ScalarEvolution.h revision 9c9fcfc719158a46cb2e41b66d7dc1a63cd48d74
1//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The ScalarEvolution class is an LLVM pass which can be used to analyze and
11// categorize scalar expressions in loops.  It specializes in recognizing
12// general induction variables, representing them with the abstract and opaque
13// SCEV class.  Given this analysis, trip counts of loops and other important
14// properties can be obtained.
15//
16// This analysis is primarily useful for induction variable substitution and
17// strength reduction.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
22#define LLVM_ANALYSIS_SCALAREVOLUTION_H
23
24#include "llvm/Pass.h"
25#include "llvm/Instructions.h"
26#include "llvm/Function.h"
27#include "llvm/System/DataTypes.h"
28#include "llvm/Support/ValueHandle.h"
29#include "llvm/Support/Allocator.h"
30#include "llvm/Support/ConstantRange.h"
31#include "llvm/ADT/FoldingSet.h"
32#include "llvm/ADT/DenseMap.h"
33#include <map>
34
35namespace llvm {
36  class APInt;
37  class Constant;
38  class ConstantInt;
39  class DominatorTree;
40  class Type;
41  class ScalarEvolution;
42  class TargetData;
43  class LLVMContext;
44  class Loop;
45  class LoopInfo;
46  class Operator;
47  class SCEVUnknown;
48  class SCEV;
49  template<> struct FoldingSetTrait<SCEV>;
50
51  /// SCEV - This class represents an analyzed expression in the program.  These
52  /// are opaque objects that the client is not allowed to do much with
53  /// directly.
54  ///
55  class SCEV : public FoldingSetNode {
56    friend struct FoldingSetTrait<SCEV>;
57
58    /// FastID - A reference to an Interned FoldingSetNodeID for this node.
59    /// The ScalarEvolution's BumpPtrAllocator holds the data.
60    FoldingSetNodeIDRef FastID;
61
62    // The SCEV baseclass this node corresponds to
63    const unsigned short SCEVType;
64
65  protected:
66    /// SubclassData - This field is initialized to zero and may be used in
67    /// subclasses to store miscellaneous information.
68    unsigned short SubclassData;
69
70  private:
71    SCEV(const SCEV &);            // DO NOT IMPLEMENT
72    void operator=(const SCEV &);  // DO NOT IMPLEMENT
73
74  public:
75    explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) :
76      FastID(ID), SCEVType(SCEVTy), SubclassData(0) {}
77
78    unsigned getSCEVType() const { return SCEVType; }
79
80    /// getType - Return the LLVM type of this SCEV expression.
81    ///
82    const Type *getType() const;
83
84    /// isZero - Return true if the expression is a constant zero.
85    ///
86    bool isZero() const;
87
88    /// isOne - Return true if the expression is a constant one.
89    ///
90    bool isOne() const;
91
92    /// isAllOnesValue - Return true if the expression is a constant
93    /// all-ones value.
94    ///
95    bool isAllOnesValue() const;
96
97    /// print - Print out the internal representation of this scalar to the
98    /// specified stream.  This should really only be used for debugging
99    /// purposes.
100    void print(raw_ostream &OS) const;
101
102    /// dump - This method is used for debugging.
103    ///
104    void dump() const;
105  };
106
107  // Specialize FoldingSetTrait for SCEV to avoid needing to compute
108  // temporary FoldingSetNodeID values.
109  template<> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
110    static void Profile(const SCEV &X, FoldingSetNodeID& ID) {
111      ID = X.FastID;
112    }
113    static bool Equals(const SCEV &X, const FoldingSetNodeID &ID,
114                       FoldingSetNodeID &TempID) {
115      return ID == X.FastID;
116    }
117    static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
118      return X.FastID.ComputeHash();
119    }
120  };
121
122  inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
123    S.print(OS);
124    return OS;
125  }
126
127  /// SCEVCouldNotCompute - An object of this class is returned by queries that
128  /// could not be answered.  For example, if you ask for the number of
129  /// iterations of a linked-list traversal loop, you will get one of these.
130  /// None of the standard SCEV operations are valid on this class, it is just a
131  /// marker.
