    /// dominates - Return true if elements that makes up this SCEV dominates
95    /// the specified basic block.
96    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const = 0;
97
98    /// print - Print out the internal representation of this scalar to the
99    /// specified stream.  This should really only be used for debugging
100    /// purposes.
101    virtual void print(raw_ostream &OS) const = 0;
102    void print(std::ostream &OS) const;
103    void print(std::ostream *OS) const { if (OS) print(*OS); }
104
105    /// dump - This method is used for debugging.
106    ///
107    void dump() const;
108  };
109
110  inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
111    S.print(OS);
112    return OS;
113  }
114
115  inline std::ostream &operator<<(std::ostream &OS, const SCEV &S) {
116    S.print(OS);
117    return OS;
118  }
119
120  /// SCEVCouldNotCompute - An object of this class is returned by queries that
121  /// could not be answered.  For example, if you ask for the number of
122  /// iterations of a linked-list traversal loop, you will get one of these.
123  /// None of the standard SCEV operations are valid on this class, it is just a
124  /// marker.
125  struct SCEVCouldNotCompute : public SCEV {
126    SCEVCouldNotCompute();
127    ~SCEVCouldNotCompute();
128
129    // None of these methods are valid for this object.
130    virtual bool isLoopInvariant(const Loop *L) const;
131    virtual const Type *getType() const;
132    virtual bool hasComputableLoopEvolution(const Loop *L) const;
133    virtual void print(raw_ostream &OS) const;
134    virtual SCEVHandle
135    replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
136                                      const SCEVHandle &Conc,
137                                      ScalarEvolution &SE) const;
138
139    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const {
140      return true;
141    }
142
143    /// Methods for support type inquiry through isa, cast, and dyn_cast:
144    static inline bool classof(const SCEVCouldNotCompute *S) { return true; }
145    static bool classof(const SCEV *S);
146  };
147
148  /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
149  /// notified whenever a Value is deleted.
150  class SCEVCallbackVH : public CallbackVH {
151    ScalarEvolution *SE;
152    virtual void deleted();
153    virtual void allUsesReplacedWith(Value *New);
154  public:
155    SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0);
156  };
157
158  /// SCEVHandle - This class is used to maintain the SCEV object's refcounts,
159  /// freeing the objects when the last reference is dropped.
160  class SCEVHandle {
161    const SCEV *S;
162    SCEVHandle();  // DO NOT IMPLEMENT
163  public:
164    SCEVHandle(const SCEV *s) : S(s) {
165      assert(S && "Cannot create a handle to a null SCEV!");
166      S->addRef();
167    }
168    SCEVHandle(const SCEVHandle &RHS) : S(RHS.S) {
169      S->addRef();
170    }
171    ~SCEVHandle() { S->dropRef(); }
172
173    operator const SCEV*() const { return S; }
174
175    const SCEV &operator*() const { return *S; }
176    const SCEV *operator->() const { return S; }
177
178    bool operator==(const SCEV *RHS) const { return S == RHS; }
179    bool operator!=(const SCEV *RHS) const { return S != RHS; }
180
181    const SCEVHandle &operator=(SCEV *RHS) {
182      if (S != RHS) {
183        S->dropRef();
184        S = RHS;
185        S->addRef();
186      }
187      return *this;
188    }
189
190    const SCEVHandle &operator=(const SCEVHandle &RHS) {
191      if (S != RHS.S) {
192        S->dropRef();
193        S = RHS.S;
194        S->addRef();
195      }
196      return *this;
197    }
198  };
199
200  template<typename From> struct simplify_type;
201  template<> struct simplify_type<const SCEVHandle> {
202    typedef const SCEV* SimpleType;
203    static SimpleType getSimplifiedValue(const SCEVHandle &Node) {
204      return Node;
205    }
206  };
207  template<> struct simplify_type<SCEVHandle>
208    : public simplify_type<const SCEVHandle> {};
209
210  /// ScalarEvolution - This class is the main scalar evolution driver.  Because
211  /// client code (intentionally) can't do much with the SCEV objects directly,
212  /// they must ask this class for services.
213  ///
214  class ScalarEvolution : public FunctionPass {
215    friend class SCEVCallbackVH;
216
217    /// F - The function we are analyzing.
218    ///
219    Function *F;
220
221    /// LI - The loop information for the function we are currently analyzing.
222    ///
223    LoopInfo *LI;
224
225    /// TD - The target data information for the target we are targetting.
