ScalarEvolutionExpressions.h revision 5661fcdde295645e5c6f982a25225e682727b5b1
1//===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the classes used to represent and build scalar expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
15#define LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
16
17#include "llvm/ADT/SmallPtrSet.h"
18#include "llvm/Analysis/ScalarEvolution.h"
19#include "llvm/Support/ErrorHandling.h"
20
21namespace llvm {
22  class ConstantInt;
23  class ConstantRange;
24  class DominatorTree;
25
26  enum SCEVTypes {
27    // These should be ordered in terms of increasing complexity to make the
28    // folders simpler.
29    scConstant, scTruncate, scZeroExtend, scSignExtend, scAddExpr, scMulExpr,
30    scUDivExpr, scAddRecExpr, scUMaxExpr, scSMaxExpr,
31    scUnknown, scCouldNotCompute
32  };
33
34  //===--------------------------------------------------------------------===//
35  /// SCEVConstant - This class represents a constant integer value.
36  ///
37  class SCEVConstant : public SCEV {
38    friend class ScalarEvolution;
39
40    ConstantInt *V;
41    SCEVConstant(const FoldingSetNodeIDRef ID, ConstantInt *v) :
42      SCEV(ID, scConstant), V(v) {}
43  public:
44    ConstantInt *getValue() const { return V; }
45
46    Type *getType() const { return V->getType(); }
47
48    /// Methods for support type inquiry through isa, cast, and dyn_cast:
49    static inline bool classof(const SCEV *S) {
50      return S->getSCEVType() == scConstant;
51    }
52  };
53
54  //===--------------------------------------------------------------------===//
55  /// SCEVCastExpr - This is the base class for unary cast operator classes.
56  ///
57  class SCEVCastExpr : public SCEV {
58  protected:
59    const SCEV *Op;
60    Type *Ty;
61
62    SCEVCastExpr(const FoldingSetNodeIDRef ID,
63                 unsigned SCEVTy, const SCEV *op, Type *ty);
64
65  public:
66    const SCEV *getOperand() const { return Op; }
67    Type *getType() const { return Ty; }
68
69    /// Methods for support type inquiry through isa, cast, and dyn_cast:
70    static inline bool classof(const SCEV *S) {
71      return S->getSCEVType() == scTruncate ||
72             S->getSCEVType() == scZeroExtend ||
73             S->getSCEVType() == scSignExtend;
74    }
75  };
76
77  //===--------------------------------------------------------------------===//
78  /// SCEVTruncateExpr - This class represents a truncation of an integer value
79  /// to a smaller integer value.
80  ///
81  class SCEVTruncateExpr : public SCEVCastExpr {
82    friend class ScalarEvolution;
83
84    SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
85                     const SCEV *op, Type *ty);
86
87  public:
88    /// Methods for support type inquiry through isa, cast, and dyn_cast:
89    static inline bool classof(const SCEV *S) {
90      return S->getSCEVType() == scTruncate;
91    }
92  };
93
94  //===--------------------------------------------------------------------===//
95  /// SCEVZeroExtendExpr - This class represents a zero extension of a small
96  /// integer value to a larger integer value.
97  ///
98  class SCEVZeroExtendExpr : public SCEVCastExpr {
99    friend class ScalarEvolution;
100
101    SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
102                       const SCEV *op, Type *ty);
103
104  public:
105    /// Methods for support type inquiry through isa, cast, and dyn_cast:
106    static inline bool classof(const SCEV *S) {
107      return S->getSCEVType() == scZeroExtend;
108    }
109  };
110
111  //===--------------------------------------------------------------------===//
112  /// SCEVSignExtendExpr - This class represents a sign extension of a small
113  /// integer value to a larger integer value.
114  ///
115  class SCEVSignExtendExpr : public SCEVCastExpr {
116    friend class ScalarEvolution;
117
118    SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
119                       const SCEV *op, Type *ty);
120
121  public:
122    /// Methods for support type inquiry through isa, cast, and dyn_cast:
123    static inline bool classof(const SCEV *S) {
124      return S->getSCEVType() == scSignExtend;
125    }
126  };
127
128
129  //===--------------------------------------------------------------------===//
130  /// SCEVNAryExpr - This node is a base class providing common
131  /// functionality for n'ary operators.