132  struct SCEVCouldNotCompute : public SCEV {
133    SCEVCouldNotCompute();
134
135    /// Methods for support type inquiry through isa, cast, and dyn_cast:
136    static inline bool classof(const SCEVCouldNotCompute *S) { return true; }
137    static bool classof(const SCEV *S);
138  };
139
140  /// ScalarEvolution - This class is the main scalar evolution driver.  Because
141  /// client code (intentionally) can't do much with the SCEV objects directly,
142  /// they must ask this class for services.
143  ///
144  class ScalarEvolution : public FunctionPass {
145  public:
146    /// LoopDisposition - An enum describing the relationship between a
147    /// SCEV and a loop.
148    enum LoopDisposition {
149      LoopVariant,    ///< The SCEV is loop-variant (unknown).
150      LoopInvariant,  ///< The SCEV is loop-invariant.
151      LoopComputable  ///< The SCEV varies predictably with the loop.
152    };
153
154    /// BlockDisposition - An enum describing the relationship between a
155    /// SCEV and a basic block.
156    enum BlockDisposition {
157      DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
158      DominatesBlock,        ///< The SCEV dominates the block.
159      ProperlyDominatesBlock ///< The SCEV properly dominates the block.
160    };
161
162  private:
163    /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
164    /// notified whenever a Value is deleted.
165    class SCEVCallbackVH : public CallbackVH {
166      ScalarEvolution *SE;
167      virtual void deleted();
168      virtual void allUsesReplacedWith(Value *New);
169    public:
170      SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0);
171    };
172
173    friend class SCEVCallbackVH;
174    friend class SCEVExpander;
175    friend class SCEVUnknown;
176
177    /// F - The function we are analyzing.
178    ///
179    Function *F;
180
181    /// LI - The loop information for the function we are currently analyzing.
182    ///
183    LoopInfo *LI;
184
185    /// TD - The target data information for the target we are targeting.
186    ///
187    TargetData *TD;
188
189    /// DT - The dominator tree.
190    ///
191    DominatorTree *DT;
192
193    /// CouldNotCompute - This SCEV is used to represent unknown trip
194    /// counts and things.
195    SCEVCouldNotCompute CouldNotCompute;
196
197    /// ValueExprMapType - The typedef for ValueExprMap.
198    ///
199    typedef DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *> >
200      ValueExprMapType;
201
202    /// ValueExprMap - This is a cache of the values we have analyzed so far.
203    ///
204    ValueExprMapType ValueExprMap;
205
206    /// BackedgeTakenInfo - Information about the backedge-taken count
207    /// of a loop. This currently includes an exact count and a maximum count.
208    ///
209    struct BackedgeTakenInfo {
210      /// Exact - An expression indicating the exact backedge-taken count of
211      /// the loop if it is known, or a SCEVCouldNotCompute otherwise.
212      const SCEV *Exact;
213
214      /// Max - An expression indicating the least maximum backedge-taken
215      /// count of the loop that is known, or a SCEVCouldNotCompute.
216      const SCEV *Max;
217
218      /*implicit*/ BackedgeTakenInfo(const SCEV *exact) :
219        Exact(exact), Max(exact) {}
220
221      BackedgeTakenInfo(const SCEV *exact, const SCEV *max) :
222        Exact(exact), Max(max) {}
223
224      /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
225      /// computed information, or whether it's all SCEVCouldNotCompute
226      /// values.
227      bool hasAnyInfo() const {
228        return !isa<SCEVCouldNotCompute>(Exact) ||
229               !isa<SCEVCouldNotCompute>(Max);
230      }
231    };
232
233    /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
234    /// this function as they are computed.
235    std::map<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
236
237    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
238    /// the PHI instructions that we attempt to compute constant evolutions for.
239    /// This allows us to avoid potentially expensive recomputation of these
240    /// properties.  An instruction maps to null if we are unable to compute its
241    /// exit value.
242    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
243
244    /// ValuesAtScopes - This map contains entries for all the expressions
245    /// that we attempt to compute getSCEVAtScope information for, which can
246    /// be expensive in extreme cases.
