ScalarEvolution.h revision deb052a3dd0227579f86d74b3c1d70384ea5c16b
1//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The ScalarEvolution class is an LLVM pass which can be used to analyze and
11// catagorize scalar expressions in loops.  It specializes in recognizing
12// general induction variables, representing them with the abstract and opaque
13// SCEV class.  Given this analysis, trip counts of loops and other important
14// properties can be obtained.
15//
16// This analysis is primarily useful for induction variable substitution and
17// strength reduction.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
22#define LLVM_ANALYSIS_SCALAREVOLUTION_H
23
24#include "llvm/Pass.h"
25#include "llvm/Analysis/LoopInfo.h"
26#include "llvm/Support/DataTypes.h"
27#include "llvm/Support/ValueHandle.h"
28#include "llvm/Support/Allocator.h"
29#include "llvm/ADT/FoldingSet.h"
30#include "llvm/ADT/DenseMap.h"
31#include <iosfwd>
32
33namespace llvm {
34  class APInt;
35  class ConstantInt;
36  class Type;
37  class ScalarEvolution;
38  class TargetData;
39  class LLVMContext;
40
41  /// SCEV - This class represents an analyzed expression in the program.  These
42  /// are opaque objects that the client is not allowed to do much with
43  /// directly.
44  ///
45  class SCEV : public FoldingSetNode {
46    const unsigned SCEVType;      // The SCEV baseclass this node corresponds to
47
48    SCEV(const SCEV &);            // DO NOT IMPLEMENT
49    void operator=(const SCEV &);  // DO NOT IMPLEMENT
50  protected:
51    virtual ~SCEV();
52  public:
53    explicit SCEV(unsigned SCEVTy) :
54      SCEVType(SCEVTy) {}
55
56    virtual void Profile(FoldingSetNodeID &ID) const = 0;
57
58    unsigned getSCEVType() const { return SCEVType; }
59
60    /// isLoopInvariant - Return true if the value of this SCEV is unchanging in
61    /// the specified loop.
62    virtual bool isLoopInvariant(const Loop *L) const = 0;
63
64    /// hasComputableLoopEvolution - Return true if this SCEV changes value in a
65    /// known way in the specified loop.  This property being true implies that
66    /// the value is variant in the loop AND that we can emit an expression to
67    /// compute the value of the expression at any particular loop iteration.
68    virtual bool hasComputableLoopEvolution(const Loop *L) const = 0;
69
70    /// getType - Return the LLVM type of this SCEV expression.
71    ///
72    virtual const Type *getType() const = 0;
73
74    /// isZero - Return true if the expression is a constant zero.
75    ///
76    bool isZero() const;
77
78    /// isOne - Return true if the expression is a constant one.
79    ///
80    bool isOne() const;
81
82    /// isAllOnesValue - Return true if the expression is a constant
83    /// all-ones value.
84    ///
85    bool isAllOnesValue() const;
86
87    /// replaceSymbolicValuesWithConcrete - If this SCEV internally references
88    /// the symbolic value "Sym", construct and return a new SCEV that produces
89    /// the same value, but which uses the concrete value Conc instead of the
90    /// symbolic value.  If this SCEV does not use the symbolic value, it
91    /// returns itself.
92    virtual const SCEV *
93    replaceSymbolicValuesWithConcrete(const SCEV *Sym,
94                                      const SCEV *Conc,
95                                      ScalarEvolution &SE) const = 0;
96
97    /// dominates - Return true if elements that makes up this SCEV dominates
98    /// the specified basic block.
99    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const = 0;
100
101    /// print - Print out the internal representation of this scalar to the
102    /// specified stream.  This should really only be used for debugging
103    /// purposes.
104    virtual void print(raw_ostream &OS) const = 0;
105    void print(std::ostream &OS) const;
106    void print(std::ostream *OS) const { if (OS) print(*OS); }
107
108    /// dump - This method is used for debugging.
109    ///
110    void dump() const;
111  };
112
113  inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
114    S.print(OS);
115    return OS;
116  }
117
118  inline std::ostream &operator<<(std::ostream &OS, const SCEV &S) {
119    S.print(OS);
120    return OS;
121  }
122
123  /// SCEVCouldNotCompute - An object of this class is returned by queries that
124  /// could not be answered.  For example, if you ask for the number of
125  /// iterations of a linked-list traversal loop, you will get one of these.
