ScalarEvolution.h revision ed84062812c7b8a82d0e8128a22aa1aa07a14d79
1//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The ScalarEvolution class is an LLVM pass which can be used to analyze and
11// categorize scalar expressions in loops.  It specializes in recognizing
12// general induction variables, representing them with the abstract and opaque
13// SCEV class.  Given this analysis, trip counts of loops and other important
14// properties can be obtained.
15//
16// This analysis is primarily useful for induction variable substitution and
17// strength reduction.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
22#define LLVM_ANALYSIS_SCALAREVOLUTION_H
23
24#include "llvm/Pass.h"
25#include "llvm/Instructions.h"
26#include "llvm/Function.h"
27#include "llvm/Operator.h"
28#include "llvm/Support/DataTypes.h"
29#include "llvm/Support/ValueHandle.h"
30#include "llvm/Support/Allocator.h"
31#include "llvm/Support/ConstantRange.h"
32#include "llvm/ADT/FoldingSet.h"
33#include "llvm/ADT/DenseSet.h"
34#include <map>
35
36namespace llvm {
37  class APInt;
38  class Constant;
39  class ConstantInt;
40  class DominatorTree;
41  class Type;
42  class ScalarEvolution;
43  class DataLayout;
44  class TargetLibraryInfo;
45  class LLVMContext;
46  class Loop;
47  class LoopInfo;
48  class Operator;
49  class SCEVUnknown;
50  class SCEV;
51  template<> struct FoldingSetTrait<SCEV>;
52
53  /// SCEV - This class represents an analyzed expression in the program.  These
54  /// are opaque objects that the client is not allowed to do much with
55  /// directly.
56  ///
57  class SCEV : public FoldingSetNode {
58    friend struct FoldingSetTrait<SCEV>;
59
60    /// FastID - A reference to an Interned FoldingSetNodeID for this node.
61    /// The ScalarEvolution's BumpPtrAllocator holds the data.
62    FoldingSetNodeIDRef FastID;
63
64    // The SCEV baseclass this node corresponds to
65    const unsigned short SCEVType;
66
67  protected:
68    /// SubclassData - This field is initialized to zero and may be used in
69    /// subclasses to store miscellaneous information.
70    unsigned short SubclassData;
71
72  private:
73    SCEV(const SCEV &) LLVM_DELETED_FUNCTION;
74    void operator=(const SCEV &) LLVM_DELETED_FUNCTION;
75
76  public:
77    /// NoWrapFlags are bitfield indices into SubclassData.
78    ///
79    /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
80    /// no-signed-wrap <NSW> properties, which are derived from the IR
81    /// operator. NSW is a misnomer that we use to mean no signed overflow or
82    /// underflow.
83    ///
84    /// AddRec expression may have a no-self-wraparound <NW> property if the
85    /// result can never reach the start value. This property is independent of
86    /// the actual start value and step direction. Self-wraparound is defined
87    /// purely in terms of the recurrence's loop, step size, and
88    /// bitwidth. Formally, a recurrence with no self-wraparound satisfies:
89    /// abs(step) * max-iteration(loop) <= unsigned-max(bitwidth).
90    ///
91    /// Note that NUW and NSW are also valid properties of a recurrence, and
92    /// either implies NW. For convenience, NW will be set for a recurrence
93    /// whenever either NUW or NSW are set.
94    enum NoWrapFlags { FlagAnyWrap = 0,          // No guarantee.
95                       FlagNW      = (1 << 0),   // No self-wrap.
96                       FlagNUW     = (1 << 1),   // No unsigned wrap.
97                       FlagNSW     = (1 << 2),   // No signed wrap.
98                       NoWrapMask  = (1 << 3) -1 };
99
100    explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) :
101      FastID(ID), SCEVType(SCEVTy), SubclassData(0) {}
102
103    unsigned getSCEVType() const { return SCEVType; }
104
105    /// getType - Return the LLVM type of this SCEV expression.
106    ///
107    Type *getType() const;
108
109    /// isZero - Return true if the expression is a constant zero.
110    ///
111    bool isZero() const;
112
113    /// isOne - Return true if the expression is a constant one.
114    ///
115    bool isOne() const;
116
117    /// isAllOnesValue - Return true if the expression is a constant
118    /// all-ones value.
