JITCodeEmitter.h revision 8b67f774e9c38b7718b2b300b628388f966df4e0
1//===-- llvm/CodeGen/JITCodeEmitter.h - Code emission ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an abstract interface that is used by the machine code
11// emission framework to output the code.  This allows machine code emission to
12// be separated from concerns such as resolution of call targets, and where the
13// machine code will be written (memory or disk, f.e.).
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CODEGEN_JITCODEEMITTER_H
18#define LLVM_CODEGEN_JITCODEEMITTER_H
19
20#include <string>
21#include "llvm/System/DataTypes.h"
22#include "llvm/Support/MathExtras.h"
23#include "llvm/CodeGen/MachineCodeEmitter.h"
24
25using namespace std;
26
27namespace llvm {
28
29class MachineBasicBlock;
30class MachineConstantPool;
31class MachineJumpTableInfo;
32class MachineFunction;
33class MachineModuleInfo;
34class MachineRelocation;
35class Value;
36class GlobalValue;
37class Function;
38
39/// JITCodeEmitter - This class defines two sorts of methods: those for
40/// emitting the actual bytes of machine code, and those for emitting auxillary
41/// structures, such as jump tables, relocations, etc.
42///
43/// Emission of machine code is complicated by the fact that we don't (in
44/// general) know the size of the machine code that we're about to emit before
45/// we emit it.  As such, we preallocate a certain amount of memory, and set the
46/// BufferBegin/BufferEnd pointers to the start and end of the buffer.  As we
47/// emit machine instructions, we advance the CurBufferPtr to indicate the
48/// location of the next byte to emit.  In the case of a buffer overflow (we
49/// need to emit more machine code than we have allocated space for), the
50/// CurBufferPtr will saturate to BufferEnd and ignore stores.  Once the entire
51/// function has been emitted, the overflow condition is checked, and if it has
52/// occurred, more memory is allocated, and we reemit the code into it.
53///
54class JITCodeEmitter : public MachineCodeEmitter {
55public:
56  virtual ~JITCodeEmitter() {}
57
58  /// startFunction - This callback is invoked when the specified function is
59  /// about to be code generated.  This initializes the BufferBegin/End/Ptr
60  /// fields.
61  ///
62  virtual void startFunction(MachineFunction &F) = 0;
63
64  /// finishFunction - This callback is invoked when the specified function has
65  /// finished code generation.  If a buffer overflow has occurred, this method
66  /// returns true (the callee is required to try again), otherwise it returns
67  /// false.
68  ///
69  virtual bool finishFunction(MachineFunction &F) = 0;
70
71  /// startGVStub - This callback is invoked when the JIT needs the
72  /// address of a GV (e.g. function) that has not been code generated yet.
73  /// The StubSize specifies the total size required by the stub.
74  ///
75  virtual void startGVStub(const GlobalValue* GV, unsigned StubSize,
76                           unsigned Alignment = 1) = 0;
77
78  /// startGVStub - This callback is invoked when the JIT needs the address of a
79  /// GV (e.g. function) that has not been code generated yet.  Buffer points to
80  /// memory already allocated for this stub.
81  ///
82  virtual void startGVStub(const GlobalValue* GV, void *Buffer,
83                           unsigned StubSize) = 0;
84
85  /// finishGVStub - This callback is invoked to terminate a GV stub.
86  ///
87  virtual void *finishGVStub(const GlobalValue* F) = 0;
88
89  /// emitByte - This callback is invoked when a byte needs to be written to the
90  /// output stream.
91  ///
92  void emitByte(uint8_t B) {
93    if (CurBufferPtr != BufferEnd)
94      *CurBufferPtr++ = B;
95  }
96
97  /// emitWordLE - This callback is invoked when a 32-bit word needs to be
98  /// written to the output stream in little-endian format.
99  ///
100  void emitWordLE(uint32_t W) {
101    if (4 <= BufferEnd-CurBufferPtr) {
102      *CurBufferPtr++ = (uint8_t)(W >>  0);
103      *CurBufferPtr++ = (uint8_t)(W >>  8);
104      *CurBufferPtr++ = (uint8_t)(W >> 16);
105      *CurBufferPtr++ = (uint8_t)(W >> 24);
106    } else {
107      CurBufferPtr = BufferEnd;
108    }
109  }
110
111  /// emitWordBE - This callback is invoked when a 32-bit word needs to be
112  /// written to the output stream in big-endian format.