126  /// None of the standard SCEV operations are valid on this class, it is just a
127  /// marker.
128  struct SCEVCouldNotCompute : public SCEV {
129    SCEVCouldNotCompute();
130
131    // None of these methods are valid for this object.
132    virtual void Profile(FoldingSetNodeID &ID) const;
133    virtual bool isLoopInvariant(const Loop *L) const;
134    virtual const Type *getType() const;
135    virtual bool hasComputableLoopEvolution(const Loop *L) const;
136    virtual void print(raw_ostream &OS) const;
137    virtual const SCEV *
138    replaceSymbolicValuesWithConcrete(const SCEV *Sym,
139                                      const SCEV *Conc,
140                                      ScalarEvolution &SE) const;
141
142    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const {
143      return true;
144    }
145
146    /// Methods for support type inquiry through isa, cast, and dyn_cast:
147    static inline bool classof(const SCEVCouldNotCompute *S) { return true; }
148    static bool classof(const SCEV *S);
149  };
150
151  /// ScalarEvolution - This class is the main scalar evolution driver.  Because
152  /// client code (intentionally) can't do much with the SCEV objects directly,
153  /// they must ask this class for services.
154  ///
155  class ScalarEvolution : public FunctionPass {
156    /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
157    /// notified whenever a Value is deleted.
158    class SCEVCallbackVH : public CallbackVH {
159      ScalarEvolution *SE;
160      virtual void deleted();
161      virtual void allUsesReplacedWith(Value *New);
162    public:
163      SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0);
164    };
165
166    friend class SCEVCallbackVH;
167    friend struct SCEVExpander;
168
169    /// F - The function we are analyzing.
170    ///
171    Function *F;
172
173    /// LI - The loop information for the function we are currently analyzing.
174    ///
175    LoopInfo *LI;
176
177    /// TD - The target data information for the target we are targetting.
178    ///
179    TargetData *TD;
180
181    /// CouldNotCompute - This SCEV is used to represent unknown trip
182    /// counts and things.
183    SCEVCouldNotCompute CouldNotCompute;
184
185    /// Scalars - This is a cache of the scalars we have analyzed so far.
186    ///
187    std::map<SCEVCallbackVH, const SCEV *> Scalars;
188
189    /// BackedgeTakenInfo - Information about the backedge-taken count
190    /// of a loop. This currently inclues an exact count and a maximum count.
191    ///
192    struct BackedgeTakenInfo {
193      /// Exact - An expression indicating the exact backedge-taken count of
194      /// the loop if it is known, or a SCEVCouldNotCompute otherwise.
195      const SCEV *Exact;
196
197      /// Max - An expression indicating the least maximum backedge-taken
198      /// count of the loop that is known, or a SCEVCouldNotCompute.
199      const SCEV *Max;
200
201      /*implicit*/ BackedgeTakenInfo(const SCEV *exact) :
202        Exact(exact), Max(exact) {}
203
204      BackedgeTakenInfo(const SCEV *exact, const SCEV *max) :
205        Exact(exact), Max(max) {}
206
207      /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
208      /// computed information, or whether it's all SCEVCouldNotCompute
209      /// values.
210      bool hasAnyInfo() const {
211        return !isa<SCEVCouldNotCompute>(Exact) ||
212               !isa<SCEVCouldNotCompute>(Max);
213      }
214    };
215
216    /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
217    /// this function as they are computed.
218    std::map<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
219
220    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
221    /// the PHI instructions that we attempt to compute constant evolutions for.
222    /// This allows us to avoid potentially expensive recomputation of these
223    /// properties.  An instruction maps to null if we are unable to compute its
224    /// exit value.
225    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
226
227    /// ValuesAtScopes - This map contains entries for all the instructions
228    /// that we attempt to compute getSCEVAtScope information for without
229    /// using SCEV techniques, which can be expensive.
230    std::map<Instruction *, std::map<const Loop *, Constant *> > ValuesAtScopes;
231
232    /// createSCEV - We know that there is no SCEV for the specified value.
233    /// Analyze the expression.
234    const SCEV *createSCEV(Value *V);
235
236    /// createNodeForPHI - Provide the special handling we need to analyze PHI
237    /// SCEVs.
238    const SCEV *createNodeForPHI(PHINode *PN);
239
240    /// createNodeForGEP - Provide the special handling we need to analyze GEP
241    /// SCEVs.