247    std::map<const SCEV *,
248             std::map<const Loop *, const SCEV *> > ValuesAtScopes;
249
250    /// LoopDispositions - Memoized computeLoopDisposition results.
251    std::map<const SCEV *,
252             std::map<const Loop *, LoopDisposition> > LoopDispositions;
253
254    /// computeLoopDisposition - Compute a LoopDisposition value.
255    LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
256
257    /// BlockDispositions - Memoized computeBlockDisposition results.
258    std::map<const SCEV *,
259             std::map<const BasicBlock *, BlockDisposition> > BlockDispositions;
260
261    /// computeBlockDisposition - Compute a BlockDisposition value.
262    BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
263
264    /// UnsignedRanges - Memoized results from getUnsignedRange
265    DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
266
267    /// SignedRanges - Memoized results from getSignedRange
268    DenseMap<const SCEV *, ConstantRange> SignedRanges;
269
270    /// setUnsignedRange - Set the memoized unsigned range for the given SCEV.
271    const ConstantRange &setUnsignedRange(const SCEV *S,
272                                          const ConstantRange &CR) {
273      std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
274        UnsignedRanges.insert(std::make_pair(S, CR));
275      if (!Pair.second)
276        Pair.first->second = CR;
277      return Pair.first->second;
278    }
279
280    /// setUnsignedRange - Set the memoized signed range for the given SCEV.
281    const ConstantRange &setSignedRange(const SCEV *S,
282                                        const ConstantRange &CR) {
283      std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
284        SignedRanges.insert(std::make_pair(S, CR));
285      if (!Pair.second)
286        Pair.first->second = CR;
287      return Pair.first->second;
288    }
289
290    /// createSCEV - We know that there is no SCEV for the specified value.
291    /// Analyze the expression.
292    const SCEV *createSCEV(Value *V);
293
294    /// createNodeForPHI - Provide the special handling we need to analyze PHI
295    /// SCEVs.
296    const SCEV *createNodeForPHI(PHINode *PN);
297
298    /// createNodeForGEP - Provide the special handling we need to analyze GEP
299    /// SCEVs.
300    const SCEV *createNodeForGEP(GEPOperator *GEP);
301
302    /// computeSCEVAtScope - Implementation code for getSCEVAtScope; called
303    /// at most once for each SCEV+Loop pair.
304    ///
305    const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
306
307    /// ForgetSymbolicValue - This looks up computed SCEV values for all
308    /// instructions that depend on the given instruction and removes them from
309    /// the ValueExprMap map if they reference SymName. This is used during PHI
310    /// resolution.
311    void ForgetSymbolicName(Instruction *I, const SCEV *SymName);
312
313    /// getBECount - Subtract the end and start values and divide by the step,
314    /// rounding up, to get the number of times the backedge is executed. Return
315    /// CouldNotCompute if an intermediate computation overflows.
316    const SCEV *getBECount(const SCEV *Start,
317                           const SCEV *End,
318                           const SCEV *Step,
319                           bool NoWrap);
320
321    /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
322    /// loop, lazily computing new values if the loop hasn't been analyzed
323    /// yet.
324    const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
325
326    /// ComputeBackedgeTakenCount - Compute the number of times the specified
327    /// loop will iterate.
328    BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
329
330    /// ComputeBackedgeTakenCountFromExit - Compute the number of times the
331    /// backedge of the specified loop will execute if it exits via the
332    /// specified block.
333    BackedgeTakenInfo ComputeBackedgeTakenCountFromExit(const Loop *L,
334                                                      BasicBlock *ExitingBlock);
335
336    /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
337    /// backedge of the specified loop will execute if its exit condition
338    /// were a conditional branch of ExitCond, TBB, and FBB.
339    BackedgeTakenInfo
340      ComputeBackedgeTakenCountFromExitCond(const Loop *L,
341                                            Value *ExitCond,
342                                            BasicBlock *TBB,
343                                            BasicBlock *FBB);
344
345    /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of
346    /// times the backedge of the specified loop will execute if its exit
347    /// condition were a conditional branch of the ICmpInst ExitCond, TBB,
348    /// and FBB.