113  ///
114  void emitWordBE(uint32_t W) {
115    if (4 <= BufferEnd-CurBufferPtr) {
116      *CurBufferPtr++ = (uint8_t)(W >> 24);
117      *CurBufferPtr++ = (uint8_t)(W >> 16);
118      *CurBufferPtr++ = (uint8_t)(W >>  8);
119      *CurBufferPtr++ = (uint8_t)(W >>  0);
120    } else {
121      CurBufferPtr = BufferEnd;
122    }
123  }
124
125  /// emitDWordLE - This callback is invoked when a 64-bit word needs to be
126  /// written to the output stream in little-endian format.
127  ///
128  void emitDWordLE(uint64_t W) {
129    if (8 <= BufferEnd-CurBufferPtr) {
130      *CurBufferPtr++ = (uint8_t)(W >>  0);
131      *CurBufferPtr++ = (uint8_t)(W >>  8);
132      *CurBufferPtr++ = (uint8_t)(W >> 16);
133      *CurBufferPtr++ = (uint8_t)(W >> 24);
134      *CurBufferPtr++ = (uint8_t)(W >> 32);
135      *CurBufferPtr++ = (uint8_t)(W >> 40);
136      *CurBufferPtr++ = (uint8_t)(W >> 48);
137      *CurBufferPtr++ = (uint8_t)(W >> 56);
138    } else {
139      CurBufferPtr = BufferEnd;
140    }
141  }
142
143  /// emitDWordBE - This callback is invoked when a 64-bit word needs to be
144  /// written to the output stream in big-endian format.
145  ///
146  void emitDWordBE(uint64_t W) {
147    if (8 <= BufferEnd-CurBufferPtr) {
148      *CurBufferPtr++ = (uint8_t)(W >> 56);
149      *CurBufferPtr++ = (uint8_t)(W >> 48);
150      *CurBufferPtr++ = (uint8_t)(W >> 40);
151      *CurBufferPtr++ = (uint8_t)(W >> 32);
152      *CurBufferPtr++ = (uint8_t)(W >> 24);
153      *CurBufferPtr++ = (uint8_t)(W >> 16);
154      *CurBufferPtr++ = (uint8_t)(W >>  8);
155      *CurBufferPtr++ = (uint8_t)(W >>  0);
156    } else {
157      CurBufferPtr = BufferEnd;
158    }
159  }
160
161  /// emitAlignment - Move the CurBufferPtr pointer up the the specified
162  /// alignment (saturated to BufferEnd of course).
163  void emitAlignment(unsigned Alignment) {
164    if (Alignment == 0) Alignment = 1;
165    uint8_t *NewPtr = (uint8_t*)RoundUpToAlignment((uintptr_t)CurBufferPtr,
166                                                   Alignment);
167    CurBufferPtr = std::min(NewPtr, BufferEnd);
168  }
169
170  /// emitAlignmentWithFill - Similar to emitAlignment, except that the
171  /// extra bytes are filled with the provided byte.
172  void emitAlignmentWithFill(unsigned Alignment, uint8_t Fill) {
173    if (Alignment == 0) Alignment = 1;
174    uint8_t *NewPtr = (uint8_t*)RoundUpToAlignment((uintptr_t)CurBufferPtr,
175                                                   Alignment);
176    // Fail if we don't have room.
177    if (NewPtr > BufferEnd) {
178      CurBufferPtr = BufferEnd;
179      return;
180    }
181    while (CurBufferPtr < NewPtr) {
182      *CurBufferPtr++ = Fill;
183    }
184  }
185
186  /// emitULEB128Bytes - This callback is invoked when a ULEB128 needs to be
187  /// written to the output stream.
188  void emitULEB128Bytes(uint64_t Value) {
189    do {
190      uint8_t Byte = Value & 0x7f;
191      Value >>= 7;
192      if (Value) Byte |= 0x80;
193      emitByte(Byte);
194    } while (Value);
195  }
196
197  /// emitSLEB128Bytes - This callback is invoked when a SLEB128 needs to be
198  /// written to the output stream.
199  void emitSLEB128Bytes(int64_t Value) {
200    int32_t Sign = Value >> (8 * sizeof(Value) - 1);
201    bool IsMore;
202
203    do {
204      uint8_t Byte = Value & 0x7f;
205      Value >>= 7;
206      IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
207      if (IsMore) Byte |= 0x80;
208      emitByte(Byte);
209    } while (IsMore);
210  }
211
212  /// emitString - This callback is invoked when a String needs to be
213  /// written to the output stream.
214  void emitString(const std::string &String) {
215    for (unsigned i = 0, N = static_cast<unsigned>(String.size());
216         i < N; ++i) {
217      uint8_t C = String[i];
218      emitByte(C);
219    }
220    emitByte(0);
221  }
222
223  /// emitInt32 - Emit a int32 directive.
224  void emitInt32(uint32_t Value) {
225    if (4 <= BufferEnd-CurBufferPtr) {
226      *((uint32_t*)CurBufferPtr) = Value;
227      CurBufferPtr += 4;
228    } else {
229      CurBufferPtr = BufferEnd;
230    }
231  }
232
233  /// emitInt64 - Emit a int64 directive.