242    const SCEV *createNodeForGEP(User *GEP);
243
244    /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
245    /// for the specified instruction and replaces any references to the
246    /// symbolic value SymName with the specified value.  This is used during
247    /// PHI resolution.
248    void ReplaceSymbolicValueWithConcrete(Instruction *I,
249                                          const SCEV *SymName,
250                                          const SCEV *NewVal);
251
252    /// getBECount - Subtract the end and start values and divide by the step,
253    /// rounding up, to get the number of times the backedge is executed. Return
254    /// CouldNotCompute if an intermediate computation overflows.
255    const SCEV *getBECount(const SCEV *Start,
256                          const SCEV *End,
257                          const SCEV *Step);
258
259    /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
260    /// loop, lazily computing new values if the loop hasn't been analyzed
261    /// yet.
262    const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
263
264    /// ComputeBackedgeTakenCount - Compute the number of times the specified
265    /// loop will iterate.
266    BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
267
268    /// ComputeBackedgeTakenCountFromExit - Compute the number of times the
269    /// backedge of the specified loop will execute if it exits via the
270    /// specified block.
271    BackedgeTakenInfo ComputeBackedgeTakenCountFromExit(const Loop *L,
272                                                      BasicBlock *ExitingBlock);
273
274    /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
275    /// backedge of the specified loop will execute if its exit condition
276    /// were a conditional branch of ExitCond, TBB, and FBB.
277    BackedgeTakenInfo
278      ComputeBackedgeTakenCountFromExitCond(const Loop *L,
279                                            Value *ExitCond,
280                                            BasicBlock *TBB,
281                                            BasicBlock *FBB);
282
283    /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of
284    /// times the backedge of the specified loop will execute if its exit
285    /// condition were a conditional branch of the ICmpInst ExitCond, TBB,
286    /// and FBB.
287    BackedgeTakenInfo
288      ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
289                                                ICmpInst *ExitCond,
290                                                BasicBlock *TBB,
291                                                BasicBlock *FBB);
292
293    /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition
294    /// of 'icmp op load X, cst', try to see if we can compute the trip count.
295    const SCEV *
296      ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI,
297                                                   Constant *RHS,
298                                                   const Loop *L,
299                                                   ICmpInst::Predicate p);
300
301    /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute
302    /// a constant number of times (the condition evolves only from constants),
303    /// try to evaluate a few iterations of the loop until we get the exit
304    /// condition gets a value of ExitWhen (true or false).  If we cannot
305    /// evaluate the trip count of the loop, return CouldNotCompute.
306    const SCEV *ComputeBackedgeTakenCountExhaustively(const Loop *L,
307                                                      Value *Cond,
308                                                      bool ExitWhen);
309
310    /// HowFarToZero - Return the number of times a backedge comparing the
311    /// specified value to zero will execute.  If not computable, return
312    /// CouldNotCompute.
313    const SCEV *HowFarToZero(const SCEV *V, const Loop *L);
314
315    /// HowFarToNonZero - Return the number of times a backedge checking the
316    /// specified value for nonzero will execute.  If not computable, return
317    /// CouldNotCompute.
318    const SCEV *HowFarToNonZero(const SCEV *V, const Loop *L);
319
320    /// HowManyLessThans - Return the number of times a backedge containing the
321    /// specified less-than comparison will execute.  If not computable, return
322    /// CouldNotCompute. isSigned specifies whether the less-than is signed.
323    BackedgeTakenInfo HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
324                                       const Loop *L, bool isSigned);
325
326    /// getLoopPredecessor - If the given loop's header has exactly one unique
327    /// predecessor outside the loop, return it. Otherwise return null.
328    BasicBlock *getLoopPredecessor(const Loop *L);
329
330    /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
331    /// (which may not be an immediate predecessor) which has exactly one
332    /// successor from which BB is reachable, or null if no such block is
333    /// found.
334    BasicBlock* getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
335
336    /// isNecessaryCond - Test whether the given CondValue value is a condition
337    /// which is at least as strict as the one described by Pred, LHS, and RHS.
338    bool isNecessaryCond(Value *Cond, ICmpInst::Predicate Pred,
339                         const SCEV *LHS, const SCEV *RHS,
340                         bool Inverse);
341
342    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
343    /// in the header of its containing loop, we know the loop executes a
344    /// constant number of times, and the PHI node is just a recurrence
345    /// involving constants, fold it.