349    BackedgeTakenInfo
350      ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
351                                                ICmpInst *ExitCond,
352                                                BasicBlock *TBB,
353                                                BasicBlock *FBB);
354
355    /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition
356    /// of 'icmp op load X, cst', try to see if we can compute the
357    /// backedge-taken count.
358    BackedgeTakenInfo
359      ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI,
360                                                   Constant *RHS,
361                                                   const Loop *L,
362                                                   ICmpInst::Predicate p);
363
364    /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute
365    /// a constant number of times (the condition evolves only from constants),
366    /// try to evaluate a few iterations of the loop until we get the exit
367    /// condition gets a value of ExitWhen (true or false).  If we cannot
368    /// evaluate the backedge-taken count of the loop, return CouldNotCompute.
369    const SCEV *ComputeBackedgeTakenCountExhaustively(const Loop *L,
370                                                      Value *Cond,
371                                                      bool ExitWhen);
372
373    /// HowFarToZero - Return the number of times a backedge comparing the
374    /// specified value to zero will execute.  If not computable, return
375    /// CouldNotCompute.
376    BackedgeTakenInfo HowFarToZero(const SCEV *V, const Loop *L);
377
378    /// HowFarToNonZero - Return the number of times a backedge checking the
379    /// specified value for nonzero will execute.  If not computable, return
380    /// CouldNotCompute.
381    BackedgeTakenInfo HowFarToNonZero(const SCEV *V, const Loop *L);
382
383    /// HowManyLessThans - Return the number of times a backedge containing the
384    /// specified less-than comparison will execute.  If not computable, return
385    /// CouldNotCompute. isSigned specifies whether the less-than is signed.
386    BackedgeTakenInfo HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
387                                       const Loop *L, bool isSigned);
388
389    /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
390    /// (which may not be an immediate predecessor) which has exactly one
391    /// successor from which BB is reachable, or null if no such block is
392    /// found.
393    std::pair<BasicBlock *, BasicBlock *>
394    getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
395
396    /// isImpliedCond - Test whether the condition described by Pred, LHS, and
397    /// RHS is true whenever the given FoundCondValue value evaluates to true.
398    bool isImpliedCond(ICmpInst::Predicate Pred,
399                       const SCEV *LHS, const SCEV *RHS,
400                       Value *FoundCondValue,
401                       bool Inverse);
402
403    /// isImpliedCondOperands - Test whether the condition described by Pred,
404    /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
405    /// and FoundRHS is true.
406    bool isImpliedCondOperands(ICmpInst::Predicate Pred,
407                               const SCEV *LHS, const SCEV *RHS,
408                               const SCEV *FoundLHS, const SCEV *FoundRHS);
409
410    /// isImpliedCondOperandsHelper - Test whether the condition described by
411    /// Pred, LHS, and RHS is true whenever the condition described by Pred,
412    /// FoundLHS, and FoundRHS is true.
413    bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
414                                     const SCEV *LHS, const SCEV *RHS,
415                                     const SCEV *FoundLHS, const SCEV *FoundRHS);
416
417    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
418    /// in the header of its containing loop, we know the loop executes a
419    /// constant number of times, and the PHI node is just a recurrence
420    /// involving constants, fold it.
421    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
422                                                const Loop *L);
423
424    /// isKnownPredicateWithRanges - Test if the given expression is known to
425    /// satisfy the condition described by Pred and the known constant ranges
426    /// of LHS and RHS.
427    ///
428    bool isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
429                                    const SCEV *LHS, const SCEV *RHS);
430
431    /// forgetMemoizedResults - Drop memoized information computed for S.
432    void forgetMemoizedResults(const SCEV *S);
433
434  public:
435    static char ID; // Pass identification, replacement for typeid
436    ScalarEvolution();
437
438    LLVMContext &getContext() const { return F->getContext(); }
439
440    /// isSCEVable - Test if values of the given type are analyzable within
441    /// the SCEV framework. This primarily includes integer types, and it
442    /// can optionally include pointer types if the ScalarEvolution class
443    /// has access to target-specific information.