119    ///
120    bool isAllOnesValue() const;
121
122    /// isNonConstantNegative - Return true if the specified scev is negated,
123    /// but not a constant.
124    bool isNonConstantNegative() const;
125
126    /// print - Print out the internal representation of this scalar to the
127    /// specified stream.  This should really only be used for debugging
128    /// purposes.
129    void print(raw_ostream &OS) const;
130
131    /// dump - This method is used for debugging.
132    ///
133    void dump() const;
134  };
135
136  // Specialize FoldingSetTrait for SCEV to avoid needing to compute
137  // temporary FoldingSetNodeID values.
138  template<> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
139    static void Profile(const SCEV &X, FoldingSetNodeID& ID) {
140      ID = X.FastID;
141    }
142    static bool Equals(const SCEV &X, const FoldingSetNodeID &ID,
143                       unsigned IDHash, FoldingSetNodeID &TempID) {
144      return ID == X.FastID;
145    }
146    static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
147      return X.FastID.ComputeHash();
148    }
149  };
150
151  inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
152    S.print(OS);
153    return OS;
154  }
155
156  /// SCEVCouldNotCompute - An object of this class is returned by queries that
157  /// could not be answered.  For example, if you ask for the number of
158  /// iterations of a linked-list traversal loop, you will get one of these.
159  /// None of the standard SCEV operations are valid on this class, it is just a
160  /// marker.
161  struct SCEVCouldNotCompute : public SCEV {
162    SCEVCouldNotCompute();
163
164    /// Methods for support type inquiry through isa, cast, and dyn_cast:
165    static bool classof(const SCEV *S);
166  };
167
168  /// ScalarEvolution - This class is the main scalar evolution driver.  Because
169  /// client code (intentionally) can't do much with the SCEV objects directly,
170  /// they must ask this class for services.
171  ///
172  class ScalarEvolution : public FunctionPass {
173  public:
174    /// LoopDisposition - An enum describing the relationship between a
175    /// SCEV and a loop.
176    enum LoopDisposition {
177      LoopVariant,    ///< The SCEV is loop-variant (unknown).
178      LoopInvariant,  ///< The SCEV is loop-invariant.
179      LoopComputable  ///< The SCEV varies predictably with the loop.
180    };
181
182    /// BlockDisposition - An enum describing the relationship between a
183    /// SCEV and a basic block.
184    enum BlockDisposition {
185      DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
186      DominatesBlock,        ///< The SCEV dominates the block.
187      ProperlyDominatesBlock ///< The SCEV properly dominates the block.
188    };
189
190    /// Convenient NoWrapFlags manipulation that hides enum casts and is
191    /// visible in the ScalarEvolution name space.
192    static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags, int Mask) {
193      return (SCEV::NoWrapFlags)(Flags & Mask);
194    }
195    static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags,
196                                      SCEV::NoWrapFlags OnFlags) {
197      return (SCEV::NoWrapFlags)(Flags | OnFlags);
198    }
199    static SCEV::NoWrapFlags clearFlags(SCEV::NoWrapFlags Flags,
200                                        SCEV::NoWrapFlags OffFlags) {
201      return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
202    }
203
204  private:
205    /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
206    /// notified whenever a Value is deleted.
207    class SCEVCallbackVH : public CallbackVH {
208      ScalarEvolution *SE;
209      virtual void deleted();
210      virtual void allUsesReplacedWith(Value *New);
211    public:
212      SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0);
213    };
214
215    friend class SCEVCallbackVH;
216    friend class SCEVExpander;
217    friend class SCEVUnknown;
218
219    /// F - The function we are analyzing.
220    ///
221    Function *F;
222
223    /// LI - The loop information for the function we are currently analyzing.
224    ///
225    LoopInfo *LI;
226
227    /// TD - The target data information for the target we are targeting.
228    ///
229    DataLayout *TD;
230
231    /// TLI - The target library information for the target we are targeting.
232    ///
233    TargetLibraryInfo *TLI;
234
235    /// DT - The dominator tree.
236    ///
237    DominatorTree *DT;
238
239    /// CouldNotCompute - This SCEV is used to represent unknown trip
240    /// counts and things.
241    SCEVCouldNotCompute CouldNotCompute;
242
243    /// ValueExprMapType - The typedef for ValueExprMap.