226    ///
227    TargetData *TD;
228
229    /// UnknownValue - This SCEV is used to represent unknown trip counts and
230    /// things.
231    SCEVHandle UnknownValue;
232
233    /// Scalars - This is a cache of the scalars we have analyzed so far.
234    ///
235    std::map<SCEVCallbackVH, SCEVHandle> Scalars;
236
237    /// BackedgeTakenInfo - Information about the backedge-taken count
238    /// of a loop. This currently inclues an exact count and a maximum count.
239    ///
240    struct BackedgeTakenInfo {
241      /// Exact - An expression indicating the exact backedge-taken count of
242      /// the loop if it is known, or a SCEVCouldNotCompute otherwise.
243      SCEVHandle Exact;
244
245      /// Exact - An expression indicating the least maximum backedge-taken
246      /// count of the loop that is known, or a SCEVCouldNotCompute.
247      SCEVHandle Max;
248
249      /*implicit*/ BackedgeTakenInfo(SCEVHandle exact) :
250        Exact(exact), Max(exact) {}
251
252      /*implicit*/ BackedgeTakenInfo(const SCEV *exact) :
253        Exact(exact), Max(exact) {}
254
255      BackedgeTakenInfo(SCEVHandle exact, SCEVHandle max) :
256        Exact(exact), Max(max) {}
257
258      /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
259      /// computed information, or whether it's all SCEVCouldNotCompute
260      /// values.
261      bool hasAnyInfo() const {
262        return !isa<SCEVCouldNotCompute>(Exact) ||
263               !isa<SCEVCouldNotCompute>(Max);
264      }
265    };
266
267    /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
268    /// this function as they are computed.
269    std::map<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
270
271    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
272    /// the PHI instructions that we attempt to compute constant evolutions for.
273    /// This allows us to avoid potentially expensive recomputation of these
274    /// properties.  An instruction maps to null if we are unable to compute its
275    /// exit value.
276    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
277
278    /// ValuesAtScopes - This map contains entries for all the instructions
279    /// that we attempt to compute getSCEVAtScope information for without
280    /// using SCEV techniques, which can be expensive.
281    std::map<Instruction *, std::map<const Loop *, Constant *> > ValuesAtScopes;
282
283    /// createSCEV - We know that there is no SCEV for the specified value.
284    /// Analyze the expression.
285    SCEVHandle createSCEV(Value *V);
286
287    /// createNodeForPHI - Provide the special handling we need to analyze PHI
288    /// SCEVs.
289    SCEVHandle createNodeForPHI(PHINode *PN);
290
291    /// createNodeForGEP - Provide the special handling we need to analyze GEP
292    /// SCEVs.
293    SCEVHandle createNodeForGEP(User *GEP);
294
295    /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
296    /// for the specified instruction and replaces any references to the
297    /// symbolic value SymName with the specified value.  This is used during
298    /// PHI resolution.
299    void ReplaceSymbolicValueWithConcrete(Instruction *I,
300                                          const SCEVHandle &SymName,
301                                          const SCEVHandle &NewVal);
302
303    /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
304    /// loop, lazily computing new values if the loop hasn't been analyzed
305    /// yet.
306    const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
307
308    /// ComputeBackedgeTakenCount - Compute the number of times the specified
309    /// loop will iterate.
310    BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
311
312    /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition
313    /// of 'icmp op load X, cst', try to see if we can compute the trip count.
314    SCEVHandle
315      ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI,
316                                                   Constant *RHS,
317                                                   const Loop *L,
318                                                   ICmpInst::Predicate p);
319
320    /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute
321    /// a constant number of times (the condition evolves only from constants),
322    /// try to evaluate a few iterations of the loop until we get the exit
323    /// condition gets a value of ExitWhen (true or false).  If we cannot
324    /// evaluate the trip count of the loop, return UnknownValue.
325    SCEVHandle ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond,
326                                                     bool ExitWhen);
327
328    /// HowFarToZero - Return the number of times a backedge comparing the
329    /// specified value to zero will execute.  If not computable, return
330    /// UnknownValue.
331    SCEVHandle HowFarToZero(const SCEV *V, const Loop *L);
332
333    /// HowFarToNonZero - Return the number of times a backedge checking the
334    /// specified value for nonzero will execute.  If not computable, return
335    /// UnknownValue.
336    SCEVHandle HowFarToNonZero(const SCEV *V, const Loop *L);
337
338    /// HowManyLessThans - Return the number of times a backedge containing the
339    /// specified less-than comparison will execute.  If not computable, return
340    /// UnknownValue. isSigned specifies whether the less-than is signed.