132  ///
133  class SCEVNAryExpr : public SCEV {
134  protected:
135    // Since SCEVs are immutable, ScalarEvolution allocates operand
136    // arrays with its SCEVAllocator, so this class just needs a simple
137    // pointer rather than a more elaborate vector-like data structure.
138    // This also avoids the need for a non-trivial destructor.
139    const SCEV *const *Operands;
140    size_t NumOperands;
141
142    SCEVNAryExpr(const FoldingSetNodeIDRef ID,
143                 enum SCEVTypes T, const SCEV *const *O, size_t N)
144      : SCEV(ID, T), Operands(O), NumOperands(N) {}
145
146  public:
147    size_t getNumOperands() const { return NumOperands; }
148    const SCEV *getOperand(unsigned i) const {
149      assert(i < NumOperands && "Operand index out of range!");
150      return Operands[i];
151    }
152
153    typedef const SCEV *const *op_iterator;
154    op_iterator op_begin() const { return Operands; }
155    op_iterator op_end() const { return Operands + NumOperands; }
156
157    Type *getType() const { return getOperand(0)->getType(); }
158
159    NoWrapFlags getNoWrapFlags(NoWrapFlags Mask = NoWrapMask) const {
160      return (NoWrapFlags)(SubclassData & Mask);
161    }
162
163    /// Methods for support type inquiry through isa, cast, and dyn_cast:
164    static inline bool classof(const SCEV *S) {
165      return S->getSCEVType() == scAddExpr ||
166             S->getSCEVType() == scMulExpr ||
167             S->getSCEVType() == scSMaxExpr ||
168             S->getSCEVType() == scUMaxExpr ||
169             S->getSCEVType() == scAddRecExpr;
170    }
171  };
172
173  //===--------------------------------------------------------------------===//
174  /// SCEVCommutativeExpr - This node is the base class for n'ary commutative
175  /// operators.
176  ///
177  class SCEVCommutativeExpr : public SCEVNAryExpr {
178  protected:
179    SCEVCommutativeExpr(const FoldingSetNodeIDRef ID,
180                        enum SCEVTypes T, const SCEV *const *O, size_t N)
181      : SCEVNAryExpr(ID, T, O, N) {}
182
183  public:
184    /// Methods for support type inquiry through isa, cast, and dyn_cast:
185    static inline bool classof(const SCEV *S) {
186      return S->getSCEVType() == scAddExpr ||
187             S->getSCEVType() == scMulExpr ||
188             S->getSCEVType() == scSMaxExpr ||
189             S->getSCEVType() == scUMaxExpr;
190    }
191
192    /// Set flags for a non-recurrence without clearing previously set flags.
193    void setNoWrapFlags(NoWrapFlags Flags) {
194      SubclassData |= Flags;
195    }
196  };
197
198
199  //===--------------------------------------------------------------------===//
200  /// SCEVAddExpr - This node represents an addition of some number of SCEVs.
201  ///
202  class SCEVAddExpr : public SCEVCommutativeExpr {
203    friend class ScalarEvolution;
204
205    SCEVAddExpr(const FoldingSetNodeIDRef ID,
206                const SCEV *const *O, size_t N)
207      : SCEVCommutativeExpr(ID, scAddExpr, O, N) {
208    }
209
210  public:
211    Type *getType() const {
212      // Use the type of the last operand, which is likely to be a pointer
213      // type, if there is one. This doesn't usually matter, but it can help
214      // reduce casts when the expressions are expanded.
215      return getOperand(getNumOperands() - 1)->getType();
216    }
217
218    /// Methods for support type inquiry through isa, cast, and dyn_cast:
219    static inline bool classof(const SCEV *S) {
220      return S->getSCEVType() == scAddExpr;
221    }
222  };
223
224  //===--------------------------------------------------------------------===//
225  /// SCEVMulExpr - This node represents multiplication of some number of SCEVs.
226  ///
227  class SCEVMulExpr : public SCEVCommutativeExpr {
228    friend class ScalarEvolution;
229
230    SCEVMulExpr(const FoldingSetNodeIDRef ID,
231                const SCEV *const *O, size_t N)
232      : SCEVCommutativeExpr(ID, scMulExpr, O, N) {
233    }
234
235  public:
236    /// Methods for support type inquiry through isa, cast, and dyn_cast:
237    static inline bool classof(const SCEV *S) {
238      return S->getSCEVType() == scMulExpr;
239    }
240  };
241
242
243  //===--------------------------------------------------------------------===//
244  /// SCEVUDivExpr - This class represents a binary unsigned division operation.