444    bool isSCEVable(const Type *Ty) const;
445
446    /// getTypeSizeInBits - Return the size in bits of the specified type,
447    /// for which isSCEVable must return true.
448    uint64_t getTypeSizeInBits(const Type *Ty) const;
449
450    /// getEffectiveSCEVType - Return a type with the same bitwidth as
451    /// the given type and which represents how SCEV will treat the given
452    /// type, for which isSCEVable must return true. For pointer types,
453    /// this is the pointer-sized integer type.
454    const Type *getEffectiveSCEVType(const Type *Ty) const;
455
456    /// getSCEV - Return a SCEV expression for the full generality of the
457    /// specified expression.
458    const SCEV *getSCEV(Value *V);
459
460    const SCEV *getConstant(ConstantInt *V);
461    const SCEV *getConstant(const APInt& Val);
462    const SCEV *getConstant(const Type *Ty, uint64_t V, bool isSigned = false);
463    const SCEV *getTruncateExpr(const SCEV *Op, const Type *Ty);
464    const SCEV *getZeroExtendExpr(const SCEV *Op, const Type *Ty);
465    const SCEV *getSignExtendExpr(const SCEV *Op, const Type *Ty);
466    const SCEV *getAnyExtendExpr(const SCEV *Op, const Type *Ty);
467    const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
468                           bool HasNUW = false, bool HasNSW = false);
469    const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
470                           bool HasNUW = false, bool HasNSW = false) {
471      SmallVector<const SCEV *, 2> Ops;
472      Ops.push_back(LHS);
473      Ops.push_back(RHS);
474      return getAddExpr(Ops, HasNUW, HasNSW);
475    }
476    const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1,
477                           const SCEV *Op2,
478                           bool HasNUW = false, bool HasNSW = false) {
479      SmallVector<const SCEV *, 3> Ops;
480      Ops.push_back(Op0);
481      Ops.push_back(Op1);
482      Ops.push_back(Op2);
483      return getAddExpr(Ops, HasNUW, HasNSW);
484    }
485    const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
486                           bool HasNUW = false, bool HasNSW = false);
487    const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
488                           bool HasNUW = false, bool HasNSW = false) {
489      SmallVector<const SCEV *, 2> Ops;
490      Ops.push_back(LHS);
491      Ops.push_back(RHS);
492      return getMulExpr(Ops, HasNUW, HasNSW);
493    }
494    const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
495    const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
496                              const Loop *L,
497                              bool HasNUW = false, bool HasNSW = false);
498    const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
499                              const Loop *L,
500                              bool HasNUW = false, bool HasNSW = false);
501    const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
502                              const Loop *L,
503                              bool HasNUW = false, bool HasNSW = false) {
504      SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
505      return getAddRecExpr(NewOp, L, HasNUW, HasNSW);
506    }
507    const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
508    const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
509    const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
510    const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
511    const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
512    const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
513    const SCEV *getUnknown(Value *V);
514    const SCEV *getCouldNotCompute();
515
516    /// getSizeOfExpr - Return an expression for sizeof on the given type.
517    ///
518    const SCEV *getSizeOfExpr(const Type *AllocTy);
519
520    /// getAlignOfExpr - Return an expression for alignof on the given type.
521    ///
522    const SCEV *getAlignOfExpr(const Type *AllocTy);
523
524    /// getOffsetOfExpr - Return an expression for offsetof on the given field.
525    ///
526    const SCEV *getOffsetOfExpr(const StructType *STy, unsigned FieldNo);
527
528    /// getOffsetOfExpr - Return an expression for offsetof on the given field.
529    ///
530    const SCEV *getOffsetOfExpr(const Type *CTy, Constant *FieldNo);
531
532    /// getNegativeSCEV - Return the SCEV object corresponding to -V.
533    ///
534    const SCEV *getNegativeSCEV(const SCEV *V);
535
536    /// getNotSCEV - Return the SCEV object corresponding to ~V.
537    ///
538    const SCEV *getNotSCEV(const SCEV *V);
539
540    /// getMinusSCEV - Return LHS-RHS.