244    ///
245    typedef DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *> >
246      ValueExprMapType;
247
248    /// ValueExprMap - This is a cache of the values we have analyzed so far.
249    ///
250    ValueExprMapType ValueExprMap;
251
252    /// Mark predicate values currently being processed by isImpliedCond.
253    DenseSet<Value*> PendingLoopPredicates;
254
255    /// ExitLimit - Information about the number of loop iterations for
256    /// which a loop exit's branch condition evaluates to the not-taken path.
257    /// This is a temporary pair of exact and max expressions that are
258    /// eventually summarized in ExitNotTakenInfo and BackedgeTakenInfo.
259    struct ExitLimit {
260      const SCEV *Exact;
261      const SCEV *Max;
262
263      /*implicit*/ ExitLimit(const SCEV *E) : Exact(E), Max(E) {}
264
265      ExitLimit(const SCEV *E, const SCEV *M) : Exact(E), Max(M) {}
266
267      /// hasAnyInfo - Test whether this ExitLimit contains any computed
268      /// information, or whether it's all SCEVCouldNotCompute values.
269      bool hasAnyInfo() const {
270        return !isa<SCEVCouldNotCompute>(Exact) ||
271          !isa<SCEVCouldNotCompute>(Max);
272      }
273    };
274
275    /// ExitNotTakenInfo - Information about the number of times a particular
276    /// loop exit may be reached before exiting the loop.
277    struct ExitNotTakenInfo {
278      AssertingVH<BasicBlock> ExitingBlock;
279      const SCEV *ExactNotTaken;
280      PointerIntPair<ExitNotTakenInfo*, 1> NextExit;
281
282      ExitNotTakenInfo() : ExitingBlock(0), ExactNotTaken(0) {}
283
284      /// isCompleteList - Return true if all loop exits are computable.
285      bool isCompleteList() const {
286        return NextExit.getInt() == 0;
287      }
288
289      void setIncomplete() { NextExit.setInt(1); }
290
291      /// getNextExit - Return a pointer to the next exit's not-taken info.
292      ExitNotTakenInfo *getNextExit() const {
293        return NextExit.getPointer();
294      }
295
296      void setNextExit(ExitNotTakenInfo *ENT) { NextExit.setPointer(ENT); }
297    };
298
299    /// BackedgeTakenInfo - Information about the backedge-taken count
300    /// of a loop. This currently includes an exact count and a maximum count.
301    ///
302    class BackedgeTakenInfo {
303      /// ExitNotTaken - A list of computable exits and their not-taken counts.
304      /// Loops almost never have more than one computable exit.
305      ExitNotTakenInfo ExitNotTaken;
306
307      /// Max - An expression indicating the least maximum backedge-taken
308      /// count of the loop that is known, or a SCEVCouldNotCompute.
309      const SCEV *Max;
310
311    public:
312      BackedgeTakenInfo() : Max(0) {}
313
314      /// Initialize BackedgeTakenInfo from a list of exact exit counts.
315      BackedgeTakenInfo(
316        SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
317        bool Complete, const SCEV *MaxCount);
318
319      /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
320      /// computed information, or whether it's all SCEVCouldNotCompute
321      /// values.
322      bool hasAnyInfo() const {
323        return ExitNotTaken.ExitingBlock || !isa<SCEVCouldNotCompute>(Max);
324      }
325
326      /// getExact - Return an expression indicating the exact backedge-taken
327      /// count of the loop if it is known, or SCEVCouldNotCompute
328      /// otherwise. This is the number of times the loop header can be
329      /// guaranteed to execute, minus one.
330      const SCEV *getExact(ScalarEvolution *SE) const;
331
332      /// getExact - Return the number of times this loop exit may fall through
333      /// to the back edge, or SCEVCouldNotCompute. The loop is guaranteed not
334      /// to exit via this block before this number of iterations, but may exit
335      /// via another block.
336      const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
337
338      /// getMax - Get the max backedge taken count for the loop.
339      const SCEV *getMax(ScalarEvolution *SE) const;
340
341      /// clear - Invalidate this result and free associated memory.
342      void clear();
343    };
344
345    /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
346    /// this function as they are computed.