245  ///
246  class SCEVUDivExpr : public SCEV {
247    friend class ScalarEvolution;
248
249    const SCEV *LHS;
250    const SCEV *RHS;
251    SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs)
252      : SCEV(ID, scUDivExpr), LHS(lhs), RHS(rhs) {}
253
254  public:
255    const SCEV *getLHS() const { return LHS; }
256    const SCEV *getRHS() const { return RHS; }
257
258    Type *getType() const {
259      // In most cases the types of LHS and RHS will be the same, but in some
260      // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
261      // depend on the type for correctness, but handling types carefully can
262      // avoid extra casts in the SCEVExpander. The LHS is more likely to be
263      // a pointer type than the RHS, so use the RHS' type here.
264      return getRHS()->getType();
265    }
266
267    /// Methods for support type inquiry through isa, cast, and dyn_cast:
268    static inline bool classof(const SCEV *S) {
269      return S->getSCEVType() == scUDivExpr;
270    }
271  };
272
273
274  //===--------------------------------------------------------------------===//
275  /// SCEVAddRecExpr - This node represents a polynomial recurrence on the trip
276  /// count of the specified loop.  This is the primary focus of the
277  /// ScalarEvolution framework; all the other SCEV subclasses are mostly just
278  /// supporting infrastructure to allow SCEVAddRecExpr expressions to be
279  /// created and analyzed.
280  ///
281  /// All operands of an AddRec are required to be loop invariant.
282  ///
283  class SCEVAddRecExpr : public SCEVNAryExpr {
284    friend class ScalarEvolution;
285
286    const Loop *L;
287
288    SCEVAddRecExpr(const FoldingSetNodeIDRef ID,
289                   const SCEV *const *O, size_t N, const Loop *l)
290      : SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {}
291
292  public:
293    const SCEV *getStart() const { return Operands[0]; }
294    const Loop *getLoop() const { return L; }
295
296    /// getStepRecurrence - This method constructs and returns the recurrence
297    /// indicating how much this expression steps by.  If this is a polynomial
298    /// of degree N, it returns a chrec of degree N-1.
299    /// We cannot determine whether the step recurrence has self-wraparound.
300    const SCEV *getStepRecurrence(ScalarEvolution &SE) const {
301      if (isAffine()) return getOperand(1);
302      return SE.getAddRecExpr(SmallVector<const SCEV *, 3>(op_begin()+1,
303                                                           op_end()),
304                              getLoop(), FlagAnyWrap);
305    }
306
307    /// isAffine - Return true if this is an affine AddRec (i.e., it represents
308    /// an expressions A+B*x where A and B are loop invariant values.
309    bool isAffine() const {
310      // We know that the start value is invariant.  This expression is thus
311      // affine iff the step is also invariant.
312      return getNumOperands() == 2;
313    }
314
315    /// isQuadratic - Return true if this is an quadratic AddRec (i.e., it
316    /// represents an expressions A+B*x+C*x^2 where A, B and C are loop
317    /// invariant values.  This corresponds to an addrec of the form {L,+,M,+,N}
318    bool isQuadratic() const {
319      return getNumOperands() == 3;
320    }
321
322    /// Set flags for a recurrence without clearing any previously set flags.
323    /// For AddRec, either NUW or NSW implies NW. Keep track of this fact here
324    /// to make it easier to propagate flags.
325    void setNoWrapFlags(NoWrapFlags Flags) {
326      if (Flags & (FlagNUW | FlagNSW))
327        Flags = ScalarEvolution::setFlags(Flags, FlagNW);
328      SubclassData |= Flags;
329    }
330
331    /// evaluateAtIteration - Return the value of this chain of recurrences at
332    /// the specified iteration number.
333    const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const;
334
335    /// getNumIterationsInRange - Return the number of iterations of this loop
336    /// that produce values in the specified constant range.  Another way of
337    /// looking at this is that it returns the first iteration number where the
338    /// value is not in the condition, thus computing the exit count.  If the
339    /// iteration count can't be computed, an instance of SCEVCouldNotCompute is
340    /// returned.
341    const SCEV *getNumIterationsInRange(ConstantRange Range,
342                                       ScalarEvolution &SE) const;
343
344    /// getPostIncExpr - Return an expression representing the value of
345    /// this expression one iteration of the loop ahead.