541    ///
542    const SCEV *getMinusSCEV(const SCEV *LHS,
543                             const SCEV *RHS);
544
545    /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
546    /// of the input value to the specified type.  If the type must be
547    /// extended, it is zero extended.
548    const SCEV *getTruncateOrZeroExtend(const SCEV *V, const Type *Ty);
549
550    /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
551    /// of the input value to the specified type.  If the type must be
552    /// extended, it is sign extended.
553    const SCEV *getTruncateOrSignExtend(const SCEV *V, const Type *Ty);
554
555    /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
556    /// the input value to the specified type.  If the type must be extended,
557    /// it is zero extended.  The conversion must not be narrowing.
558    const SCEV *getNoopOrZeroExtend(const SCEV *V, const Type *Ty);
559
560    /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
561    /// the input value to the specified type.  If the type must be extended,
562    /// it is sign extended.  The conversion must not be narrowing.
563    const SCEV *getNoopOrSignExtend(const SCEV *V, const Type *Ty);
564
565    /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
566    /// the input value to the specified type. If the type must be extended,
567    /// it is extended with unspecified bits. The conversion must not be
568    /// narrowing.
569    const SCEV *getNoopOrAnyExtend(const SCEV *V, const Type *Ty);
570
571    /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
572    /// input value to the specified type.  The conversion must not be
573    /// widening.
574    const SCEV *getTruncateOrNoop(const SCEV *V, const Type *Ty);
575
576    /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
577    /// the types using zero-extension, and then perform a umax operation
578    /// with them.
579    const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
580                                           const SCEV *RHS);
581
582    /// getUMinFromMismatchedTypes - Promote the operands to the wider of
583    /// the types using zero-extension, and then perform a umin operation
584    /// with them.
585    const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
586                                           const SCEV *RHS);
587
588    /// getSCEVAtScope - Return a SCEV expression for the specified value
589    /// at the specified scope in the program.  The L value specifies a loop
590    /// nest to evaluate the expression at, where null is the top-level or a
591    /// specified loop is immediately inside of the loop.
592    ///
593    /// This method can be used to compute the exit value for a variable defined
594    /// in a loop by querying what the value will hold in the parent loop.
595    ///
596    /// In the case that a relevant loop exit value cannot be computed, the
597    /// original value V is returned.
598    const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
599
600    /// getSCEVAtScope - This is a convenience function which does
601    /// getSCEVAtScope(getSCEV(V), L).
602    const SCEV *getSCEVAtScope(Value *V, const Loop *L);
603
604    /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
605    /// by a conditional between LHS and RHS.  This is used to help avoid max
606    /// expressions in loop trip counts, and to eliminate casts.
607    bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
608                                  const SCEV *LHS, const SCEV *RHS);
609
610    /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
611    /// protected by a conditional between LHS and RHS.  This is used to
612    /// to eliminate casts.
613    bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
614                                     const SCEV *LHS, const SCEV *RHS);
615
616    /// getBackedgeTakenCount - If the specified loop has a predictable
617    /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
618    /// object. The backedge-taken count is the number of times the loop header
619    /// will be branched to from within the loop. This is one less than the
620    /// trip count of the loop, since it doesn't count the first iteration,
621    /// when the header is branched to from outside the loop.
622    ///
623    /// Note that it is not valid to call this method on a loop without a
624    /// loop-invariant backedge-taken count (see
625    /// hasLoopInvariantBackedgeTakenCount).
626    ///
627    const SCEV *getBackedgeTakenCount(const Loop *L);
628
629    /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
630    /// return the least SCEV value that is known never to be less than the
631    /// actual backedge taken count.
632    const SCEV *getMaxBackedgeTakenCount(const Loop *L);
633
634    /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
635    /// has an analyzable loop-invariant backedge-taken count.
636    bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
637
638    /// forgetLoop - This method should be called by the client when it has
639    /// changed a loop in a way that may effect ScalarEvolution's ability to
640    /// compute a trip count, or if the loop is deleted.
641    void forgetLoop(const Loop *L);
642
643    /// forgetValue - This method should be called by the client when it has
644    /// changed a value in a way that may effect its value, or which may
645    /// disconnect it from a def-use chain linking it to a loop.