347    DenseMap<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
348
349    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
350    /// the PHI instructions that we attempt to compute constant evolutions for.
351    /// This allows us to avoid potentially expensive recomputation of these
352    /// properties.  An instruction maps to null if we are unable to compute its
353    /// exit value.
354    DenseMap<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
355
356    /// ValuesAtScopes - This map contains entries for all the expressions
357    /// that we attempt to compute getSCEVAtScope information for, which can
358    /// be expensive in extreme cases.
359    DenseMap<const SCEV *,
360             std::map<const Loop *, const SCEV *> > ValuesAtScopes;
361
362    /// LoopDispositions - Memoized computeLoopDisposition results.
363    DenseMap<const SCEV *,
364             std::map<const Loop *, LoopDisposition> > LoopDispositions;
365
366    /// computeLoopDisposition - Compute a LoopDisposition value.
367    LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
368
369    /// BlockDispositions - Memoized computeBlockDisposition results.
370    DenseMap<const SCEV *,
371             std::map<const BasicBlock *, BlockDisposition> > BlockDispositions;
372
373    /// computeBlockDisposition - Compute a BlockDisposition value.
374    BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
375
376    /// UnsignedRanges - Memoized results from getUnsignedRange
377    DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
378
379    /// SignedRanges - Memoized results from getSignedRange
380    DenseMap<const SCEV *, ConstantRange> SignedRanges;
381
382    /// setUnsignedRange - Set the memoized unsigned range for the given SCEV.
383    const ConstantRange &setUnsignedRange(const SCEV *S,
384                                          const ConstantRange &CR) {
385      std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
386        UnsignedRanges.insert(std::make_pair(S, CR));
387      if (!Pair.second)
388        Pair.first->second = CR;
389      return Pair.first->second;
390    }
391
392    /// setUnsignedRange - Set the memoized signed range for the given SCEV.
393    const ConstantRange &setSignedRange(const SCEV *S,
394                                        const ConstantRange &CR) {
395      std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
396        SignedRanges.insert(std::make_pair(S, CR));
397      if (!Pair.second)
398        Pair.first->second = CR;
399      return Pair.first->second;
400    }
401
402    /// createSCEV - We know that there is no SCEV for the specified value.
403    /// Analyze the expression.
404    const SCEV *createSCEV(Value *V);
405
406    /// createNodeForPHI - Provide the special handling we need to analyze PHI
407    /// SCEVs.
408    const SCEV *createNodeForPHI(PHINode *PN);
409
410    /// createNodeForGEP - Provide the special handling we need to analyze GEP
411    /// SCEVs.
412    const SCEV *createNodeForGEP(GEPOperator *GEP);
413
414    /// computeSCEVAtScope - Implementation code for getSCEVAtScope; called
415    /// at most once for each SCEV+Loop pair.
416    ///
417    const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
418
419    /// ForgetSymbolicValue - This looks up computed SCEV values for all
420    /// instructions that depend on the given instruction and removes them from
421    /// the ValueExprMap map if they reference SymName. This is used during PHI
422    /// resolution.
423    void ForgetSymbolicName(Instruction *I, const SCEV *SymName);
424
425    /// getBECount - Subtract the end and start values and divide by the step,
426    /// rounding up, to get the number of times the backedge is executed. Return
427    /// CouldNotCompute if an intermediate computation overflows.
428    const SCEV *getBECount(const SCEV *Start,
429                           const SCEV *End,
430                           const SCEV *Step,
431                           bool NoWrap);
432
433    /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
434    /// loop, lazily computing new values if the loop hasn't been analyzed
435    /// yet.
436    const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
437
438    /// ComputeBackedgeTakenCount - Compute the number of times the specified
439    /// loop will iterate.
440    BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
441
442    /// ComputeExitLimit - Compute the number of times the backedge of the
443    /// specified loop will execute if it exits via the specified block.
444    ExitLimit ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock);
445
446    /// ComputeExitLimitFromCond - Compute the number of times the backedge of
447    /// the specified loop will execute if its exit condition were a conditional
448    /// branch of ExitCond, TBB, and FBB.
449    ExitLimit ComputeExitLimitFromCond(const Loop *L,
450                                       Value *ExitCond,
451                                       BasicBlock *TBB,
452                                       BasicBlock *FBB);
453
454    /// ComputeExitLimitFromICmp - Compute the number of times the backedge of
455    /// the specified loop will execute if its exit condition were a conditional
456    /// branch of the ICmpInst ExitCond, TBB, and FBB.