346    const SCEVAddRecExpr *getPostIncExpr(ScalarEvolution &SE) const {
347      return cast<SCEVAddRecExpr>(SE.getAddExpr(this, getStepRecurrence(SE)));
348    }
349
350    /// Methods for support type inquiry through isa, cast, and dyn_cast:
351    static inline bool classof(const SCEV *S) {
352      return S->getSCEVType() == scAddRecExpr;
353    }
354  };
355
356
357  //===--------------------------------------------------------------------===//
358  /// SCEVSMaxExpr - This class represents a signed maximum selection.
359  ///
360  class SCEVSMaxExpr : public SCEVCommutativeExpr {
361    friend class ScalarEvolution;
362
363    SCEVSMaxExpr(const FoldingSetNodeIDRef ID,
364                 const SCEV *const *O, size_t N)
365      : SCEVCommutativeExpr(ID, scSMaxExpr, O, N) {
366      // Max never overflows.
367      setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
368    }
369
370  public:
371    /// Methods for support type inquiry through isa, cast, and dyn_cast:
372    static inline bool classof(const SCEV *S) {
373      return S->getSCEVType() == scSMaxExpr;
374    }
375  };
376
377
378  //===--------------------------------------------------------------------===//
379  /// SCEVUMaxExpr - This class represents an unsigned maximum selection.
380  ///
381  class SCEVUMaxExpr : public SCEVCommutativeExpr {
382    friend class ScalarEvolution;
383
384    SCEVUMaxExpr(const FoldingSetNodeIDRef ID,
385                 const SCEV *const *O, size_t N)
386      : SCEVCommutativeExpr(ID, scUMaxExpr, O, N) {
387      // Max never overflows.
388      setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
389    }
390
391  public:
392    /// Methods for support type inquiry through isa, cast, and dyn_cast:
393    static inline bool classof(const SCEV *S) {
394      return S->getSCEVType() == scUMaxExpr;
395    }
396  };
397
398  //===--------------------------------------------------------------------===//
399  /// SCEVUnknown - This means that we are dealing with an entirely unknown SCEV
400  /// value, and only represent it as its LLVM Value.  This is the "bottom"
401  /// value for the analysis.
402  ///
403  class SCEVUnknown : public SCEV, private CallbackVH {
404    friend class ScalarEvolution;
405
406    // Implement CallbackVH.
407    virtual void deleted();
408    virtual void allUsesReplacedWith(Value *New);
409
410    /// SE - The parent ScalarEvolution value. This is used to update
411    /// the parent's maps when the value associated with a SCEVUnknown
412    /// is deleted or RAUW'd.
413    ScalarEvolution *SE;
414
415    /// Next - The next pointer in the linked list of all
416    /// SCEVUnknown instances owned by a ScalarEvolution.
417    SCEVUnknown *Next;
418
419    SCEVUnknown(const FoldingSetNodeIDRef ID, Value *V,
420                ScalarEvolution *se, SCEVUnknown *next) :
421      SCEV(ID, scUnknown), CallbackVH(V), SE(se), Next(next) {}
422
423  public:
424    Value *getValue() const { return getValPtr(); }
425
426    /// isSizeOf, isAlignOf, isOffsetOf - Test whether this is a special
427    /// constant representing a type size, alignment, or field offset in
428    /// a target-independent manner, and hasn't happened to have been
429    /// folded with other operations into something unrecognizable. This
430    /// is mainly only useful for pretty-printing and other situations
431    /// where it isn't absolutely required for these to succeed.
432    bool isSizeOf(Type *&AllocTy) const;
433    bool isAlignOf(Type *&AllocTy) const;
434    bool isOffsetOf(Type *&STy, Constant *&FieldNo) const;
435
436    Type *getType() const { return getValPtr()->getType(); }
437
438    /// Methods for support type inquiry through isa, cast, and dyn_cast:
439    static inline bool classof(const SCEV *S) {
440      return S->getSCEVType() == scUnknown;
441    }
442  };
443
444  /// SCEVVisitor - This class defines a simple visitor class that may be used
445  /// for various SCEV analysis purposes.