341    BackedgeTakenInfo HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
342                                       const Loop *L, bool isSigned);
343
344    /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
345    /// (which may not be an immediate predecessor) which has exactly one
346    /// successor from which BB is reachable, or null if no such block is
347    /// found.
348    BasicBlock* getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
349
350    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
351    /// in the header of its containing loop, we know the loop executes a
352    /// constant number of times, and the PHI node is just a recurrence
353    /// involving constants, fold it.
354    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
355                                                const Loop *L);
356
357    /// forgetLoopPHIs - Delete the memoized SCEVs associated with the
358    /// PHI nodes in the given loop. This is used when the trip count of
359    /// the loop may have changed.
360    void forgetLoopPHIs(const Loop *L);
361
362  public:
363    static char ID; // Pass identification, replacement for typeid
364    ScalarEvolution();
365
366    /// isSCEVable - Test if values of the given type are analyzable within
367    /// the SCEV framework. This primarily includes integer types, and it
368    /// can optionally include pointer types if the ScalarEvolution class
369    /// has access to target-specific information.
370    bool isSCEVable(const Type *Ty) const;
371
372    /// getTypeSizeInBits - Return the size in bits of the specified type,
373    /// for which isSCEVable must return true.
374    uint64_t getTypeSizeInBits(const Type *Ty) const;
375
376    /// getEffectiveSCEVType - Return a type with the same bitwidth as
377    /// the given type and which represents how SCEV will treat the given
378    /// type, for which isSCEVable must return true. For pointer types,
379    /// this is the pointer-sized integer type.
380    const Type *getEffectiveSCEVType(const Type *Ty) const;
381
382    /// getSCEV - Return a SCEV expression handle for the full generality of the
383    /// specified expression.
384    SCEVHandle getSCEV(Value *V);
385
386    SCEVHandle getConstant(ConstantInt *V);
387    SCEVHandle getConstant(const APInt& Val);
388    SCEVHandle getTruncateExpr(const SCEVHandle &Op, const Type *Ty);
389    SCEVHandle getZeroExtendExpr(const SCEVHandle &Op, const Type *Ty);
390    SCEVHandle getSignExtendExpr(const SCEVHandle &Op, const Type *Ty);
391    SCEVHandle getAddExpr(std::vector<SCEVHandle> &Ops);
392    SCEVHandle getAddExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) {
393      std::vector<SCEVHandle> Ops;
394      Ops.push_back(LHS);
395      Ops.push_back(RHS);
396      return getAddExpr(Ops);
397    }
398    SCEVHandle getAddExpr(const SCEVHandle &Op0, const SCEVHandle &Op1,
399                          const SCEVHandle &Op2) {
400      std::vector<SCEVHandle> Ops;
401      Ops.push_back(Op0);
402      Ops.push_back(Op1);
403      Ops.push_back(Op2);
404      return getAddExpr(Ops);
405    }
406    SCEVHandle getMulExpr(std::vector<SCEVHandle> &Ops);
407    SCEVHandle getMulExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) {
408      std::vector<SCEVHandle> Ops;
409      Ops.push_back(LHS);
410      Ops.push_back(RHS);
411      return getMulExpr(Ops);
412    }
413    SCEVHandle getUDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS);
414    SCEVHandle getAddRecExpr(const SCEVHandle &Start, const SCEVHandle &Step,
415                             const Loop *L);
416    SCEVHandle getAddRecExpr(std::vector<SCEVHandle> &Operands,
417                             const Loop *L);
418    SCEVHandle getAddRecExpr(const std::vector<SCEVHandle> &Operands,
419                             const Loop *L) {
420      std::vector<SCEVHandle> NewOp(Operands);
421      return getAddRecExpr(NewOp, L);
422    }
423    SCEVHandle getSMaxExpr(const SCEVHandle &LHS, const SCEVHandle &RHS);
424    SCEVHandle getSMaxExpr(std::vector<SCEVHandle> Operands);
425    SCEVHandle getUMaxExpr(const SCEVHandle &LHS, const SCEVHandle &RHS);
426    SCEVHandle getUMaxExpr(std::vector<SCEVHandle> Operands);
427    SCEVHandle getUnknown(Value *V);
428    SCEVHandle getCouldNotCompute();
429
430    /// getNegativeSCEV - Return the SCEV object corresponding to -V.
431    ///
432    SCEVHandle getNegativeSCEV(const SCEVHandle &V);
433
434    /// getNotSCEV - Return the SCEV object corresponding to ~V.