457    ExitLimit ComputeExitLimitFromICmp(const Loop *L,
458                                       ICmpInst *ExitCond,
459                                       BasicBlock *TBB,
460                                       BasicBlock *FBB);
461
462    /// ComputeLoadConstantCompareExitLimit - Given an exit condition
463    /// of 'icmp op load X, cst', try to see if we can compute the
464    /// backedge-taken count.
465    ExitLimit ComputeLoadConstantCompareExitLimit(LoadInst *LI,
466                                                  Constant *RHS,
467                                                  const Loop *L,
468                                                  ICmpInst::Predicate p);
469
470    /// ComputeExitCountExhaustively - If the loop is known to execute a
471    /// constant number of times (the condition evolves only from constants),
472    /// try to evaluate a few iterations of the loop until we get the exit
473    /// condition gets a value of ExitWhen (true or false).  If we cannot
474    /// evaluate the exit count of the loop, return CouldNotCompute.
475    const SCEV *ComputeExitCountExhaustively(const Loop *L,
476                                             Value *Cond,
477                                             bool ExitWhen);
478
479    /// HowFarToZero - Return the number of times an exit condition comparing
480    /// the specified value to zero will execute.  If not computable, return
481    /// CouldNotCompute.
482    ExitLimit HowFarToZero(const SCEV *V, const Loop *L);
483
484    /// HowFarToNonZero - Return the number of times an exit condition checking
485    /// the specified value for nonzero will execute.  If not computable, return
486    /// CouldNotCompute.
487    ExitLimit HowFarToNonZero(const SCEV *V, const Loop *L);
488
489    /// HowManyLessThans - Return the number of times an exit condition
490    /// containing the specified less-than comparison will execute.  If not
491    /// computable, return CouldNotCompute. isSigned specifies whether the
492    /// less-than is signed.
493    ExitLimit HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
494                               const Loop *L, bool isSigned);
495
496    /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
497    /// (which may not be an immediate predecessor) which has exactly one
498    /// successor from which BB is reachable, or null if no such block is
499    /// found.
500    std::pair<BasicBlock *, BasicBlock *>
501    getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
502
503    /// isImpliedCond - Test whether the condition described by Pred, LHS, and
504    /// RHS is true whenever the given FoundCondValue value evaluates to true.
505    bool isImpliedCond(ICmpInst::Predicate Pred,
506                       const SCEV *LHS, const SCEV *RHS,
507                       Value *FoundCondValue,
508                       bool Inverse);
509
510    /// isImpliedCondOperands - Test whether the condition described by Pred,
511    /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
512    /// and FoundRHS is true.
513    bool isImpliedCondOperands(ICmpInst::Predicate Pred,
514                               const SCEV *LHS, const SCEV *RHS,
515                               const SCEV *FoundLHS, const SCEV *FoundRHS);
516
517    /// isImpliedCondOperandsHelper - Test whether the condition described by
518    /// Pred, LHS, and RHS is true whenever the condition described by Pred,
519    /// FoundLHS, and FoundRHS is true.
520    bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
521                                     const SCEV *LHS, const SCEV *RHS,
522                                     const SCEV *FoundLHS,
523                                     const SCEV *FoundRHS);
524
525    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
526    /// in the header of its containing loop, we know the loop executes a
527    /// constant number of times, and the PHI node is just a recurrence
528    /// involving constants, fold it.
529    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
530                                                const Loop *L);
531
532    /// isKnownPredicateWithRanges - Test if the given expression is known to
533    /// satisfy the condition described by Pred and the known constant ranges
534    /// of LHS and RHS.
535    ///
536    bool isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
537                                    const SCEV *LHS, const SCEV *RHS);
538
539    /// forgetMemoizedResults - Drop memoized information computed for S.
540    void forgetMemoizedResults(const SCEV *S);
541
542  public:
543    static char ID; // Pass identification, replacement for typeid
544    ScalarEvolution();
545
546    LLVMContext &getContext() const { return F->getContext(); }
547
548    /// isSCEVable - Test if values of the given type are analyzable within
549    /// the SCEV framework. This primarily includes integer types, and it
550    /// can optionally include pointer types if the ScalarEvolution class
551    /// has access to target-specific information.