446  template<typename SC, typename RetVal=void>
447  struct SCEVVisitor {
448    RetVal visit(const SCEV *S) {
449      switch (S->getSCEVType()) {
450      case scConstant:
451        return ((SC*)this)->visitConstant((const SCEVConstant*)S);
452      case scTruncate:
453        return ((SC*)this)->visitTruncateExpr((const SCEVTruncateExpr*)S);
454      case scZeroExtend:
455        return ((SC*)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr*)S);
456      case scSignExtend:
457        return ((SC*)this)->visitSignExtendExpr((const SCEVSignExtendExpr*)S);
458      case scAddExpr:
459        return ((SC*)this)->visitAddExpr((const SCEVAddExpr*)S);
460      case scMulExpr:
461        return ((SC*)this)->visitMulExpr((const SCEVMulExpr*)S);
462      case scUDivExpr:
463        return ((SC*)this)->visitUDivExpr((const SCEVUDivExpr*)S);
464      case scAddRecExpr:
465        return ((SC*)this)->visitAddRecExpr((const SCEVAddRecExpr*)S);
466      case scSMaxExpr:
467        return ((SC*)this)->visitSMaxExpr((const SCEVSMaxExpr*)S);
468      case scUMaxExpr:
469        return ((SC*)this)->visitUMaxExpr((const SCEVUMaxExpr*)S);
470      case scUnknown:
471        return ((SC*)this)->visitUnknown((const SCEVUnknown*)S);
472      case scCouldNotCompute:
473        return ((SC*)this)->visitCouldNotCompute((const SCEVCouldNotCompute*)S);
474      default:
475        llvm_unreachable("Unknown SCEV type!");
476      }
477    }
478
479    RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) {
480      llvm_unreachable("Invalid use of SCEVCouldNotCompute!");
481    }
482  };
483
484  /// Visit all nodes in the expression tree using worklist traversal.
485  ///
486  /// Visitor implements:
487  ///   // return true to follow this node.
488  ///   bool follow(const SCEV *S);
489  ///   // return true to terminate the search.
490  ///   bool isDone();
491  template<typename SV>
492  class SCEVTraversal {
493    SV &Visitor;
494    SmallVector<const SCEV *, 8> Worklist;
495    SmallPtrSet<const SCEV *, 8> Visited;
496
497    void push(const SCEV *S) {
498      if (Visited.insert(S) && Visitor.follow(S))
499        Worklist.push_back(S);
500    }
501  public:
502    SCEVTraversal(SV& V): Visitor(V) {}
503
504    void visitAll(const SCEV *Root) {
505      push(Root);
506      while (!Worklist.empty() && !Visitor.isDone()) {
507        const SCEV *S = Worklist.pop_back_val();
508
509        switch (S->getSCEVType()) {
510        case scConstant:
511        case scUnknown:
512          break;
513        case scTruncate:
514        case scZeroExtend:
515        case scSignExtend:
516          push(cast<SCEVCastExpr>(S)->getOperand());
517          break;
518        case scAddExpr:
519        case scMulExpr:
520        case scSMaxExpr:
521        case scUMaxExpr:
522        case scAddRecExpr: {
523          const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
524          for (SCEVNAryExpr::op_iterator I = NAry->op_begin(),
525                 E = NAry->op_end(); I != E; ++I) {
526            push(*I);
527          }
528          break;
529        }
530        case scUDivExpr: {
531          const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
532          push(UDiv->getLHS());
533          push(UDiv->getRHS());
534          break;
535        }
536        case scCouldNotCompute:
537          llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
538        default:
539          llvm_unreachable("Unknown SCEV kind!");
540        }
541      }
542    }
543  };
544
545  /// Use SCEVTraversal to visit all nodes in the givien expression tree.
546  template<typename SV>
547  void visitAll(const SCEV *Root, SV& Visitor) {
548    SCEVTraversal<SV> T(Visitor);
549    T.visitAll(Root);
550  }
551
552  /// The ScevRewriter takes a scalar evolution expression and copies all its
553  /// components. The result after a rewrite is an identical SCEV.