435    ///
436    SCEVHandle getNotSCEV(const SCEVHandle &V);
437
438    /// getMinusSCEV - Return LHS-RHS.
439    ///
440    SCEVHandle getMinusSCEV(const SCEVHandle &LHS,
441                            const SCEVHandle &RHS);
442
443    /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
444    /// of the input value to the specified type.  If the type must be
445    /// extended, it is zero extended.
446    SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty);
447
448    /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
449    /// of the input value to the specified type.  If the type must be
450    /// extended, it is sign extended.
451    SCEVHandle getTruncateOrSignExtend(const SCEVHandle &V, const Type *Ty);
452
453    /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
454    /// the input value to the specified type.  If the type must be extended,
455    /// it is zero extended.  The conversion must not be narrowing.
456    SCEVHandle getNoopOrZeroExtend(const SCEVHandle &V, const Type *Ty);
457
458    /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
459    /// the input value to the specified type.  If the type must be extended,
460    /// it is sign extended.  The conversion must not be narrowing.
461    SCEVHandle getNoopOrSignExtend(const SCEVHandle &V, const Type *Ty);
462
463    /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
464    /// input value to the specified type.  The conversion must not be
465    /// widening.
466    SCEVHandle getTruncateOrNoop(const SCEVHandle &V, const Type *Ty);
467
468    /// getIntegerSCEV - Given an integer or FP type, create a constant for the
469    /// specified signed integer value and return a SCEV for the constant.
470    SCEVHandle getIntegerSCEV(int Val, const Type *Ty);
471
472    /// hasSCEV - Return true if the SCEV for this value has already been
473    /// computed.
474    bool hasSCEV(Value *V) const;
475
476    /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
477    /// the specified value.
478    void setSCEV(Value *V, const SCEVHandle &H);
479
480    /// getSCEVAtScope - Return a SCEV expression handle for the specified value
481    /// at the specified scope in the program.  The L value specifies a loop
482    /// nest to evaluate the expression at, where null is the top-level or a
483    /// specified loop is immediately inside of the loop.
484    ///
485    /// This method can be used to compute the exit value for a variable defined
486    /// in a loop by querying what the value will hold in the parent loop.
487    ///
488    /// If this value is not computable at this scope, a SCEVCouldNotCompute
489    /// object is returned.
490    SCEVHandle getSCEVAtScope(const SCEV *S, const Loop *L);
491
492    /// getSCEVAtScope - This is a convenience function which does
493    /// getSCEVAtScope(getSCEV(V), L).
494    SCEVHandle getSCEVAtScope(Value *V, const Loop *L);
495
496    /// isLoopGuardedByCond - Test whether entry to the loop is protected by
497    /// a conditional between LHS and RHS.  This is used to help avoid max
498    /// expressions in loop trip counts.
499    bool isLoopGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
500                             const SCEV *LHS, const SCEV *RHS);
501
502    /// getBackedgeTakenCount - If the specified loop has a predictable
503    /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
504    /// object. The backedge-taken count is the number of times the loop header
505    /// will be branched to from within the loop. This is one less than the
506    /// trip count of the loop, since it doesn't count the first iteration,
507    /// when the header is branched to from outside the loop.
508    ///
509    /// Note that it is not valid to call this method on a loop without a
510    /// loop-invariant backedge-taken count (see
511    /// hasLoopInvariantBackedgeTakenCount).
512    ///
513    SCEVHandle getBackedgeTakenCount(const Loop *L);
514
515    /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
516    /// return the least SCEV value that is known never to be less than the
517    /// actual backedge taken count.
518    SCEVHandle getMaxBackedgeTakenCount(const Loop *L);
519
520    /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
521    /// has an analyzable loop-invariant backedge-taken count.
522    bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
523
524    /// forgetLoopBackedgeTakenCount - This method should be called by the
525    /// client when it has changed a loop in a way that may effect
526    /// ScalarEvolution's ability to compute a trip count, or if the loop
527    /// is deleted.
528    void forgetLoopBackedgeTakenCount(const Loop *L);
529
530    virtual bool runOnFunction(Function &F);
531    virtual void releaseMemory();
532    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
533    void print(raw_ostream &OS, const Module* = 0) const;
534    virtual void print(std::ostream &OS, const Module* = 0) const;
535    void print(std::ostream *OS, const Module* M = 0) const {
536      if (OS) print(*OS, M);
537    }
538  };
539}
540
541#endif
542