552    bool isSCEVable(Type *Ty) const;
553
554    /// getTypeSizeInBits - Return the size in bits of the specified type,
555    /// for which isSCEVable must return true.
556    uint64_t getTypeSizeInBits(Type *Ty) const;
557
558    /// getEffectiveSCEVType - Return a type with the same bitwidth as
559    /// the given type and which represents how SCEV will treat the given
560    /// type, for which isSCEVable must return true. For pointer types,
561    /// this is the pointer-sized integer type.
562    Type *getEffectiveSCEVType(Type *Ty) const;
563
564    /// getSCEV - Return a SCEV expression for the full generality of the
565    /// specified expression.
566    const SCEV *getSCEV(Value *V);
567
568    const SCEV *getConstant(ConstantInt *V);
569    const SCEV *getConstant(const APInt& Val);
570    const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
571    const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty);
572    const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty);
573    const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty);
574    const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
575    const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
576                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
577    const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
578                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
579      SmallVector<const SCEV *, 2> Ops;
580      Ops.push_back(LHS);
581      Ops.push_back(RHS);
582      return getAddExpr(Ops, Flags);
583    }
584    const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
585                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
586      SmallVector<const SCEV *, 3> Ops;
587      Ops.push_back(Op0);
588      Ops.push_back(Op1);
589      Ops.push_back(Op2);
590      return getAddExpr(Ops, Flags);
591    }
592    const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
593                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
594    const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
595                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap)
596    {
597      SmallVector<const SCEV *, 2> Ops;
598      Ops.push_back(LHS);
599      Ops.push_back(RHS);
600      return getMulExpr(Ops, Flags);
601    }
602    const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
603                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
604      SmallVector<const SCEV *, 3> Ops;
605      Ops.push_back(Op0);
606      Ops.push_back(Op1);
607      Ops.push_back(Op2);
608      return getMulExpr(Ops, Flags);
609    }
610    const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
611    const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
612                              const Loop *L, SCEV::NoWrapFlags Flags);
613    const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
614                              const Loop *L, SCEV::NoWrapFlags Flags);
615    const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
616                              const Loop *L, SCEV::NoWrapFlags Flags) {
617      SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
618      return getAddRecExpr(NewOp, L, Flags);
619    }
620    const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
621    const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
622    const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
623    const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
624    const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
625    const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
626    const SCEV *getUnknown(Value *V);
627    const SCEV *getCouldNotCompute();
628
629    /// getSizeOfExpr - Return an expression for sizeof on the given type.
630    ///
631    const SCEV *getSizeOfExpr(Type *AllocTy);
632
633    /// getAlignOfExpr - Return an expression for alignof on the given type.
634    ///
635    const SCEV *getAlignOfExpr(Type *AllocTy);
636
637    /// getOffsetOfExpr - Return an expression for offsetof on the given field.
638    ///
639    const SCEV *getOffsetOfExpr(StructType *STy, unsigned FieldNo);
640
641    /// getOffsetOfExpr - Return an expression for offsetof on the given field.
642    ///
643    const SCEV *getOffsetOfExpr(Type *CTy, Constant *FieldNo);
644
645    /// getNegativeSCEV - Return the SCEV object corresponding to -V.
646    ///
647    const SCEV *getNegativeSCEV(const SCEV *V);
648
649    /// getNotSCEV - Return the SCEV object corresponding to ~V.
650    ///
651    const SCEV *getNotSCEV(const SCEV *V);
652
653    /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
654    const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
655                             SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
656
657    /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
658    /// of the input value to the specified type.  If the type must be
659    /// extended, it is zero extended.
660    const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty);
661
662    /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
663    /// of the input value to the specified type.  If the type must be
664    /// extended, it is sign extended.
665    const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty);
666
667    /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
668    /// the input value to the specified type.  If the type must be extended,
669    /// it is zero extended.  The conversion must not be narrowing.
670    const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
671
672    /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
673    /// the input value to the specified type.  If the type must be extended,
674    /// it is sign extended.  The conversion must not be narrowing.