346    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
347                                                const Loop *L);
348
349  public:
350    static char ID; // Pass identification, replacement for typeid
351    ScalarEvolution();
352
353    LLVMContext *getContext() const { return Context; }
354
355    /// isSCEVable - Test if values of the given type are analyzable within
356    /// the SCEV framework. This primarily includes integer types, and it
357    /// can optionally include pointer types if the ScalarEvolution class
358    /// has access to target-specific information.
359    bool isSCEVable(const Type *Ty) const;
360
361    /// getTypeSizeInBits - Return the size in bits of the specified type,
362    /// for which isSCEVable must return true.
363    uint64_t getTypeSizeInBits(const Type *Ty) const;
364
365    /// getEffectiveSCEVType - Return a type with the same bitwidth as
366    /// the given type and which represents how SCEV will treat the given
367    /// type, for which isSCEVable must return true. For pointer types,
368    /// this is the pointer-sized integer type.
369    const Type *getEffectiveSCEVType(const Type *Ty) const;
370
371    /// getSCEV - Return a SCEV expression handle for the full generality of the
372    /// specified expression.
373    const SCEV *getSCEV(Value *V);
374
375    const SCEV *getConstant(ConstantInt *V);
376    const SCEV *getConstant(const APInt& Val);
377    const SCEV *getConstant(const Type *Ty, uint64_t V, bool isSigned = false);
378    const SCEV *getTruncateExpr(const SCEV *Op, const Type *Ty);
379    const SCEV *getZeroExtendExpr(const SCEV *Op, const Type *Ty);
380    const SCEV *getSignExtendExpr(const SCEV *Op, const Type *Ty);
381    const SCEV *getAnyExtendExpr(const SCEV *Op, const Type *Ty);
382    const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops);
383    const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS) {
384      SmallVector<const SCEV *, 2> Ops;
385      Ops.push_back(LHS);
386      Ops.push_back(RHS);
387      return getAddExpr(Ops);
388    }
389    const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1,
390                          const SCEV *Op2) {
391      SmallVector<const SCEV *, 3> Ops;
392      Ops.push_back(Op0);
393      Ops.push_back(Op1);
394      Ops.push_back(Op2);
395      return getAddExpr(Ops);
396    }
397    const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops);
398    const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS) {
399      SmallVector<const SCEV *, 2> Ops;
400      Ops.push_back(LHS);
401      Ops.push_back(RHS);
402      return getMulExpr(Ops);
403    }
404    const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
405    const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
406                             const Loop *L);
407    const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
408                             const Loop *L);
409    const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
410                             const Loop *L) {
411      SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
412      return getAddRecExpr(NewOp, L);
413    }
414    const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
415    const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
416    const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
417    const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
418    const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
419    const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
420    const SCEV *getUnknown(Value *V);
421    const SCEV *getCouldNotCompute();
422
423    /// getNegativeSCEV - Return the SCEV object corresponding to -V.
424    ///
425    const SCEV *getNegativeSCEV(const SCEV *V);
426
427    /// getNotSCEV - Return the SCEV object corresponding to ~V.
428    ///
429    const SCEV *getNotSCEV(const SCEV *V);
430
431    /// getMinusSCEV - Return LHS-RHS.
432    ///
433    const SCEV *getMinusSCEV(const SCEV *LHS,
434                            const SCEV *RHS);
435
436    /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
437    /// of the input value to the specified type.  If the type must be
438    /// extended, it is zero extended.
439    const SCEV *getTruncateOrZeroExtend(const SCEV *V, const Type *Ty);
440
441    /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
442    /// of the input value to the specified type.  If the type must be
443    /// extended, it is sign extended.
444    const SCEV *getTruncateOrSignExtend(const SCEV *V, const Type *Ty);
445
446    /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
447    /// the input value to the specified type.  If the type must be extended,
448    /// it is zero extended.  The conversion must not be narrowing.
449    const SCEV *getNoopOrZeroExtend(const SCEV *V, const Type *Ty);
450
451    /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
452    /// the input value to the specified type.  If the type must be extended,
453    /// it is sign extended.  The conversion must not be narrowing.
454    const SCEV *getNoopOrSignExtend(const SCEV *V, const Type *Ty);
455
456    /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
457    /// the input value to the specified type. If the type must be extended,
458    /// it is extended with unspecified bits. The conversion must not be
459    /// narrowing.