554  struct ScevRewriter
555    : public SCEVVisitor<ScevRewriter, const SCEV*> {
556  public:
557    ScevRewriter(ScalarEvolution &S) : SE(S) {}
558
559    virtual const SCEV *visitConstant(const SCEVConstant *Constant) {
560      return Constant;
561    }
562
563    virtual const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
564      const SCEV *Operand = visit(Expr->getOperand());
565      return SE.getTruncateExpr(Operand, Expr->getType());
566    }
567
568    virtual const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
569      const SCEV *Operand = visit(Expr->getOperand());
570      return SE.getZeroExtendExpr(Operand, Expr->getType());
571    }
572
573    virtual const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
574      const SCEV *Operand = visit(Expr->getOperand());
575      return SE.getSignExtendExpr(Operand, Expr->getType());
576    }
577
578    virtual const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
579      SmallVector<const SCEV *, 2> Operands;
580      for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
581        Operands.push_back(visit(Expr->getOperand(i)));
582      return SE.getAddExpr(Operands);
583    }
584
585    virtual const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
586      SmallVector<const SCEV *, 2> Operands;
587      for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
588        Operands.push_back(visit(Expr->getOperand(i)));
589      return SE.getMulExpr(Operands);
590    }
591
592    virtual const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
593      return SE.getUDivExpr(visit(Expr->getLHS()), visit(Expr->getRHS()));
594    }
595
596    virtual const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
597      SmallVector<const SCEV *, 2> Operands;
598      for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
599        Operands.push_back(visit(Expr->getOperand(i)));
600      return SE.getAddRecExpr(Operands, Expr->getLoop(),
601                              Expr->getNoWrapFlags());
602    }
603
604    virtual const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
605      SmallVector<const SCEV *, 2> Operands;
606      for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
607        Operands.push_back(visit(Expr->getOperand(i)));
608      return SE.getSMaxExpr(Operands);
609    }
610
611    virtual const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
612      SmallVector<const SCEV *, 2> Operands;
613      for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
614        Operands.push_back(visit(Expr->getOperand(i)));
615      return SE.getUMaxExpr(Operands);
616    }
617
618    virtual const SCEV *visitUnknown(const SCEVUnknown *Expr) {
619      return Expr;
620    }
621
622    virtual const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
623      return Expr;
624    }
625
626  protected:
627    ScalarEvolution &SE;
628  };
629
630  typedef DenseMap<const Value*, Value*> ValueToValueMap;
631
632  /// The ScevParameterRewriter takes a scalar evolution expression and updates
633  /// the SCEVUnknown components following the Map (Value -> Value).
634  struct ScevParameterRewriter: public ScevRewriter {
635  public:
636    static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
637                               ValueToValueMap &Map) {
638      ScevParameterRewriter Rewriter(SE, Map);
639      return Rewriter.visit(Scev);
640    }
641    ScevParameterRewriter(ScalarEvolution &S, ValueToValueMap &M)
642      : ScevRewriter(S), Map(M) {}
643
644    virtual const SCEV *visitUnknown(const SCEVUnknown *Expr) {
645      Value *V = Expr->getValue();
646      if (Map.count(V))
647        return SE.getUnknown(Map[V]);
648      return Expr;
649    }
650
651  private:
652    ValueToValueMap &Map;
653  };
654
655  typedef DenseMap<const Loop*, const SCEV*> LoopToScevMapT;
656
657  /// The ScevApplyRewriter takes a scalar evolution expression and applies
658  /// the Map (Loop -> SCEV) to all AddRecExprs.
659  struct ScevApplyRewriter: public ScevRewriter {
660  public:
661    static const SCEV *rewrite(const SCEV *Scev, LoopToScevMapT &Map,
662                               ScalarEvolution &SE) {
663      ScevApplyRewriter Rewriter(SE, Map);
664      return Rewriter.visit(Scev);
665    }
666    ScevApplyRewriter(ScalarEvolution &S, LoopToScevMapT &M)
667      : ScevRewriter(S), Map(M) {}
668
669    virtual const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
670      SmallVector<const SCEV *, 2> Operands;
671      for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
672        Operands.push_back(visit(Expr->getOperand(i)));
673
674      const Loop *L = Expr->getLoop();
675      const SCEV *Res = SE.getAddRecExpr(Operands, L, Expr->getNoWrapFlags());
676
677      if (0 == Map.count(L))
678        return Res;
679
680      const SCEVAddRecExpr *Rec = (const SCEVAddRecExpr *) Res;
681      return Rec->evaluateAtIteration(Map[L], SE);
682    }
683
684  private:
685    LoopToScevMapT &Map;
686  };
687
688/// Applies the Map (Loop -> SCEV) to the given Scev.
689static inline const SCEV *apply(const SCEV *Scev, LoopToScevMapT &Map,
690                                ScalarEvolution &SE) {
691  return ScevApplyRewriter::rewrite(Scev, Map, SE);
692}
693
694}
695
696#endif
697