675    const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
676
677    /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
678    /// the input value to the specified type. If the type must be extended,
679    /// it is extended with unspecified bits. The conversion must not be
680    /// narrowing.
681    const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
682
683    /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
684    /// input value to the specified type.  The conversion must not be
685    /// widening.
686    const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
687
688    /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
689    /// the types using zero-extension, and then perform a umax operation
690    /// with them.
691    const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
692                                           const SCEV *RHS);
693
694    /// getUMinFromMismatchedTypes - Promote the operands to the wider of
695    /// the types using zero-extension, and then perform a umin operation
696    /// with them.
697    const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
698                                           const SCEV *RHS);
699
700    /// getPointerBase - Transitively follow the chain of pointer-type operands
701    /// until reaching a SCEV that does not have a single pointer operand. This
702    /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
703    /// but corner cases do exist.
704    const SCEV *getPointerBase(const SCEV *V);
705
706    /// getSCEVAtScope - Return a SCEV expression for the specified value
707    /// at the specified scope in the program.  The L value specifies a loop
708    /// nest to evaluate the expression at, where null is the top-level or a
709    /// specified loop is immediately inside of the loop.
710    ///
711    /// This method can be used to compute the exit value for a variable defined
712    /// in a loop by querying what the value will hold in the parent loop.
713    ///
714    /// In the case that a relevant loop exit value cannot be computed, the
715    /// original value V is returned.
716    const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
717
718    /// getSCEVAtScope - This is a convenience function which does
719    /// getSCEVAtScope(getSCEV(V), L).
720    const SCEV *getSCEVAtScope(Value *V, const Loop *L);
721
722    /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
723    /// by a conditional between LHS and RHS.  This is used to help avoid max
724    /// expressions in loop trip counts, and to eliminate casts.
725    bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
726                                  const SCEV *LHS, const SCEV *RHS);
727
728    /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
729    /// protected by a conditional between LHS and RHS.  This is used to
730    /// to eliminate casts.
731    bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
732                                     const SCEV *LHS, const SCEV *RHS);
733
734    /// getSmallConstantTripCount - Returns the maximum trip count of this loop
735    /// as a normal unsigned value. Returns 0 if the trip count is unknown or
736    /// not constant. This "trip count" assumes that control exits via
737    /// ExitingBlock. More precisely, it is the number of times that control may
738    /// reach ExitingBlock before taking the branch. For loops with multiple
739    /// exits, it may not be the number times that the loop header executes if
740    /// the loop exits prematurely via another branch.
741    unsigned getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock);
742
743    /// getSmallConstantTripMultiple - Returns the largest constant divisor of
744    /// the trip count of this loop as a normal unsigned value, if
745    /// possible. This means that the actual trip count is always a multiple of
746    /// the returned value (don't forget the trip count could very well be zero
747    /// as well!). As explained in the comments for getSmallConstantTripCount,
748    /// this assumes that control exits the loop via ExitingBlock.
749    unsigned getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock);
750
751    // getExitCount - Get the expression for the number of loop iterations for
752    // which this loop is guaranteed not to exit via ExitingBlock. Otherwise
753    // return SCEVCouldNotCompute.
754    const SCEV *getExitCount(Loop *L, BasicBlock *ExitingBlock);
755
756    /// getBackedgeTakenCount - If the specified loop has a predictable
757    /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
758    /// object. The backedge-taken count is the number of times the loop header
759    /// will be branched to from within the loop. This is one less than the
760    /// trip count of the loop, since it doesn't count the first iteration,
761    /// when the header is branched to from outside the loop.
762    ///
763    /// Note that it is not valid to call this method on a loop without a
764    /// loop-invariant backedge-taken count (see
765    /// hasLoopInvariantBackedgeTakenCount).
766    ///
767    const SCEV *getBackedgeTakenCount(const Loop *L);
768
769    /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
770    /// return the least SCEV value that is known never to be less than the
771    /// actual backedge taken count.
772    const SCEV *getMaxBackedgeTakenCount(const Loop *L);
773
774    /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
775    /// has an analyzable loop-invariant backedge-taken count.
776    bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
777
778    /// forgetLoop - This method should be called by the client when it has
779    /// changed a loop in a way that may effect ScalarEvolution's ability to
780    /// compute a trip count, or if the loop is deleted.