646    void forgetValue(Value *V);
647
648    /// GetMinTrailingZeros - Determine the minimum number of zero bits that S
649    /// is guaranteed to end in (at every loop iteration).  It is, at the same
650    /// time, the minimum number of times S is divisible by 2.  For example,
651    /// given {4,+,8} it returns 2.  If S is guaranteed to be 0, it returns the
652    /// bitwidth of S.
653    uint32_t GetMinTrailingZeros(const SCEV *S);
654
655    /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
656    ///
657    ConstantRange getUnsignedRange(const SCEV *S);
658
659    /// getSignedRange - Determine the signed range for a particular SCEV.
660    ///
661    ConstantRange getSignedRange(const SCEV *S);
662
663    /// isKnownNegative - Test if the given expression is known to be negative.
664    ///
665    bool isKnownNegative(const SCEV *S);
666
667    /// isKnownPositive - Test if the given expression is known to be positive.
668    ///
669    bool isKnownPositive(const SCEV *S);
670
671    /// isKnownNonNegative - Test if the given expression is known to be
672    /// non-negative.
673    ///
674    bool isKnownNonNegative(const SCEV *S);
675
676    /// isKnownNonPositive - Test if the given expression is known to be
677    /// non-positive.
678    ///
679    bool isKnownNonPositive(const SCEV *S);
680
681    /// isKnownNonZero - Test if the given expression is known to be
682    /// non-zero.
683    ///
684    bool isKnownNonZero(const SCEV *S);
685
686    /// isKnownPredicate - Test if the given expression is known to satisfy
687    /// the condition described by Pred, LHS, and RHS.
688    ///
689    bool isKnownPredicate(ICmpInst::Predicate Pred,
690                          const SCEV *LHS, const SCEV *RHS);
691
692    /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
693    /// predicate Pred. Return true iff any changes were made. If the
694    /// operands are provably equal or inequal, LHS and RHS are set to
695    /// the same value and Pred is set to either ICMP_EQ or ICMP_NE.
696    ///
697    bool SimplifyICmpOperands(ICmpInst::Predicate &Pred,
698                              const SCEV *&LHS,
699                              const SCEV *&RHS);
700
701    /// getLoopDisposition - Return the "disposition" of the given SCEV with
702    /// respect to the given loop.
703    LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
704
705    /// isLoopInvariant - Return true if the value of the given SCEV is
706    /// unchanging in the specified loop.
707    bool isLoopInvariant(const SCEV *S, const Loop *L);
708
709    /// hasComputableLoopEvolution - Return true if the given SCEV changes value
710    /// in a known way in the specified loop.  This property being true implies
711    /// that the value is variant in the loop AND that we can emit an expression
712    /// to compute the value of the expression at any particular loop iteration.
713    bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
714
715    /// getLoopDisposition - Return the "disposition" of the given SCEV with
716    /// respect to the given block.
717    BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
718
719    /// dominates - Return true if elements that makes up the given SCEV
720    /// dominate the specified basic block.
721    bool dominates(const SCEV *S, const BasicBlock *BB);
722
723    /// properlyDominates - Return true if elements that makes up the given SCEV
724    /// properly dominate the specified basic block.
725    bool properlyDominates(const SCEV *S, const BasicBlock *BB);
726
727    /// hasOperand - Test whether the given SCEV has Op as a direct or
728    /// indirect operand.
729    bool hasOperand(const SCEV *S, const SCEV *Op) const;
730
731    virtual bool runOnFunction(Function &F);
732    virtual void releaseMemory();
733    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
734    virtual void print(raw_ostream &OS, const Module* = 0) const;
735
736  private:
737    FoldingSet<SCEV> UniqueSCEVs;
738    BumpPtrAllocator SCEVAllocator;
739
740    /// FirstUnknown - The head of a linked list of all SCEVUnknown
741    /// values that have been allocated. This is used by releaseMemory
742    /// to locate them all and call their destructors.
743    SCEVUnknown *FirstUnknown;
744  };
745}
746
747#endif
748