460    const SCEV *getNoopOrAnyExtend(const SCEV *V, const Type *Ty);
461
462    /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
463    /// input value to the specified type.  The conversion must not be
464    /// widening.
465    const SCEV *getTruncateOrNoop(const SCEV *V, const Type *Ty);
466
467    /// getIntegerSCEV - Given a SCEVable type, create a constant for the
468    /// specified signed integer value and return a SCEV for the constant.
469    const SCEV *getIntegerSCEV(int Val, const Type *Ty);
470
471    /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
472    /// the types using zero-extension, and then perform a umax operation
473    /// with them.
474    const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
475                                          const SCEV *RHS);
476
477    /// getUMinFromMismatchedTypes - Promote the operands to the wider of
478    /// the types using zero-extension, and then perform a umin operation
479    /// with them.
480    const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
481                                           const SCEV *RHS);
482
483    /// getSCEVAtScope - Return a SCEV expression handle for the specified value
484    /// at the specified scope in the program.  The L value specifies a loop
485    /// nest to evaluate the expression at, where null is the top-level or a
486    /// specified loop is immediately inside of the loop.
487    ///
488    /// This method can be used to compute the exit value for a variable defined
489    /// in a loop by querying what the value will hold in the parent loop.
490    ///
491    /// In the case that a relevant loop exit value cannot be computed, the
492    /// original value V is returned.
493    const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
494
495    /// getSCEVAtScope - This is a convenience function which does
496    /// getSCEVAtScope(getSCEV(V), L).
497    const SCEV *getSCEVAtScope(Value *V, const Loop *L);
498
499    /// isLoopGuardedByCond - Test whether entry to the loop is protected by
500    /// a conditional between LHS and RHS.  This is used to help avoid max
501    /// expressions in loop trip counts.
502    bool isLoopGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
503                             const SCEV *LHS, const SCEV *RHS);
504
505    /// getBackedgeTakenCount - If the specified loop has a predictable
506    /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
507    /// object. The backedge-taken count is the number of times the loop header
508    /// will be branched to from within the loop. This is one less than the
509    /// trip count of the loop, since it doesn't count the first iteration,
510    /// when the header is branched to from outside the loop.
511    ///
512    /// Note that it is not valid to call this method on a loop without a
513    /// loop-invariant backedge-taken count (see
514    /// hasLoopInvariantBackedgeTakenCount).
515    ///
516    const SCEV *getBackedgeTakenCount(const Loop *L);
517
518    /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
519    /// return the least SCEV value that is known never to be less than the
520    /// actual backedge taken count.
521    const SCEV *getMaxBackedgeTakenCount(const Loop *L);
522
523    /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
524    /// has an analyzable loop-invariant backedge-taken count.
525    bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
526
527    /// forgetLoopBackedgeTakenCount - This method should be called by the
528    /// client when it has changed a loop in a way that may effect
529    /// ScalarEvolution's ability to compute a trip count, or if the loop
530    /// is deleted.
531    void forgetLoopBackedgeTakenCount(const Loop *L);
532
533    /// GetMinTrailingZeros - Determine the minimum number of zero bits that S
534    /// is guaranteed to end in (at every loop iteration).  It is, at the same
535    /// time, the minimum number of times S is divisible by 2.  For example,
536    /// given {4,+,8} it returns 2.  If S is guaranteed to be 0, it returns the
537    /// bitwidth of S.
538    uint32_t GetMinTrailingZeros(const SCEV *S);
539
540    /// GetMinLeadingZeros - Determine the minimum number of zero bits that S is
541    /// guaranteed to begin with (at every loop iteration).
542    uint32_t GetMinLeadingZeros(const SCEV *S);
543
544    /// GetMinSignBits - Determine the minimum number of sign bits that S is
545    /// guaranteed to begin with.
546    uint32_t GetMinSignBits(const SCEV *S);
547
548    virtual bool runOnFunction(Function &F);
549    virtual void releaseMemory();
550    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
551    void print(raw_ostream &OS, const Module* = 0) const;
552    virtual void print(std::ostream &OS, const Module* = 0) const;
553    void print(std::ostream *OS, const Module* M = 0) const {
554      if (OS) print(*OS, M);
555    }
556
557  private:
558    FoldingSet<SCEV> UniqueSCEVs;
559    BumpPtrAllocator SCEVAllocator;
560  };
561}
562
563#endif
564