781    void forgetLoop(const Loop *L);
782
783    /// forgetValue - This method should be called by the client when it has
784    /// changed a value in a way that may effect its value, or which may
785    /// disconnect it from a def-use chain linking it to a loop.
786    void forgetValue(Value *V);
787
788    /// GetMinTrailingZeros - Determine the minimum number of zero bits that S
789    /// is guaranteed to end in (at every loop iteration).  It is, at the same
790    /// time, the minimum number of times S is divisible by 2.  For example,
791    /// given {4,+,8} it returns 2.  If S is guaranteed to be 0, it returns the
792    /// bitwidth of S.
793    uint32_t GetMinTrailingZeros(const SCEV *S);
794
795    /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
796    ///
797    ConstantRange getUnsignedRange(const SCEV *S);
798
799    /// getSignedRange - Determine the signed range for a particular SCEV.
800    ///
801    ConstantRange getSignedRange(const SCEV *S);
802
803    /// isKnownNegative - Test if the given expression is known to be negative.
804    ///
805    bool isKnownNegative(const SCEV *S);
806
807    /// isKnownPositive - Test if the given expression is known to be positive.
808    ///
809    bool isKnownPositive(const SCEV *S);
810
811    /// isKnownNonNegative - Test if the given expression is known to be
812    /// non-negative.
813    ///
814    bool isKnownNonNegative(const SCEV *S);
815
816    /// isKnownNonPositive - Test if the given expression is known to be
817    /// non-positive.
818    ///
819    bool isKnownNonPositive(const SCEV *S);
820
821    /// isKnownNonZero - Test if the given expression is known to be
822    /// non-zero.
823    ///
824    bool isKnownNonZero(const SCEV *S);
825
826    /// isKnownPredicate - Test if the given expression is known to satisfy
827    /// the condition described by Pred, LHS, and RHS.
828    ///
829    bool isKnownPredicate(ICmpInst::Predicate Pred,
830                          const SCEV *LHS, const SCEV *RHS);
831
832    /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
833    /// predicate Pred. Return true iff any changes were made. If the
834    /// operands are provably equal or inequal, LHS and RHS are set to
835    /// the same value and Pred is set to either ICMP_EQ or ICMP_NE.
836    ///
837    bool SimplifyICmpOperands(ICmpInst::Predicate &Pred,
838                              const SCEV *&LHS,
839                              const SCEV *&RHS,
840                              unsigned Depth = 0);
841
842    /// getLoopDisposition - Return the "disposition" of the given SCEV with
843    /// respect to the given loop.
844    LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
845
846    /// isLoopInvariant - Return true if the value of the given SCEV is
847    /// unchanging in the specified loop.
848    bool isLoopInvariant(const SCEV *S, const Loop *L);
849
850    /// hasComputableLoopEvolution - Return true if the given SCEV changes value
851    /// in a known way in the specified loop.  This property being true implies
852    /// that the value is variant in the loop AND that we can emit an expression
853    /// to compute the value of the expression at any particular loop iteration.
854    bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
855
856    /// getLoopDisposition - Return the "disposition" of the given SCEV with
857    /// respect to the given block.
858    BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
859
860    /// dominates - Return true if elements that makes up the given SCEV
861    /// dominate the specified basic block.
862    bool dominates(const SCEV *S, const BasicBlock *BB);
863
864    /// properlyDominates - Return true if elements that makes up the given SCEV
865    /// properly dominate the specified basic block.
866    bool properlyDominates(const SCEV *S, const BasicBlock *BB);
867
868    /// hasOperand - Test whether the given SCEV has Op as a direct or
869    /// indirect operand.
870    bool hasOperand(const SCEV *S, const SCEV *Op) const;
871
872    virtual bool runOnFunction(Function &F);
873    virtual void releaseMemory();
874    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
875    virtual void print(raw_ostream &OS, const Module* = 0) const;
876
877  private:
878    FoldingSet<SCEV> UniqueSCEVs;
879    BumpPtrAllocator SCEVAllocator;
880
881    /// FirstUnknown - The head of a linked list of all SCEVUnknown
882    /// values that have been allocated. This is used by releaseMemory
883    /// to locate them all and call their destructors.
884    SCEVUnknown *FirstUnknown;
885  };
886}
887
888#endif
889