234  void emitInt64(uint64_t Value) {
235    if (8 <= BufferEnd-CurBufferPtr) {
236      *((uint64_t*)CurBufferPtr) = Value;
237      CurBufferPtr += 8;
238    } else {
239      CurBufferPtr = BufferEnd;
240    }
241  }
242
243  /// emitInt32At - Emit the Int32 Value in Addr.
244  void emitInt32At(uintptr_t *Addr, uintptr_t Value) {
245    if (Addr >= (uintptr_t*)BufferBegin && Addr < (uintptr_t*)BufferEnd)
246      (*(uint32_t*)Addr) = (uint32_t)Value;
247  }
248
249  /// emitInt64At - Emit the Int64 Value in Addr.
250  void emitInt64At(uintptr_t *Addr, uintptr_t Value) {
251    if (Addr >= (uintptr_t*)BufferBegin && Addr < (uintptr_t*)BufferEnd)
252      (*(uint64_t*)Addr) = (uint64_t)Value;
253  }
254
255
256  /// emitLabel - Emits a label
257  virtual void emitLabel(uint64_t LabelID) = 0;
258
259  /// allocateSpace - Allocate a block of space in the current output buffer,
260  /// returning null (and setting conditions to indicate buffer overflow) on
261  /// failure.  Alignment is the alignment in bytes of the buffer desired.
262  virtual void *allocateSpace(uintptr_t Size, unsigned Alignment) {
263    emitAlignment(Alignment);
264    void *Result;
265
266    // Check for buffer overflow.
267    if (Size >= (uintptr_t)(BufferEnd-CurBufferPtr)) {
268      CurBufferPtr = BufferEnd;
269      Result = 0;
270    } else {
271      // Allocate the space.
272      Result = CurBufferPtr;
273      CurBufferPtr += Size;
274    }
275
276    return Result;
277  }
278
279  /// allocateGlobal - Allocate memory for a global.  Unlike allocateSpace,
280  /// this method does not allocate memory in the current output buffer,
281  /// because a global may live longer than the current function.
282  virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment) = 0;
283
284  /// StartMachineBasicBlock - This should be called by the target when a new
285  /// basic block is about to be emitted.  This way the MCE knows where the
286  /// start of the block is, and can implement getMachineBasicBlockAddress.
287  virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) = 0;
288
289  /// getCurrentPCValue - This returns the address that the next emitted byte
290  /// will be output to.
291  ///
292  virtual uintptr_t getCurrentPCValue() const {
293    return (uintptr_t)CurBufferPtr;
294  }
295
296  /// getCurrentPCOffset - Return the offset from the start of the emitted
297  /// buffer that we are currently writing to.
298  uintptr_t getCurrentPCOffset() const {
299    return CurBufferPtr-BufferBegin;
300  }
301
302  /// earlyResolveAddresses - True if the code emitter can use symbol addresses
303  /// during code emission time. The JIT is capable of doing this because it
304  /// creates jump tables or constant pools in memory on the fly while the
305  /// object code emitters rely on a linker to have real addresses and should
306  /// use relocations instead.
307  bool earlyResolveAddresses() const { return true; }
308
309  /// addRelocation - Whenever a relocatable address is needed, it should be
310  /// noted with this interface.
311  virtual void addRelocation(const MachineRelocation &MR) = 0;
312
313  /// FIXME: These should all be handled with relocations!
314
315  /// getConstantPoolEntryAddress - Return the address of the 'Index' entry in
316  /// the constant pool that was last emitted with the emitConstantPool method.
317  ///
318  virtual uintptr_t getConstantPoolEntryAddress(unsigned Index) const = 0;
319
320  /// getJumpTableEntryAddress - Return the address of the jump table with index
321  /// 'Index' in the function that last called initJumpTableInfo.
322  ///
323  virtual uintptr_t getJumpTableEntryAddress(unsigned Index) const = 0;
324
325  /// getMachineBasicBlockAddress - Return the address of the specified
326  /// MachineBasicBlock, only usable after the label for the MBB has been
327  /// emitted.
328  ///
329  virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const= 0;
330
331  /// getLabelAddress - Return the address of the specified LabelID, only usable
332  /// after the LabelID has been emitted.
333  ///
334  virtual uintptr_t getLabelAddress(uint64_t LabelID) const = 0;
335
336  /// Specifies the MachineModuleInfo object. This is used for exception handling
337  /// purposes.
338  virtual void setModuleInfo(MachineModuleInfo* Info) = 0;
339};
340
341} // End llvm namespace
342
343#endif
344